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Abstract. In this paper we calculate the strict s-numbers of Hardy type operators To : Lp(Υo)→ Lp(Υo) for
1 < p < ∞, defined by

To f (x) B v(x)
∫ x

o
f (t)u(t)dt, f or o ∈ Υo,

where u and v are measurable functions on Υo satisfying the conditions u ∈ Lp′ (κ), v ∈ Lp(Υo), f ∈ Lp(Υo)
and x ∈ Υo, for every subtree κ of a tree Υo such that the closure of κ is compact subset of Υo. We obtain the
equality among strict s-numbers.

1. Introduction

Let X be a Banach space and T : X→ X be an operator. There is a question to ask whether the operator
T is compact or not. If it is compact then one is interested in learning the degree of its compactness.
The s-numbers can be used as a tool to answer these questions [5, 9]. The s-numbers can also be used to
determine the degree of non-compactness of operators [2]. Among all strict s-numbers, the calculation of
Bernstein numbers (defined in Section 2) is applied to investigate the finite strict singularity of operators,
a weaker property than compactness (e.g. see [1, 16, 18, 19] or [26]). In 1974, A. Pietsch presented the
axiomatic theory of s-numbers [22] and later more general version of this definition came up [23]. By
generalizing the source and the target spaces in definition of s-numbers, we get strict s-numbers: Approx-
imation numbers, Kolmogorov numbers, Gelfand Numbers, Bernstein numbers, Mityagin numbers and
Isomorphism numbers. When X is an infinite dimensional Hilbert space and T a compact operator, then
all nth strict s-numbers of T coincide and these are equal to the nth eigen value of the operator (T∗T)

1
2 (when

arranged in decreasing order) [22]. This is not true if X is not a Hilbert space [23]. However, in [11], the
coincidence of strict s-numbers for the simplest case of Hardy operators and for the embedding involving
Lp and Sobolev spaces, has been proved. For the weighted Hardy operators H : Lp(I)→ Lp(I), 1 < p < ∞, (I
is an interval of reals), defined by H( f ) = v(x)

∫ x

a u(t) f (t)dt, it was shown in [10] that the strict s-numbers for
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H coincide. This operator from Lp to Lq, for different values of p and q, has been studied in [8, 20, 24] and
[25]. The boundedness of this operator on trees is proved in [14]. The asymptotic estimates and bounds for
the approximation numbers of weighted Hardy operators on trees have been obtained by Evans et. al. in
[13].
In this paper we calculate the exact values of all strict s-numbers of weighted Hardy operators by general-
izing the results of [10] to a tree.

2. Elementary Material

Tree
A tree Υ is a connected graph without cycles or loops, where the edges are non-degenerate closed line
segments whose end points are vertices. Each vertex of Υ is of finite degree, which means that only finite
number of edges can generate from a vertex. For every x1, x2 ∈ Υ, there is a unique polygonal path in Υ
which joins x1 and x2, denoted by (x1 : x2). The length of this polygonal path defines the distance between
x1 and x2 and hence Υ is endowed with the metric topology. For a subtree κ of Υ, E(κ) and V(κ) are used to
denote, respectively, the sets of edges and vertices of κ. By δ(κ) we denote the set of the boundary points
of κ in Υ. A subtree κ of Υ is said to be compact if it meets only a finite number of edges of Υ. Let κ be the
measurable subset of tree Υ and |κ| denotes its Lebesgue measure. Then, norm on Lebesgue space Lp(κ) is
defined by ∥∥∥ f

∥∥∥
p,κ =

(∫
κ
| f (t)|pdt

) 1
p

.

We will denote, for short,
∥∥∥ f

∥∥∥
p,Υ =

∥∥∥ f
∥∥∥

p. A connected subset of Υ is a subtree if we add its boundary points
to the set of vertices of Υ and hence form the new edges from the existing ones. Hereafter, we adopt this
convention when we refer to subtrees. The characteristic function of a set K will be denoted by χK . We need
the following important results from [12, Lemma 2.1, p. 495]. Let τ(Υ) be the metric topology on Υ. Then
(i) The set A ⊂ Υ is compact if and only if it is closed and meets only a finite number of edges;
(ii) τ(Υ) is locally compact;
(iii) Υ is the union of countable number of edges; thus, if Υ is endowed with the natural one-dimensional
Lebesgue measure, it is a σ-finite measure space.
For the proof of the above see [12].
For o ∈ Υ, the notation t ⪰o z (or z ⪯o t) means that z lies on the path (o : t) joining o and t. We write z ≺o t
for z ⪯o t and z , t. This defines the partial ordering on tree Υ and the ordered graph so formed is referred
to as a tree rooted at o and it will be denoted by Υo. If o is not a vertex, then we split the edge containing o
in two edges emanating from o, making o a vertex. In this way Υo is the unique finite union of subtrees Υo,i
which intersect only at o. Let ηo be the degree of the root o. Then we can write

Υo = ∪
ηo

k=1Υo,k.

Note that if z < (a : b) then z ⪯a y if and only if z ⪯b y.
Let f ∈ Lp(Υo) and S be a measurable subset of Υo. Then∫

S

f =
∑
e∈S

∫
e

f ,

where e denotes an edge of S. By |x| we denote the length of the path (o : x). The distance between two
points x, y ∈ Υo is the length of the path (x : y), where x ⪯o y, denoted by |(x : y)|. For a detailed study of
trees, we refer the reader to [12, 14, 21].

Definition 2.1. A point θ ∈ δ(κ), where κ is a subtree of Υ containing o, is said to be maximal if every z ≻o θ lies
in Υ \ κ. By τo we denote the set of all subtrees κ of Υ containing o whose boundary points are all maximal.
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Definition 2.2. Let Υo be a tree. Then for x ∈ Υo and f ∈ Lp(Υo), the Hardy operator To : Lp(Υo) → Lp(Υo) for
1 ≤ p ≤ ∞, is defined by

To f (x) B v(x)
∫ x

o
f (t)u(t)dt,

where u and v are measurable functions onΥo satisfying the conditions u ∈ Lp′ (κ) and v ∈ Lp(Υo), where p′−1+p−1 = 1,
for subtrees κ of Υo whose closures are compact subsets of Υo.

The operator To is bounded in view of [13, Theorem 2.4] for the proof of which one is referred to
[14]. For compactness of To, one is referred to [6, 13].
From [13] we have the following.

Definition 2.3. Let κ be a subtree of tree Υo and To,κ : Lp(κ)→ Lp(κ) be the operator. Then

A(κ) B


sup

f∈Lp(κ), f,0
inf
α∈C

∥∥∥To,κ f − αv
∥∥∥

p,κ∥∥∥ f
∥∥∥

p,κ

, if µ(κ) > 0,

0, if µ(κ) = 0,

where

To,κ f (x) B v(x)χκ(x)
∫ x

o
f (t)u(t)χκ(t)dt,

and

µ(κ) B


∫
κ
|v(t)|pdt if 1 ≤ p < ∞,

ess sup
κ
|v(t)| if p = ∞.

Let Γ ⊂ Υo be a subtree with γ ∈ Γ being the nearest point to o. Then we have ([13], P. 394), To,Γ = Tγ,Γ.
Let ηγ be the degree of γ ∈ Γ. Then Γ = ∪ηγk=1Γγ,k, where Γγ,k are subtrees of Γ intersecting at γ only. We will
call Γγ,k to be a norming subtree of Γ if

∥∥∥Tγ,Γ
∥∥∥ B ∥∥∥Tγ,Γ|Lp(Γ)→ Lp(Γ)

∥∥∥ = ∥∥∥Tγ,Γγ,k
∥∥∥ for some 1 ≤ k ≤ ηγ, and

denote it by Γ∗γ. In this way, ∥To : Lp(Υo)→ Lp(Υo)∥ B ∥To∥Υo
= ∥To∥Υ∗o . Note that if γ is the root of a subtree

Γ ⊆ Υo, then
∥∥∥Tγ,Γ

∥∥∥ = ∥∥∥Tγ
∥∥∥
Γ
. A point x ∈ Υo with degree ηx is said to be simple if there is a subtree Υx,i0 such

that ∥Tx∥Υx,i0
> ∥Tx∥Υx,i

, 1 ≤ i ≤ ηx, i , i0.

Definition 2.4. (The s-Numbers)[10]
Let B(X,Y) denote the Banach space of all bounded linear operators acting between Banach spaces X and Y. For an
operator T ∈ B(X,Y), we associate a sequence sn(T) of scalars satisfying the following properties:

(S1) Monotonicity: ∥T∥ = s1(T) ≥ s2(T) ≥ s3(T) ≥ ... ≥ 0,
(S2) sn(T + S) ≤ sn(T) + ∥S∥ for every S ∈ B(X,Y),
(S3) Ideal Property: sn(B◦T ◦A) ≤ ∥B∥sn(T)∥A∥ for every A ∈ B(Z1,X) and B ∈ B(Y,Z2),where Z1,Z2 are Banach

spaces,
(S4) Norming Property: sn(Id : ℓ2

n → ℓ2
n) = 1,

(S5) Rank Property: sn(T) = 0 whenever rank T < n.

Then, sn(T) is called the n-th s-number of T. The number sn(T) is called the n-th strict s-number of T when the
following condition

(S6) sn(Id : E→ E) = 1 for every Banach space E of dimE ≥ n,

is considered in place of (S4).
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The s-numbers have varied definitions in literature. Initially, A. Pietsch gave the definition of s-numbers
(see [22]) which makes use of condition (S6). Later, the definition was refined so that a larger class of
s-numbers (such as Chang, Hilbert, Weyl numbers etc.) can be included. For more details of s-numbers,
we refer to [3, 7, 23] or [17].

For T ∈ B(X,Y) and n ∈N,we define the n-th Approximation, Gelfand, Kolmogorov, Bernstein, Mityagin
and Isomorphism numbers by

an(T) = inf
F∈B(X,Y)
rank F<n

∥T − F∥,

cn(T) = inf
M⊆X

codimM<n

sup
x∈BM

∥Tx∥Y,

dn(T) = inf
N⊆Y

dimN<n

sup
x∈BX

∥Tx∥Y/N,

bn(T) = sup
M⊆X

dimM≥n

inf
x∈SM
∥Tx∥Y,

mn(T) = sup
N⊆Y

codimN≥n

sup{α ≥ 0 : αBY/N ⊆ (πN ◦ T)BX},

where πN : Y→ Y/N is a canonical surjection of closed subspace N of Y (see [4, 26] or [15]),

in(T) = sup
dim (E)≥n

∥P∥−1
∥Q∥−1,

respectively, where E is Banach space and P ∈ B(Y,E), Q ∈ B(E,X) such that P◦T◦Q defines identity map on E.
The above s-numbers are connected through some inequalities which are bounded below by Isomorphism
numbers and bounded from above by Approximation numbers. To be concrete, for T ∈ B(X,Y) and n ∈N,
the following relation is obtained (see [10])

in(T) ≤ min{bn(T),mn(T)} ≤ min{cn(T), dn(T)}
≤ max{cn(T), dn(T)} ≤ an(T). (1)

3. Auxiliary Results

From now onwards we will assume 1 < p < ∞.

Lemma 3.1. Let To : Lp(Υo)→ Lp(Υo), 1 < p < ∞, be compact and Γ,Γ′ be two subtrees of Υo such that Γ′ ⊂ Γ, and
|Γ \ Γ′| > 0 with |Γ′| > 0. Suppose that u, v , 0 almost everywhere on Υo and

∫
Υo
|vp
|d(x) < ∞. Then∥∥∥To,Γ

∥∥∥
p ≥

∥∥∥To,Γ′
∥∥∥

p > 0 (2)

and

A(Γ) ≥ A(Γ′) > 0. (3)

Proof. Let Γ′ ⊂ Γ be the subtrees of Υo with oΓ′ and oΓ are the nearest point to o such that |Γ∗oΓ \ Γ
′
∗

oΓ′ | > 0. If
possible, suppose

∥∥∥To,Γ′
∥∥∥

p = 0. Then there exists an f , 0 such that
∥∥∥To,Γ′ f

∥∥∥
p = 0. This gives

∫
Γ′
|To,Γ′ f (x)|pdx =

0, providing To,Γ′ f (x) = 0 almost everywhere on Γ′. Let b B oΓ′ be the nearest point of Γ′ to o. Then we can
write

v(x)χ
Γ′

(x)
∫ x

b
u(t) f (t)χ

Γ′
(t)dt = 0, for almost every x ∈ Γ′
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which implies that either v = 0 on Γ′ or u = 0 almost everywhere on Γ′, leading to contradiction, since
|Γ′| > 0. Therefore,

∥∥∥To,Γ′
∥∥∥

p > 0 for |Γ′| > 0. Next, on considering Γ = Γ′ ∪ (Γ \ Γ′), we have

∥∥∥To,Γ f
∥∥∥p

p =

∫
Γ

|To,Γ f (x)|pdx

=

∫
Γ′∪(Γ\Γ′)

|To,Γ f (x)|pdx

=

∫
Γ′
|To,Γ f (x)|pdx +

∫
Γ\Γ′
|To,Γ f (x)|pdx.

We note that Γ \ Γ′ is either a subtree of Γ with |Γ \ Γ′| > 0 or it is a finite union of subtrees Γi of Γ such
that |Γi ∩ Γ j| = 0 for i , j and at least one of them is positive, say |Γik | > 0. Therefore, in both the cases,∫
Γ\Γ′
|To,Γ f (x)|pdx > 0, and therefore

∥∥∥To,Γ f
∥∥∥p

p >

∫
Γ′
|To,Γ f (x)|pdx

=
∥∥∥To,Γ f

∥∥∥p

p,Γ′

=
∥∥∥To,Γ′ f

∥∥∥p

p

yielding

∥∥∥To,Γ

∥∥∥ > ∥∥∥To,Γ′
∥∥∥ for Γ′ ⊂ Γ.

The equality holds when Γ′and Γ have a common root o′ such that Γo′,1 ⊂ Γ
′
⊂ Γ,where Γo′,1 is the connected

component of Γ rooted at o′, the nearest point to o, such that
∥∥∥To,Γ

∥∥∥ = ∥∥∥To,Γo′ ,1

∥∥∥ . Now, to prove (3.2), let
x ∈ Γ′ ⊂ Γ. Then, by [13, Lemma 3.5, Theorem 3.8], there exist k, l such that Γ′x,k , Γ

′

x,l and

max
{∥∥∥∥To,Γ′x,k

∥∥∥∥ , ∥∥∥∥To,Γ′x,l

∥∥∥∥} ≤ min
x∈Γ′

∥∥∥Tx,Γ′
∥∥∥ = A(Γ′).

Since |Γ′| > 0, we may assume that |Γ′x,k|, |Γ
′

x,l| > 0 and therefore A(Γ′) > 0. Let ζ , ζ′ be two non-simple

points in Γ and Γ′ respectively, such thatA(Γ) =
∥∥∥Tζ,Γ

∥∥∥ andA(Γ′) =
∥∥∥Tζ′,Γ′

∥∥∥ , ThenA(Γ) =
∥∥∥Tζ,Γ

∥∥∥ ≥ ∥∥∥Tζ,Γ′
∥∥∥ ≥∥∥∥Tζ′,Γ′

∥∥∥ = A(Γ′). The case of ζ = ζ′ is obvious. This completes the proof.

Lemma 3.2. Let To : Lp(Υo)→ Lp(Υo) be compact. Then there exists a path ∆o ⊆ Υo such that ∥To∥Υo
= ∥To∥∆o

.

Proof. Let Υ∗o be the norming subtree of Υo. Then
∥∥∥To,Υo

∥∥∥ = ∥∥∥To,Υ∗o

∥∥∥
Υ∗o
= ∥To∥Υ∗o and by compactness of To,

there is an f1 ∈ Lp(Υo) such that ∥To∥Υ∗o =
∥∥∥To f1

∥∥∥
Υ∗o

. Let o1 be the nearest point of subtree Υo1 ⊂ Υ
∗
o to o such

that Υ∗o = (o : o1) ∪ Υo1 . Then∥∥∥To f1
∥∥∥p

Υ∗o
=

∫ o1

o
|To f1(x)|pdx +

∫
Υo1

|To f1(x)|pdx

=

∫ o1

o
|To f1(x)|pdx +

∥∥∥To f1
∥∥∥p

Υo1

≤

∫ o1

o
|To f1(x)|pdx + ∥To∥

p
Υo1
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and by compactness of To, there is an f2 ∈ Lp(Υo) and norming subtree Υ∗o1
⊆ Υo1 such that

∥∥∥To f1
∥∥∥p

Υ∗o
≤

∫ o1

o
|To f1(x)|pdx +

∥∥∥To f2
∥∥∥p

Υ∗o1

.

By the similar arguments as above, there is a point o2 ∈ Υo2 ⊆ Υ
∗
o1

such that

∥∥∥To f1
∥∥∥p

Υ∗o
=

∫ o1

o
|To f1(x)|pdx +

∫ o2

o1

|To f2(x)|pdx +
∫
Υo2

|To f2(x)|pdx

=

∫ o1

o
|To f1(x)|pdx +

∫ o2

o1

|To f2(x)|pdx +
∥∥∥To f2

∥∥∥p

Υo2

≤

∫ o1

o
|To f1(x)|pdx +

∫ o2

o1

|To f2(x)|pdx + ∥To∥
p
Υo2
.

Continuing in this manner, we obtain a path ∆o = ∪
i∈Λ

(oi−1 : oi) contained in Υ∗o emanating from o (B o0)

and an f ∈ Lp(Υo) such that f =
∑
i∈Λ

fiχ(oi−1:oi ) for some index set Λ ⊆ N, so that we have ∥To∥
p =

∥∥∥To f1
∥∥∥p

Υ∗o
≤∥∥∥To f

∥∥∥p

∆o
≤ ∥To∥

p
∆o

. Since ∆o ⊆ Υ
∗
o, therefore by Lemma 3.1, we have ∥To∥Υo

= ∥To∥∆o
, proving the Lemma

3.2.

We have the following definitions.

Definition 3.3. Let Γb be a subtree of Υo rooted at b ∈ ∆o which is the nearest point of Γb to o. We define

P B {Γb ⊆ Υo : |∆o ∩ Γb| > 0}

and
P
′ B

{
Γb ∈ P : ∥Tb∥Γb

is attained on the path ∆o ∩ Γb

}
.

It is easy to see that Υo belongs to P.

Remark 3.4. For Γb ∈ P
′, by [13, Theorem 3.8 ] and by Lemma 3.2, there is a non-simple point θ ∈ Γb ∩ ∆o such

thatA(Γb) = ∥Tθ∥Γb
= ∥Tθ∥∆o∩Γb

.

Remark 3.5. In view of Definition 3.3 and Remark 3.4, there are b1, b2, ..., bn ∈ ∆o with b1 = o (say) and bl−1⪯o

bl for 3 ≤ l ≤ n, such that Γbi ∈ P
′ with |Γbi ∩ Γb j | = 0 f or i , j, and a subtree Γ̂o of Υo containing ∆o such that

∪
n
i=1Γbi = Γ̂o. In this way {Γbi : i = 1, 2, 3, ...,n} forms a partition of Γ̂o. Denote all such partitions of Γ̂o by ℘n (̂Γo).

Definition 3.6. For each N ∈N \ {1}, we define

ϵN = {ϵ > 0 :
∥∥∥Tb1

∥∥∥
Γb1
= A(Γbi ) = ϵ, 2 ≤ i ≤ N, where Γbi ∈ P

′ is the largest subtree rooted at bi

such that {Γbi , 1 ≤ i ≤ N} ∈ ℘N(Υ̂o) for some subtree Υ̂o such that ∆o ⊆ Υ̂o ⊆ Υo}.

In the above definition, note that for N = 1,
∥∥∥Tb1

∥∥∥
Γb1
= ∥To∥Υo

= ϵ1 . In future, the closure of Υ̂o will be denoted

by itself.

Remark 3.7. Since ∆o ⊆ R+, the existence of ϵN is guarenteed by Remarks 3.4, 3.5 and [10, Lemma 3.5].

We now prove the following lemmas.

Lemma 3.8. Let Γ ⊆ Υo be a subtree and TΓ : Lp(Γ)→ Lp(Γ) be compact. Let b1, b2, ..., bN ∈ ∆o be points such that
{Γbi ∈ P

′ :
∥∥∥Tb1

∥∥∥
Γb1
= A(Γbi ) = ϵN , 2 ≤ i ≤ N} ∈ ℘N(Υ̂o), for some ϵN > 0. Then iN(T

Υ̂o
) ≥ ϵN .
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Proof. By compactness of T
Υ̂o

and Remark 3.4, there exist points θi ∈ Γbi and functions fi supported on Γbi

with
∥∥∥ fi

∥∥∥
Γbi
= 1 such that A(Γbi ) =

∥∥∥Tθi fi
∥∥∥
Γbi
, 2 ≤ i ≤ N and

∥∥∥Tb1

∥∥∥
Γb1
=

∥∥∥Tb1 f1
∥∥∥
Γb1

. Let Γ1
θi

and Γ2
θi

be two

subtrees of Γbi such that Γbi = Γ
1
θi
∪ Γ2

θi
and Γ1

θi
∩ Γ2

θi
= {θi} for all 1 ≤ i ≤ N. If x1 ∈ (o : x2) and Γ2

x1
∩ Γ1

x2
= {x},

for some x ∈ (x1 : x2), then we write Γ2
x1
≺≺ Γ1

x2
. By this convention, we have

Γ1
θ1
≺≺ Γ2

θ1
≺≺ Γ1

θ2
≺≺ Γ2

θ2
.... ≺≺ Γ1

θN
≺≺ Γ2

θN
.

DefineΩ1 = Γb1 ∪Γ
1
θ2
,ΩN = Γ

2
θN

andΩ j = Γ
2
θ j
∪Γ1

θ j+1
for 2 ≤ j ≤ N−1, and functions 1 j = (α j f j+β j f j+1)χΩ j

for 1 ≤ j ≤ N − 1, with 1N = βN fN , where α j and β j are constants. Then, we have∥∥∥1 j

∥∥∥
Ω j
=

∥∥∥α j f j + β j f j+1

∥∥∥
Ω j
≤ |α j|

∥∥∥ f j

∥∥∥
Γ2
θ j

+ |β j|
∥∥∥ f j+1

∥∥∥
Γ1
θ j+1

.

Since
∥∥∥ f j

∥∥∥
Γbj
= 1, so

∥∥∥ f j

∥∥∥
Γ2
θ j

≤ 1 and
∥∥∥ f j+1

∥∥∥
Γ1
θ j+1

≤ 1. Thus, by choosing suitable α j and β j, we have
∥∥∥1 j

∥∥∥
Ω j
= 1,

from which we obtain∥∥∥Tθ j1 j

∥∥∥
Γ2
θ j∥∥∥1 j

∥∥∥
Γ2
θ j

=

∥∥∥∥Tθ j

((
α j f j + β j f j+1

)
χΩ j

)∥∥∥∥
Γ2
θ j∥∥∥∥((α j f j + β j f j+1

)
χΩ j

)∥∥∥∥
Γ2
θ j

=

∥∥∥∥Tθ j

(
α j f j

)∥∥∥∥
Γ2
θ j∥∥∥α j f j

∥∥∥
Γ2
θ j

≥ ϵN for 2 ≤ j ≤ N.

Similarly, we get∥∥∥Tθ j1 j−1

∥∥∥
Γ1
θ j∥∥∥1 j−1

∥∥∥
Γ1
θ j

≥ ϵN for 3 ≤ j ≤ N.

For Ω j ⊂ Υ̂o,∥∥∥∥T
Υ̂o
11

∥∥∥∥
Ω1
=

∥∥∥∥T
Υ̂o

(
α j f1 + β1 f2

)∥∥∥∥
Ω1

=
∥∥∥∥T
Υ̂o

(
α1 f1

)∥∥∥∥
Γb1

+
∥∥∥∥T
Υ̂o

(
β1 f2

)∥∥∥∥
Γ1
θ2

= |α1|

∥∥∥∥T
Υ̂o

f1
∥∥∥∥
Γb1

+ |β1|

∥∥∥∥T
Υ̂o

f2
∥∥∥∥
Γ1
θ2

=
(
|α1| +

∣∣∣β1

∣∣∣ )ϵN ,

and for 2 ≤ j ≤ N − 1,∥∥∥∥T
Υ̂o
1 j

∥∥∥∥
Ω j
=

∥∥∥∥T
Υ̂o

(α j f j + β j f j+1)
∥∥∥∥
Ω j

=
∥∥∥∥T
Υ̂o

(α j f j)
∥∥∥∥
Γ2
θ j

+
∥∥∥∥T
Υ̂o

(β j f j+1)
∥∥∥∥
Γ1
θ j+1

=
∣∣∣α j

∣∣∣ ∥∥∥∥T
Υ̂o

f j

∥∥∥∥
Γ2
θ j

+ |β j|

∥∥∥∥T
Υ̂o

f j+1

∥∥∥∥
Γ1
θ j+1

=
( ∣∣∣α j

∣∣∣ + ∣∣∣β j

∣∣∣ )ϵN .
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For 1 ≤ j ≤ N − 1,
∥∥∥1 j

∥∥∥
Ω j
= 1,

∣∣∣α j

∣∣∣ + ∣∣∣β j

∣∣∣ ≥ 1, and for j = N, ΩN = Γ
2
θN
, and for αN = 0, βN ≥ 1, give us

∥∥∥∥T
Υ̂o
1 j

∥∥∥∥
Ω j∥∥∥1 j

∥∥∥
Ω j

≥ ϵN for 1 ≤ j ≤ N.

Next, B1 : lNp → Lp(Υ̂o) and B2 : Lp(Υ̂o)→ lNp are the operators defined by

B1(x) =
N∑

j=1

x j1 j,

for x = {x1, x2, x3, ..., xN} ∈ lNp , and

(B21)(x) =


∫
Ω j
1(x)(T

Υ̂o
1 j)p(x)dx∥∥∥∥T

Υ̂o
1 j

∥∥∥∥p

Ω j


N

j=1

,

where (1)p = |1|
p−21. Then it is easily seen that B2 ◦ T

Υ̂o
◦ B1 is an identity map on lNp . We compute

∥B1∥ = sup
∥x∥lNp

=1
∥B1(x)∥Lp(Υ̂o) = sup

∥x∥lNp
=1

∥∥∥∥∥∥∥∥
N∑

j=1

x j1 j

∥∥∥∥∥∥∥∥
Lp(Υ̂o)

= sup
∥x∥lNp

=1

N∑
j=1

|x j|
∥∥∥1 j

∥∥∥
Ω j
= 1.

The definition of B2 implies that the operator norm of B2 is attained on the functions of the form 1(x) =∑N
j=1 r jTΥ̂o

1 j(x), for constants r j. We have

∥∥∥1∥∥∥p

Lp(Υ̂o)
=

∫
Υ̂o

|

N∑
j=1

r jTΥ̂o
1 j(x)|pdx ≥ ϵp

N

∥∥∥∥{r j}
N
j=1

∥∥∥∥p

lNp

and

∥B2∥ = sup
∥1∥Lp(Υ̂o )=1

∥∥∥∥∥∥∥∥B2

 N∑
j=1

r jTΥ̂o
1 j(x)


∥∥∥∥∥∥∥∥

lNp

= sup
∥1∥Lp(Υ̂o )=1

∥∥∥∥∥∥∥∥∥∥

∫
Ωk

(∑N
j=1 r jTΥ̂o

1 j(x)
)

(T
Υ̂o
1k)p(x)dx∥∥∥∥T

Υ̂o
1k

∥∥∥∥p

Ωk


N

k=1

∥∥∥∥∥∥∥∥∥∥
lNp

=
∥∥∥∥{r j}

N
j=1

∥∥∥∥
lNp

≤
1
ϵN

,

and hence iN(T
Υ̂o

) = sup ∥B1∥
−1
∥B2∥

−1
≥ ∥B1∥

−1
∥B2∥

−1
≥ ϵN proving the Lemma 3.8.

Lemma 3.9. Let Γ ⊆ Υo be a subtree and TΓ : Lp(Γ) → Lp(Γ) be a compact operator and Υ̂o be as in Remark 3.5.
Then, for all n ∈N, in(T

Υ̂o
) ≤ in(TΥo ).
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Proof. Let AΓo : lnp → Lp(Γo) and BΓo : Lp(Γo)→ lnp be the operators on a subtree Γo ⊆ Υo containing the root o.

When Γo = Υo, we simply denote AΓo and BΓo by A and B, respectively. Define an operator I : Lp(Υo)→ Lp(Υ̂o)

by I( f ) = fχ
Υ̂o

. Then we have
∥∥∥∥B
Υ̂o

I
∥∥∥∥ ≤ ∥∥∥∥B

Υ̂o

∥∥∥∥ ∥I∥ ≤ ∥∥∥∥B
Υ̂o

∥∥∥∥, which implies ∥B∥−1
≥

∥∥∥∥B
Υ̂o

∥∥∥∥−1
. Next, consider

subtrees Γ̃bk ∈ P such that Γ̃bk ∩ Υ̂o = Γbk ∈ P
′, 1 ≤ k ≤ n. With this, one can easily construct the subtrees Ω̃σk

and functions 1̃k as in Lemma 3.8, where σk ∈ Γ̃bk is same as θk ∈ Γbk . Now, corresponding to B1 of Lemma
3.8, we define the operator A by A(< ζk >) =

∑n
k=1 ζk1k for < ζk >∈ lnp . Then it is easy to see that ∥A∥ = 1,

which proves the Lemma 3.9.

Lemma 3.10. Let Γ ⊆ Υo be a subtree and TΓ : Lp(Γ) → Lp(Γ) be compact operator and Υ̂o be as in Remark 3.5.
Then, for all n ∈N, an(T

Υ̂o
) = an(TΥo ).

Proof. Let PΓ : Lp(Γ)→ Lp(Γ) be an operator of rank(P) < n. When Γ = Υo, we denote TΓ and PΓ by T and P
respectively. By compactness of T and P, there exists an f ∈ Υ∗o such that

∥T − P∥Υo
=

∥∥∥(T − P) f
∥∥∥
Υ∗o
.

By the same arguments as in Lemma 3.3 and by continiuty of ∥Tx∥ on ∆o ([13, Lemma 3.4]), there is a path
∆′o ⊆ ∆o ⊆ Υ

∗
o and a function ϕ f ∈ Lp(∆′o) such that∥∥∥(T − P) f

∥∥∥
Υ∗o
=

∥∥∥(T − P)ϕ f

∥∥∥
∆′o
≤ ∥T − P∥∆′o .

But ∆′o ⊆ Υ∗o, therefore ∥T − P∥Υo
= ∥T − P∥∆′o . Since ∆′o ⊆ Υ̂o, we have

∥T − P∥Υo
=

∥∥∥(T − P)ϕ f

∥∥∥
∆′o
=

∥∥∥∥(TΥ̂o
− P

Υ̂o

)
ϕ f

∥∥∥∥
∆′o

≤

∥∥∥∥(TΥ̂o
− P

Υ̂o

)∥∥∥∥
Υ̂o
= ∥T − P∥

Υ̂o
.

Noting Υ̂o ⊆ Υo, from above we can write ∥T − P∥Υo
=

∥∥∥∥T
Υ̂o
− P

Υ̂o

∥∥∥∥
Υ̂o
. Hence an(T

Υ̂o
) = an(TΥo ).

Lemma 3.11. Let Γ ⊆ Υo be a subtree and TΓ : Lp(Γ)→ Lp(Γ) be compact. Let b1, b2, ..., bN ∈ ∆o be points such that
{Γbi ∈ P

′ :
∥∥∥Tb1

∥∥∥
Γb1
= A(Γbi ) = ϵN , 2 ≤ i ≤ N} ∈ ℘N(Υ̂o) for some ϵN > 0. Then aN(T

Υ̂o
) ≤ ϵN .

Proof. Let L : Lp(Υ̂o) → Lp(Υ̂o) be the operator defined by L(ψ) =
∑N

i=2 Li(ψ) + 0χ
Γb1

, where Li(ψ)(x) =

χ
Γbi

(x)v(x)
∫
Γ1
θi

u(t) f (t)χ
Γbi

(t)dt (Γ1
θi

is defined in Lemma 3.8). Then rank(L) ≤ N − 1. Now by definition of

approximation numbers and by compactness of T
Υ̂o

and L, there exists an f ∈ Lp(Υ̂o) with
∥∥∥ f

∥∥∥
Υ̂o
= 1 such

that

aN(T
Υ̂o

) ≤
∥∥∥∥T
Υ̂o
− L

∥∥∥∥
Υ̂o
=

∥∥∥∥(TΥ̂o
− L

)
f
∥∥∥∥
Υ̂o

=
∥∥∥∥T
Υ̂o

f − L f
∥∥∥∥
Υ̂o
=

∥∥∥∥∥∥∥T
Υ̂o

f −

 N∑
i=2

Li( f ) + 0χ
Γb1


∥∥∥∥∥∥∥
Υ̂o

=

N∑
i=2

∥∥∥Tθi f
∥∥∥
Γbi
+

∥∥∥T f
∥∥∥
Γb1
≤ ϵN

N∑
i=2

∥∥∥ f
∥∥∥
Γbi
+ ϵN

∥∥∥ f
∥∥∥
Γb1

= ϵN

N∑
i=1

∥∥∥ f
∥∥∥
Γbi
= ϵN ,

which proves the lemma.
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4. Main Results

From Lemmas 3.8, 3.11 and Remark 3.7, we obtain the following main result.

Theorem 4.1. Let To : Lp(Υo) → Lp(Υo), 1 < p < ∞, be compact. Then there exists a subtree Υ̂o ⊆ Υo with a
partition {Γbi ∈ P

′ :
∥∥∥Tb1

∥∥∥
Γb1
= A(Γbi ) = ϵN , 2 ≤ i ≤ N} ∈ ℘N(Υ̂o) for some ϵN > 0, such that ∥To∥Υ̂o

= ∥To∥Υo
and

aN(T
Υ̂o

) = ϵN = iN(T
Υ̂o

).

Using Lemmas 3.9, 3.10 and Theorem 4.1, by inequality (1), we have

Theorem 4.2. Let To : Lp(Υo)→ Lp(Υo), 1 < p < ∞, be compact. Then all strict s-numbers of To coincide.

5. Conclusions

We obtained the exact values of all strict s-numbers of weighted Hardy operators on trees and observed
that Nth terms of all coincide and equal to ϵN .
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