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Abstract. In this paper, we consider subbalancing numbers formed by using the third balancing number in
the Diophantine equation. We obtain some algebraic identities on these numbers which are also known as
B3-subbalancing numbers. We provide a variety of sum formulas and some divisibility properties associated
with these numbers. We also give several Pythagorean triples obtained by using B3-subbalancing numbers.
Furthermore, we derive some functions that takes B3-subbalancing and balancing numbers values for
B3-subbalancing number arguments.

1. Introduction

In [6], the sequence {un}
∞

n=0 satisfying the recurrence relation

un+2 = run+1 + sun (n ≥ 0) (1)

is called a binary recurrence sequence such that r and s are two non-zero integers and r2 + 4s , 0. In fact,
(1) is a linear homogeneous recurrence relation and is also commonly known as binary recurrence. The
characteristic equation for this sequence is

x2
− rx − s = 0 (2)

It is obvious that the equation (1) has two different roots as α and β. Thus, there are fix coefficients a and b
such that

un = aαn + bβn (n ≥ 0) (3)

Let u0 and u1 be the initial terms of the sequence un. From (3), we get

a =
u0β − u1

β − α
and b =

u1 − u0α
β − α

(4)
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Thus, from (3) and (4)

un =
(u0β − u1)αn + (u1 − u0α)βn

β − α
(5)

is obtained which is the Binet formula for the sequence un.

Two of the most well-known binary recurrence sequences that have been studied are Fibonacci and
Lucas sequences. The recurrence relations of Fibonacci and Lucas sequences which is obtained by taking
r = s = 1 in (1) are the same. The initial terms of these sequences F0 = 0,F1 = 1 and L0 = 2,L1 = 1,
respectively (for further details see [7, 8, 12, 30]).

Another binary recurrence sequences are the sequences of balancing and Lucas-balancing numbers. In
[1], the sequence of balancing numbers is defined as the sequence of n that satisfy the Diophantine equation

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r) (6)

for some positive integers r, which is called the balancer of n. The nth balancing number is denoted by Bn.

If the Diophantine equation (6) is rearranged, we get

n2 =
(n + r)(n + r + 1)

2
and r =

−(2n + 1) +
√

8n2 + 1
2

(7)

From (7), Bn is a balancing number if and only if 8B2
n + 1 is a perfect square. In [20], the square root of

8B2
n + 1 is called the nth Lucas-balancing number and denoted by Cn =

√
8B2

n + 1. The recurrence relations
of the sequences of balancing and Lucas-balancing numbers, obtained by taking r = 6 and s = −1 in (1), are
as follows:

Bn+1 = 6Bn − Bn−1 (n ≥ 2)
Cn+1 = 6Cn − Cn−1 (n ≥ 2)

where B1 = 1,B2 = 6 and C1 = 3,C2 = 17.

From (2), the roots of the characteristic equation for the sequence of balancing and Lucas-balancing
numbers are α = 3 + 2

√
2 and β = 3 − 2

√
2. By taking α1 = 1 +

√
2 and α2 = 1 −

√
2 and by using (5), the

Binet formulas for balancing and Lucas-balancing numbers are obtained as

Bn =
α2n

1 − α
2n
2

4
√

2
and Cn =

α2n
1 + α

2n
2

2
.

In [22], the sequence of cobalancing numbers is defined as the sequence of n that satisfy the Diophantine
equation

1 + 2 + · · · + n = (n + 1) + (n + 2) + · · · + (n + r) (8)

for some positive integers r, which is called the cobalancer of n. Cobalancing numbers are also called the
balancers of balancing numbers. The nth cobalancing number is denoted by bn.

If the Diophantine equation (8) is rearranged, we get

n(n + 1) =
(n + r)(n + r + 1)

2
and r =

−(2n + 1) +
√

8n2 + 8n + 1
2

(9)
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From (9), bn is a cobalancing number if and only if 8b2
n + 8bn + 1 is a perfect square. In [23], the square

root of 8b2
n + 8bn + 1 is called the nth Lucas-cobalancing number and denoted by cn =

√
8b2

n + 8bn + 1. The
recurrence relations of the sequence of cobalancing and Lucas-cobalancing numbers are as follows:

bn+1 = 6bn − bn−1 + 2 (n ≥ 2)
cn+1 = 6cn − cn−1 (n ≥ 2)

where b1 = 0, b2 = 2 and c1 = 1, c2 = 7.

As it is seen, while Lucas-cobalancing numbers satisfy the linear homogeneous recurrence relation,
cobalancing numbers satisfy the linear non-homogeneous recurrence relation.

The Binet formula for cobalancing numbers is bn =
α2n−1

1 −α2n−1
2

4
√

2
−

1
2 , where α1 = 1 +

√
2 and α2 = 1 −

√
2.

Furthermore by using (5), the Binet formula for Lucas-cobalancing numbers is obtained as cn =
α2n−1

1 +α2n−1
2

2 ,
where α1 = 1 +

√
2 and α2 = 1 −

√
2.

Since the first research on balancing numbers was made, balancing numbers have attracted the attention
of many researchers. In [14], (a, b)-balancing numbers were presented as an extended concept of balancing
numbers. Later in [21], Panda and Panda introduced almost balancing numbers and called these two types
of almost balancing numbers as A1-balancing and A2-balancing numbers. Furthermore in [27], Tekcan
obtained several algebraic relations on A1-balancing and A2-balancing numbers (for further details on bal-
ancing numbers, see also [2, 9, 10, 15-19, 28]).

In addition to these, in [3] balancing numbers were generalized to t-balancing numbers, with the defi-
nition given as follows:

A positive integer n is called a t-balancing number if

1 + 2 + · · · + n = (n + 1 + t) + (n + 2 + t) + · · · + (n + r + t)

for some positive integers r, which is called the t-balancer of n. The nth t-balancing number is denoted by
Bt

n (for further details, see [4, 29]).

In [5], Davala and Panda defined D-subbalancing numbers as n numbers that satisfy the following
Diophantine equation for some positive integer r and fixed positive integer D.

1 + 2 + · · · + (n − 1) +D = (n + 1) + (n + 2) + · · · + (n + r) (10)

It follows from (10) that

r =
−(2n + 1) +

√

8n2 + 8D + 1
2

(11)

It is obvious from (11) that n is a D-subbalancing number if and only if 8n2 + 8D + 1 is a perfect square.

In [5], it was deduced that D-subbalancing numbers cannot be constructed for every D. In order to de-
termine the values of D such that D-subbalancing numbers can be obtained, they examined the case where
D values are taken as the terms of the sequence of cobalancing numbers. They showed that if D is taken
as the terms of the sequence of cobalancing numbers, the values of n satisfying the Diophantine equation
(10) can be found. Thus, the concept of bk-subbalancing numbers was introduced and b3-subbalancing and
b5-subbalancing numbers were examined. Later, Sarı and Karadeniz-Gözeri [25] dealt with b3-subbalancing
numbers and obtained various new identities related to these numbers. Furthermore, they introduced b3-
Lucas subbalancing numbers and derived various algebraic identities between b3-Lucas subbalancing and
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b3-subbalancing numbers.

In [24], it was shown that if D = Tk (k ≥ 1), the values of n satisfying the Diophantine equation (10) can
be found. Thus, the concept of Tk-subbalancing numbers was introduced and some algebraic relations on
these numbers were obtained. In addition to these, Tk-Lucas subbalancing numbers were introduced and
several algebraic identities on these numbers were given. Later, Sarı and Karadeniz-Gözeri [26] showed
that if D = Bm, the values of n satisfying the Diophantine equation (10) can be found. Thus, they introduced
the concept of Bm-subbalancing numbers and proved that there exist at least two solution classes of the
Diophantine equation of Bm-subbalancing numbers. They obtained these solution classes as (cm+2)Bk+bmCk
and (cm + 2)Bk+1 − bmCk+1, for k ≥ 0.

In the present work, we deal with the solutions of the Diophantine equation of subbalancing numbers
related to the third balancing number. By using the third balancing number, the following Diophantine
equation is obtained:

1 + 2 + · · · + (n − 1) + B3 = (n + 1) + (n + 2) + · · · + (n + r)

Thus, it can be seen that the solutions of this Diophantine equation form an integer sequence called the
sequence of B3-subbalancing numbers. We provide some new algebraic relations and several sum formulas
for this sequence. Besides these, we give some Pythagorean triples obtained by using the terms of the
sequence of B3-subbalancing numbers. Furthermore, we present a variety of new results on the functions
related to the terms of the sequence of B3-subbalancing numbers.

2. Preliminiaries

In order to prove the theorems in the part of the main results, we need to following theorems and
corollaries which are included in [26].

Theorem 2.1. Let (SB3)m denote the mth B3-subbalancing number and Bm denote the mth balancing number . Then

(SB3)2m = 34Bm − (SB3)2m−1

for m ≥ 1.

Theorem 2.2. Let (SB3)m denote the mth B3-subbalancing number and Bm denote the mth balancing number . Then

(SB3)2m+1 = 14(SB3)2m − 195Bm

for m ≥ 0.

Theorem 2.3. Let (SB3)m denote the mth B3-subbalancing number and cm denote the mth Lucas-cobalancing number.
Then

(SB3)2m+1 = 15cm+1 − (SB3)2m

for m ≥ 0.

Theorem 2.4. Let (SB3)m denote the mth B3-subbalancing number. Then

(SB3)2
m = (SB3)m−2(SB3)m+2 + 281

for m ≥ 2.
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Corollary 2.1. Let (SB3)m denote the mth B3-subbalancing number, let Bm denote the mth balancing number and let
Cm denote the mth Lucas-balancing number. Then

(SB3)2m = 17Bm + Cm

(SB3)2m+1 = 17Bm+1 − Cm+1

for m ≥ 0.

Corollary 2.2. Let (SB3)m denote the mth B3-subbalancing number and let Bm denote the mth balancing number.
Then

(SB3)2m = Bm+1 + 14Bm

(SB3)2m+1 = 14Bm+1 + Bm

for m ≥ 0.

3. Main Results

This section consists of four subsection. While the first, second and third subsections include sum
formulas, divisibility properties and Pythagorean triples regarding B3-subbalancing numbers, the last
subsection includes the functions generating balancing and B3-subbalancing numbers.

3.1. Sum Formulas

In this subsection, we obtain several sum formulas related to B3-subbalancing numbers by using bal-
ancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers.

Theorem 3.1. Let (SB3)m denote the mth B3-subbalancing number, bm denote the mth cobalancing number and Bm
denote the mth balancing number. Then

m∑
i=0

(SB3)2i =
15
2

bm+1 + Bm+1

and

m∑
i=0

(SB3)2i+1 =
15
2

bm+1 + 14Bm+1.

Proof. By using Corollary 2.1, we obtain

m∑
i=0

(SB3)2i = 17(B0 + B1 + B2 + B3 + · · · + Bm) + (C0 + C1 + C2 + · · · + Cm)

= 17(B0 + B1 + B2 + B3 + · · · + Bm) + Bm+1 − 2(B0 + B1 + B2 + B3 + · · · + Bm)

= 15
m∑

i=0

Bi + Bm+1

=
15
2

bm+1 + Bm+1.

Similarly, we obtain

m∑
i=0

(SB3)2i+1 = 17(B1 + B2 + B3 + · · · + Bm+1) − (C1 + C2 + C3 + · · · + Cm+1)
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=

17
m∑

i=1

Bi + 17Bm+1

 −
3Bm+1 + 2

m∑
i=1

Bi


= 15

m∑
i=1

Bi + 14Bm+1

=
15
2

bm+1 + 14Bm+1.

Corollary 3.1. Let (SB3)m denote the mth B3-subbalancing number, bm denote the mth cobalancing number and Bm
denote the mth balancing number. Then

2m∑
i=1

(SB3)i = 17bm+1

and
2m+1∑
i=0

(SB3)i = 15(Bm+1 + bm+1).

Proof. By using Theorem 3.1, we obtain

2m∑
i=1

(SB3)i = [(SB3)2 + (SB3)4 + · · · + (SB3)2m] + [(SB3)1 + (SB3)3 + · · · + (SB3)2m−1]

=

(
15bm+1

2
+ Bm+1 − 1

)
+

(
15bm

2
+ 14Bm

)
=

(
15bm+1

2
+

6bm+1 − bm + 2 − bm+1

2
− 1

)
+

(
15bm

2
+ 7bm+1 − 7bm

)
=

(
10bm+1 −

bm

2

)
+

(
15bm

2
+ 7bm+1 − 7bm

)
= 17bm+1.

The other case can be proved similarly.

Theorem 3.2. Let (SB3)m denote the mth B3-subbalancing number, cm denote the mth Lucas-cobalancing number and
Bm denote the mth balancing number . Then

2
∞∑

m=0

(SB3)m = 34
∞∑

m=1

Bm + 15
∞∑

m=1

cm+1 + 1.

Proof. By using Theorem 2.1 and Theorem 2.3, we get
∞∑

m=1

[(SB3)2m−1 + (SB3)2m] = 34
∞∑

m=1

Bm (12)

and
∞∑

m=0

[(SB3)2m + (SB3)2m+1] = 15
∞∑

m=1

cm+1 (13)

Since

(SB3)0 +

∞∑
m=1

[(SB3)2m−1 + (SB3)2m] = (SB3)0 + [(SB3)1 + (SB3)2] + [(SB3)3 + (SB3)4] + · · · ,



G. Karadeniz-Gözeri , S. Sarı / Filomat 38:30 (2024), 10709–10722 10715

we obtain

(SB3)0 +

∞∑
m=1

[(SB3)2m−1 + (SB3)2m] = [(SB3)0 + (SB3)1] + [(SB3)2] + (SB3)3] + · · · .

=

∞∑
m=0

[(SB3)2m + (SB3)2m+1].

Thus, we get

(SB3)0 +

∞∑
m=1

[(SB3)2m−1 + (SB3)2m] =
∞∑

m=0

[(SB3)2m + (SB3)2m+1].

From this equation and (12), we obtain

∞∑
m=0

[(SB3)2m + (SB3)2m+1] = 1 +
∞∑

m=1

34Bm. (14)

Further from (13) and (14), we obtain

2

 ∞∑
m=0

(SB3)2m + (SB3)2m+1

 = 34
∞∑

m=1

Bm + 15
∞∑

m=1

cm+1 + 1.

Thus, we get

2
∞∑

m=0

(SB3)m = 34
∞∑

m=1

Bm + 15
∞∑

m=1

cm+1 + 1.

Theorem 3.3. Let (SB3)m denote the mth B3-subbalancing number and cm denote the mth Lucas-cobalancing number.
Then

m∑
i=1

[(SB3)2i − (SB3)2i−1] = cm+1 − 1.

Proof. From Corollary 2.2, we obtain

m∑
i=1

[(SB3)2i − (SB3)2i−1] =

m∑
i=1

(Bi+1 − Bi−1)

= (B2 − B0) + (B3 − B1) + (B4 − B2) + · · · + (Bm+1 − Bm−1)
= Bm+1 + Bm − 1
= Bm+1 + (cm+1 − Bm+1) − 1
= cm+1 − 1.

3.2. Divisibility Properties
In this subsection, we deal with some divisibility properties regarding B3-subbalancing numbers.

Theorem 3.4. Let (SB3)m denote the mth B3-subbalancing number and bm denote the mth cobalancing number. Then

2bm+1 + 1|(SB3)2m+1 − (SB3)2m

for m ≥ 0.
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Proof. From Corollary 2.2, we obtain

(SB3)2m+1 − (SB3)2m = (14Bm+1 + Bm) − (14Bm + Bm+1)
= 13(Bm+1 − Bm)

= 13
(

bm+2 − bm+1 − bm+1 + bm

2

)
= 13

(
6bm+1 − bm + 2 − 2bm+1 + bm

2

)
= 13(2bm+1 + 1).

Thus, we obtain

2bm+1 + 1|(SB3)2m+1 − (SB3)2m.

Theorem 3.5. Let (SB3)m denote the mth B3-subbalancing number and Cm denote the mth Lucas-balancing number.
Then

Cm|(SB3)2m − (SB3)2m−1

for m ≥ 1.

Proof. From Corollary 2.1, we obtain

(SB3)2m − (SB3)2m−1 = (17Bm + Cm) − (17Bm − Cm)
= 2Cm.

Thus, we get

Cm|(SB3)2m − (SB3)2m−1.

Corollary 3.2. Let (SB3)m denote the mth B3-subbalancing number and Bm denote the mth balancing number. Then

B2m|(SB3)2m − (SB3)2m−1

for m ≥ 1.

Proof. From Theorem 3.5 and the relation between balancing and Lucas-balancing numbers, we get

B2m = 2BmCm

= Bm[(SB3)2m − (SB3)2m−1].

Thus, we obtain

B2m|(SB3)2m − (SB3)2m−1.

Theorem 3.6. Let (SB3)m denote the mth B3-subbalancing number and Bm denote the mth balancing number. Then

B2m|(SB3)2
2m − (SB3)2

2m−1 (m ≥ 1)

and

B2m+1|(SB3)2
2m+1 − (SB3)2

2m (m ≥ 0).

Proof. By using Theorem 2.1 and Theorem 3.5, we obtain

(SB3)2
2m − (SB3)2

2m−1 = [(SB3)2m − (SB3)2m−1][(SB3)2m + (SB3)2m−1]
= 68BmCm

= 34B2m.

Thus, we get

B2m|(SB3)2
2m − (SB3)2

2m−1.

The other case can be proved similarly.
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3.3. Pythagorean Triples

In this subsection, we give several Pythagorean triples obtained by using B3-subbalancing numbers. We
obtain the following theorems by using some techniques included in [11] and [13].

Theorem 3.7. Let (SB3)m denote the mth B3-subbalancing number . Then (SB3)4m−4,
(SB3)2

4m−4 − 1

2
,

(SB3)2
4m−4 + 1

2

 and

 (SB3)4m−1,
(SB3)2

4m−1 − 1

2
,

(SB3)2
4m−1 + 1

2


are Pythagorean triples.

Proof. We first show that (SB3)4m−4 is odd. For this purpose, we assume that (SB3)4m−4 is even.

From Corollary 2.2, we get

(SB3)4m−4 = 14B2m−2 + B2m−1 (15)

It follows from (15) that B2m−1 is even. Since every odd term of the sequence of balancing numbers is odd,

we get a contradiction. Thus, (SB3)4m−4 is odd and
(

(SB3)2
4m−4±1
2

)
are integers.

Since

(SB3)2
4m−4 +

 (SB3)2
4m−4 − 1

2

2

=
(SB3)4

4m−4 + 2(SB3)2
4m−4 + 1

4

=

 (SB3)2
4m−4 + 1

2

2

,

we obtain that (SB3)4m−4,
(SB3)2

4m−4 − 1

2
,

(SB3)2
4m−4 + 1

2


is a Pythagorean triple.

The other case can be proved similarly.

Theorem 3.8. Let (SB3)m denote the mth B3-subbalancing number . Then(SB3)4m−2,

(
(SB3)4m−2

2

)2

− 1,
(

(SB3)4m−2

2

)2

+ 1

 and

(SB3)4m−3,

(
(SB3)4m−3

2

)2

− 1,
(

(SB3)4m−3

2

)2

+ 1


are Pythagorean triples.

Proof. We first show that (SB3)4m−2 is even. For this purpose, we assume that (SB3)4m−2 is odd.

From Corollary 2.2, we get

(SB3)4m−2 = 14B2m−1 + B2m (16)

It follows from (16) that B2m is odd. Since every even term of the sequence of balancing numbers is even,

we get a contradiction. Thus, (SB3)4m−2 is even and
(

(SB3)4m−2
2

)2
± 1 are integers.
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Since

(SB3)2
4m−2 +

( (SB3)4m−2

2

)2

− 1

2

=
(SB3)4

4m−2 + 8(SB3)2
4m−2 + 16

16

=

( (SB3)4m−2

2

)2

+ 1

2

,

we obtain that(SB3)4m−2,

(
(SB3)4m−2

2

)2

− 1,
(

(SB3)4m−2

2

)2

+ 1


is a Pythagorean triple.

The other case can be proved similarly.

Theorem 3.9. Let (SB3)m denote the mth B3-subbalancing number . Then(SB3)3
2m,

 (SB3)4
2m − (SB3)2

2m

2

 , ( [(SB3)4m + 281B2
m][(SB3)4m + 281B2

m + 1]
2

)
is a Pythagorean triple.

Proof. From Corollary 2.2 and the relations between the terms of the sequence of balancing number, we get

[(SB3)3
2m]2 +

 (SB3)4
2m − (SB3)2

2m

2

2

= (SB3)6
2m +

(SB3)8
2m − 2(SB3)6

2m + (SB3)4
2m

4

=
(SB3)8

2m + 2(SB3)6
2m + (SB3)4

2m

4

= (SB3)4
2m

 (SB3)4
2m + 2(SB3)2

2m + 1
4


= (SB3)4

2m

[
(SB3)2

2m + 1
2

]2

=

[
[(SB3)4m + 281B2

m][(SB3)4m + 281B2
m + 1]

2

]2

.

Thus, we obtain that(SB3)3
2m,

 (SB3)4
2m − (SB3)2

2m

2

 , ( [(SB3)4m + 281B2
m][(SB3)4m + 281B2

m + 1]
2

)
is a Pythagorean triple.

Theorem 3.10. Let (SB3)m denote the mth B3-subbalancing number . Then(SB3)3
2m+1,

 (SB3)4
2m+1 − (SB3)2

2m+1

2

 ,  [281B2
m+1 − (SB3)4m+3][281B2

m+1 − (SB3)4m+3 + 1]

2


is a Pythagorean triple.

Proof. From Corollary 2.2 and the relations between the terms of the sequence of balancing number, we get
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[(SB3)3
2m+1]2 +

 (SB3)4
2m+1 − (SB3)2

2m+1

2

2

= (SB3)6
2m+1 +

(SB3)8
2m+1 − 2(SB3)6

2m+1 + (SB3)4
2m+1

4

=
(SB3)8

2m+1 + 2(SB3)6
2m+1 + (SB3)4

2m+1

4

= (SB3)4
2m+1

 (SB3)4
2m+1 + 2(SB3)2

2m+1 + 1

4


= (SB3)4

2m+1

 (SB3)2
2m+1 + 1

2

2

=

 [281B2
m+1 − (SB3)4m+3][281B2

m+1 − (SB3)4m+3 + 1]

2

2

.

Thus, we obtain that(SB3)3
2m+1,

 (SB3)4
2m+1 − (SB3)2

2m+1

2

 ,  [281B2
m+1 − (SB3)4m+3][281B2

m+1 − (SB3)4m+3 + 1]

2


is a Pythagorean triple.

3.4. Functions Generating Balancing and B3-Subbalancing Numbers
In this subsection, we obtain some functions that takes B3-subbalancing and balancing numbers values

for B3-subbalancing number arguments.

Theorem 3.11. Let f (x) = 17x−
√

8x2+281
281 and 1(y) =

17y+
√

8y2+281
281 . If x is an even term and y is an odd term of the

sequence of B3-subbalancing numbers, then f (x) and 1(y) are balancing numbers.

Proof. Let x be an even term of the sequence of B3-subbalancing numbers. Then there exist a positive
integer m such that x = (SB3)2m.

From Corollary 2.2, Theorem 2.4 and the recurrence relation of B3-subbalancing numbers, we obtain

8(SB3)2
2m + 281 = 8(SB3)2

2m + (SB3)2
2m − (SB3)2m−2(SB3)2m+2

= 9(SB3)2
2m − [6(SB3)2m − (SB3)2m+2](SB3)2m+2

= 9(SB3)2
2m − 6(SB3)2m(SB3)2m+2 + (SB3)2

2m+2

= 9(14Bm + Bm+1)2
− 6(14Bm + Bm+1)(14Bm+1 + Bm+2) + (14Bm+1 + Bm+2)2

= 9(14Bm + Bm+1)2
− 6(14Bm + Bm+1)(20Bm+1 − Bm) + (20Bm+1 − Bm)2

= 1849B2
m − 1462Bm+1Bm + 289B2

m+1

= 289(B2
m+1 + 28Bm+1Bm + 196B2

m) − 9554Bm(Bm+1 + 14Bm) + 78961B2
m

= [17(Bm+1 + 14Bm) − 281Bm]2

= [17(SB3)2m − 281Bm]2.

Thus, we deduce that√
8(SB3)2

2m + 281 = 17(SB3)2m − 281Bm (17)

If we take x = (SB3)2m, we get

f ((SB3)2m) =
17(SB3)2m −

√
8(SB3)2

2m + 281

281
.
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Thus, it is obvious from (17) that f (x) = Bm.

Similarly, we get√
8(SB3)2

2m+1 + 281 = 281Bm+1 − 17(SB3)2m+1. (18)

If we take y = (SB3)2m+1, we get

1((SB3)2m+1) =
17(SB3)2m+1 +

√
8(SB3)2

2m+1 + 281

281
.

Thus, it is obvious from (18) that 1(y) = Bm+1.

Theorem 3.12. Let 1(x) = 297x−34
√

8x2+281
281 and 1̃(x) = 619x+195

√

8x2+281
281 . If x is an even term of the sequence of

B3-subbalancing numbers, then 1(x) is the B3-subbalancing number just prior to it and 1̃(x) is the B3-subbalancing
number next to it.

Proof. Let x be an even term of the sequence of B3-subbalancing numbers. Then there exist a positive integer
m such that x = (SB3)2m.
From Theorem 2.1 and Theorem 3.11, we obtain

1((SB3)2m) =
297(SB3)2m − 34

√
8(SB3)2

2m + 281

281

= 34


17(SB3)2m −

√
8(SB3)2

2m + 281

281

 − (SB3)2m

= (SB3)2m−1.

Thus, we get 1((SB3)2m)) = (SB3)2m−1.

By using Theorem 2.2 and Theorem 3.11, we get

1̃((SB3)2m) =
619(SB3)2m + 195

√
8(SB3)2

2m + 281

281

= 14(SB3)2m − 195


17(SB3)2m −

√
8(SB3)2

2m + 281

281


= (SB3)2m+1.

Thus, we get 1̃((SB3)2m) = (SB3)2m+1.

Theorem 3.13. Let 1(x) = 619x−195
√

8x2+281
281 and 1̃(x) = 297x+34

√

8x2+281
281 . If x is an odd term of the sequence of

B3-subbalancing numbers, then 1(x) is the B3-subbalancing number just prior to it and 1̃(x) is the B3-subbalancing
number next to it.

Proof. Let x be an odd term of the sequence of B3-subbalancing numbers. Then there exist a positive integer
m such that x = (SB3)2m+1.
From Corollary 2.2 and Theorem 3.11, we get

Bm = (SB3)2m+1 − 14


17(SB3)2m+1 +

√
8(SB3)2

2m+1 + 281

281





G. Karadeniz-Gözeri , S. Sarı / Filomat 38:30 (2024), 10709–10722 10721

=
43(SB3)2m+1 − 14

√
8(SB3)2

2m+1 + 281

281
(19)

It follows from (19), Corollary 2.2 and Theorem 3.11 that

1((SB3)2m+1) =
619(SB3)2m+1 − 195

√
8(SB3)2

2m+1 + 281

281

= 14


43(SB3)2m+1 − 14

√
8(SB3)2

2m+1 + 281

281

 +


17(SB3)2m+1 +
√

8(SB3)2
2m+1 + 281

281


= 14Bm + Bm+1

= (SB3)2m.

Thus, we get 1((SB3)2m+1) = (SB3)2m.

By using Theorem 2.1 and Theorem 3.11, we get

1̃((SB3)2m+1) =
297(SB3)2m+1 + 34

√
8(SB3)2

2m+1 + 281

281

= 34


17(SB3)2m+1 +

√
8(SB3)2

2m+1 + 281

281

 − (SB3)2m+1

= 34Bm+1 − (SB3)2m+1

= (SB3)2m+2.

Thus, we get 1̃((SB3)2m+1) = (SB3)2m+2.

Theorem 3.14. Let f (x) = 3x +
√

8x2 + 281 and f̃ (x) = 3x −
√

8x2 + 281. If x is a B3-subbalancing number, then
f (x) and f̃ (x) are also B3-subbalancing numbers.

Proof. Let x be a B3-subbalancing number. Then there exist a positive integer m such that x = (SB3)m.

By using Theorem 2.4 and the recurrence relation of B3-subbalancing numbers, we get

8(SB3)2
m + 281 = 9(SB3)2

m − (SB3)m−2(SB3)m+2

= 9(SB3)2
m − 6(SB3)m(SB3)m−2 + (SB3)2

m−2

= [3(SB3)m − (SB3)m−2]2.

Thus, we deduce that√
8(SB3)2

m + 281 = 3(SB3)m − (SB3)m−2 (20)

From (20) and the recurrence relation of B3-subbalancing numbers, we obtain

f (SB3)m) = 3(SB3)m +

√
8(SB3)2

m + 281

= 6(SB3)m − (SB3)m−2

= (SB3)m+2.
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Thus, we get f (x) = (SB3)m+2.

Similarly, by using (20), we get

f̃ ((SB3)m) = 3(SB3)m −

√
8(SB3)2

m + 281

= (SB3)m−2.

Thus, we get f̃ (x) = (SB3)m−2.

Consequently, f (x) is equal to the (m + 2)th B3-subbalancing number and f̃ (x) is equal to the (m − 2)th

B3-subbalancing number where x = (SB3)m.
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