Filomat 38:30 (2024), 10797–10807 https://doi.org/10.2298/FIL2430797F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The dual notion of Baer modules and related topics

Faranak Farshadifar^a

^aDepartment of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

Abstract. The aim of this paper is to introduce and investigate the dual notions of σ -submodules of modules, normal modules, and Baer modules over a commutative ring. Furthermore, we obtain some results about the relations between them.

1. Introduction

Throughout this paper, *R* will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. For a submodule *N* of an *R*-module *M*, a non-empty subset *K* of *M*, and a non-empty subset *J* of *R*, the residuals of *N* by *K* and *J* are defined as $(N :_R K) = \{a \in R : aK \subseteq N\}$ and $(N :_M J) = \{m \in M : Jm \subseteq N\}$, respectively. In particular, we use $Ann_R(M)$ to denote $(0 :_R M)$.

Let *M* be an *R*-module. A submodule *N* of *M* is said to be a σ -submodule of *M* if $m \in N$ implies that $Ann_R(m)+(N:_R M) = R$. In particular, an ideal *I* of *R* is called a σ -ideal if *I* is a σ -submodule of the *R*-module *R* [15]. A non-zero submodule *N* of *M* is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [22]. A second submodule *N* of *M* is said to be a maximal second submodule of *M*, if there does not exist a second submodule *K* of *M* such that $N \subset K \subset M$ [4]. *M* is called a *reduced module* if rm = 0 implies that $rM \cap Rm = 0$, where $r \in R$ and $m \in M$ [20]. *R* is said to be a normal ring if it is reduced (without nilpotent elements) and every two distinct minimal prime ideals are comaximal [13]. A finitely generated reduced *R*-module *M* is said to be a *normal module* if every two distinct minimal prime submodules are comaximal [16]. *R* is said to be a *Baer ring* if for each $a \in R$, the annihilator $Ann_R(a) = \{r \in R : ra = 0\}$ of a is generated by an idempotent element $e \in R$ [17]. An element $e \in R$ is said to be a *Baer module* if for each $m \in M$. Also, *M* is said to be a *Baer module* if for each $m \in M$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $n \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in R$ is said to be a *Baer module* if for each $m \in M$ is said to be a *Baer module* if for each $m \in R$ such that $Ann_R(m)M = eM$ [15].

Let *M* be an *R*-module. A proper submodule *N* of *M* is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of *M*, implies that $N = N_i$ for some $i \in I$. Every submodule of *M* is an intersection of completely irreducible submodules of *M*. Thus the intersection of all completely irreducible submodules of *M* is zero [12]. *M* is said to be *coreduced module* if $(L :_M r) = M$ implies that $L + (0 :_M r) = M$, where $r \in R$ and *L* is a completely irreducible submodule of *M* [6]. A submodule *N* of *M* is said to be a *co-Baer submodule* if for each completely irreducible submodule *L* of *M* with $N \subseteq L$, we have $N \subseteq (L :_R M)M$ [11].

In Section 2 of this paper, we define the dual notion of σ -submodules of an *R*-module *M* and obtain some results about $d\sigma$ -submodules and co-Baer submodules. We say that a submodule *N* of an *R*-module

²⁰²⁰ Mathematics Subject Classification. Primary 13C13; Secondary 16E50, 13C99.

Keywords. dσ-submodule, co-Baer submodule, conormal module, co-Baer module.

Received: 11 April 2024; Accepted: 24 August 2024

Communicated by Pratulananda Das

Email address: f.farshadifar@cfu.ac.ir (Faranak Farshadifar)

M is a *dual of* σ -submodule ($d\sigma$ -submodule in short) if for each completely irreducible submodule *L* of *M* with $N \subseteq L$ we have $Ann_R(N) + (L :_R M) = R$ (see Definition 2.1). Among various results, we show that if every submodule of *M* is a $d\sigma$ -submodule of *M*, then *M* is a comultiplication *R*-module (see Proposition 2.3 (b)). Also, it is shown that every $d\sigma$ -submodule of *M* is a copure submodule of *M*, but the converse is not true in general (see Proposition 2.5 (c) and Example 2.6). Moreover, we prove that if *M* is an *R*-module such that $M/I_P^M(M)$ is a finitely cogenerated *R*-module for each maximal ideal *P* of *R*, then a submodule *N* of *M* is a $d\sigma$ -submodule if and only if $N = \sum_Q I_Q^M(M)$, where *Q* denotes any maximal ideal of *R* that containing $Ann_R(N)$ (see Theorem 2.7).

In Section 3, we introduce and investigate the dual notions of Baer *R*-modules and normal *R*-modules. Also, we obtain some results about the relations of $d\sigma$ -submodules, co-Baer submodules, normal *R*-modules with co-Baer *R*-modules. We say that an *R*-module *M* is a *co-Baer module* if for each completely irreducible submodule L of M there exists a weak idempotent element $e \in R$ such that $(0 :_M (L :_R M)) = (0 :_M L)$ e) (see Definition 3.1). Among the other results in this section, we show that every finitely generated comultiplication co-Baer *R*-module is a coreduced *R*-module (see Theorem 3.8). Furthermore, it is proved that if M is a finitely generated comultiplication co-Baer R-module, then $R/Ann_R(M)$ is a Baer ring (see Theorem 3.13). Also, we determine the condition under which if $R/Ann_R(M)$ is a Baer ring, then M is a co-Baer *R*-module. In particular, the Z-module \mathbb{Z}_n is a co-Baer Z-module if *n* is square free (Theorem 3.14) and Example 3.15). Let *M* be a comultiplication *R*-module. Then we show that *M* is a co-Baer module if and only if every co-Baer submodule of M is a $d\sigma$ -submodule of M (see Theorem 3.20). It is shown that if *M* is a comultiplication *R*-module, then *M* is a co-Baer *R*-module if and only if for every submodule *N* of M we have M/N is a co-Baer R-module (see Theorem 3.21). We say that a finitely cogenerated coreduced *R*-module *M* is a *conormal module* if for any two distinct maximal second submodules S_1 and S_2 of *M* we have $S_1 \cap S_2 = 0$ (see Definition 3.24). Every finitely generated comultiplication co-Baer *R*-module is a conormal *R*-module (see Corollary 3.26). It is proved that if *M* is a finitely generated comultiplication *R*-module, then *M* is a conormal module if and only if $R/Ann_R(M)$ is a normal ring (see Theorem 3.27). Finally we determine the conditions under which M is a normal R-module if and only if M is a conormal R-module (see Corollary 3.28).

2. $d\sigma$ -submodules and co-Baer submodules

Definition 2.1. We say that a submodule N of an R-module M is a dual of σ -submodule ($d\sigma$ -submodule in short) if for each completely irreducible submodule L of M with $N \subseteq L$ we have $Ann_R(N) + (L :_R M) = R$.

Remark 2.2. (See [5].) Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$. For more information about comultiplication *R*-modules, we refer the reader to [2].

Proposition 2.3. Let N be a $d\sigma$ -submodule of an R-module M. Then we have the following.

- (a) If K is a submodule of M such that $N \subseteq K$ and M/K is a finitely cogenerated R-module, then $Ann_R(N) + (K:_R M) = R$.
- (b) $N = (0:_M Ann_R(N))$. In particular, if every submodule of M is a d σ -submodule of M, then M is a comultiplication R-module.

Proof. (a) Let *K* be a submodule of *M* such that $N \subseteq K$ and M/K be a finitely cogenerated *R*-module. Then there exist completely irreducible submodules L_i for i = 1, 2, ..., n such that $K = \bigcap_{i=1}^n L_i$. By assumption, $Ann_R(N) + (L_i :_R M) = R$ for i = 1, 2, ..., n. Hence by [19, Proposition 3.59], $Ann_R(N) + \bigcap_{i=1}^n (L_i :_R M) = R$. Thus $Ann_R(N) + (K :_R M) = R$.

(b) Always we have $N \subseteq (0 :_M Ann_R(N))$. Now let *L* be a completely irreducible submodule of *M* such that $N \subseteq L$. By assumption, $Ann_R(N) + (L :_R M) = R$. Thus we have

 $L = (L :_M R) = (L :_M Ann_R(N) + (L :_R M)) =$

 $(L:_M Ann_R(N)) \cap (L:_M (L:_R M)) =$

 $(L:_M Ann_R(N)) \cap M \supseteq (0:_M Ann_R(N)).$

Now the result follows from Remark 2.2. \Box

Let *M* be an *R*-module. A submodule *N* of *M* is said to be *pure* if $IN = N \cap IM$ for each ideal *I* of *R* [1]. A submodule *N* of *M* is said to be *copure* if $(N :_M I) = N + (0 :_M I)$ for each ideal *I* of *R* [2].

Proposition 2.4. Let *M* be a multiplication *R*-module. Then we have the following.

- (a) If N is a pure submodule of M, then N is σ -submodule of M.
- (b) If N is a copure submodule of M, then N is σ -submodule of M.

Proof. (a) Let *N* be a pure submodule of *M* and $x \in N$. Since *M* is a multiplication *R*-module, there exist ideals *I* and *J* of *R* such that Rx = IM and N = JM. As *N* is pure, we get that $Rx = IM = IM \cap JM = IJM = JRx$. Thus by [8, Corollary 2.5], $Ann_R(Rx) + J = R$. Since $J \subseteq (JM :_R M)$, we have $Ann_R(Rx) + (JM :_R M) = R$.

(b) Let *N* be a copure submodule of *M* and $x \in N$. Since *M* is a multiplication *R*-module, there exist ideals *I* and *J* of *R* such that Rx = IM and N = JM. As $IM \subseteq JM$, we have $M = (JM :_R I)$. Now since *N* is copure, $M = JM + (0 :_M I)$. Thus Rx = IM = IJM = JRx and so $Ann_R(Rx) + J = R$ by [8, Corollary 2.5]. Now the result follows from the fact that $J \subseteq (JM :_R M)$. \Box

A family $\{N_i\}_{i \in I}$ of submodules of an *R*-module *M* is said to be an *inverse family* of submodules of *M* if the intersection of two of its submodules contains a module in $\{N_i\}_{i \in I}$. Also, *M* satisfies *Grothendieck's condition AB5*^{*} (the property *AB5*^{*} in short) if for every submodule *K* of *M* and every inverse family $\{N_i\}_{i \in I}$ of submodules of *M*, $K + \bigcap_{i \in I} N_i = \bigcap_{i \in I} (N_i + K)[21, p.435]$.

An *R*-module *M* satisfies the *double annihilator conditions* (DAC for short) if for each ideal *I* of *R* we have $I = Ann_R(0:_M I)$ [9].

An *R*-module *M* is said to be a *strong comultiplication module* if *M* is a comultiplication *R*-module and satisfies the DAC conditions [2].

Proposition 2.5. Let M be an R-module. Then we have the following.

- (a) If $N_1, N_2, ..., N_k$ are $d\sigma$ -submodules of M, then $\sum_{i=1}^k N_i$ is a $d\sigma$ -submodule of M.
- (b) If M satisfies the property AB5^{*} and $\{N_i\}_{i \in I}$ is a inverse family of $d\sigma$ -submodules of M, then $\cap_{i \in I} N_i$ is a $d\sigma$ -submodule of M.
- (c) Every $d\sigma$ -submodule of M is a copure submodule of M.
- (d) If N is a pure submodule of a strong comultiplication R-module M, then N is $d\sigma$ -submodule of M.

Proof. (a) Let $N_1, N_2, ..., N_k$ be $d\sigma$ -submodules of M and let L be a completely irreducible submodule of M such that $\sum_{i=1}^k N_i \subseteq L$. Then $N_i \subseteq L$ for i = 1, 2, ..., k. So by assumption, $Ann_R(N_i) + (L :_R M) = R$ for i = 1, 2, ..., k. This implies that $Ann_R(\sum_{i=1}^k N_i) + (L :_R M) = \bigcap_{i=1}^k Ann_R(N_i) + (L :_R M) = R$ by [19, Proposition 3.59]. Hence $\sum_{i=1}^k N_i$ is a $d\sigma$ -submodule of M.

(b) Let *M* satisfies the property *AB5*^{*} and $\{N_i\}_{i \in I}$ be a inverse family of $d\sigma$ -submodules of *M*. Let *L* be a completely irreducible submodule of *M* such that $\cap_{i \in I} N_i \subseteq L$. Then $\cap_{i \in I} N_i + L = L$. Since *M* satisfies the property *AB5*^{*}, we have $\cap_{i \in I} (N_i + L) = L$. Thus $N_i \subseteq L$ for some $i \in I$ because *L* is completely irreducible submodule of *M*. So by assumption, $Ann_R(N_i) + (L :_R M) = R$. This implies that $Ann_R(\cap_{i \in I} N_i) + (L :_R M) = R$, as needed.

10799

(c) Let *N* be a $d\sigma$ -submodule of *M* and *I* be an ideal of *R*. Clearly $N + (0 :_M I) \subseteq (N :_M I)$. Assume that *L* is a completely irreducible submodule of *M* such that $N + (0 :_M I) \subseteq L$. By Remark 2.2, it is enough to show that $(N :_M I) \subseteq L$. As *N* is a $d\sigma$ -submodule of *M*, we have $Ann_R(N) + (L :_R M) = R$. Thus 1 = s + t for some $s \in Ann_R(N)$ and $t \in (L :_R M)$. Let $x \in (N :_M I)$. Then $xI \subseteq N$. We have x = 1x = sx + tx. Since $Isx \subseteq sN = 0$, we have $sx \in (0 :_M I)$. Thus $x \in (0 :_M I) + L = L$, as needed.

(d) Let *N* be a pure submodule of a strong comultiplication *R*-module *M*. Suppose that *L* is a completely irreducible submodule of *M* such that $N \subseteq L$. As *M* is a comultiplication *R*-module, there exist ideals *I* and *J* of *R* such that $L = (0 :_M I)$ and $N = (0 :_M J)$. As $(0 :_M J) \subseteq (0 :_M I)$, we have $I(0 :_M J) = 0$. Now since *N* is a pure submodule of *M*, $(0 :_M J) \cap IM = 0$. This implies that $(0 :_M J + Ann_R(IM)) = (0 :_M R)$. It follows that $J + Ann_R(IM) = R$ because *M* is a strong comultiplication *R*-module. Hence $Ann_R((0 :_M J)) + Ann_R(IM) = R$, as needed. \Box

The following example shows that a copure submodule of an *R*-module *M* is not a $d\sigma$ -submodule of *M* in general.

Example 2.6. Consider the \mathbb{Z} -module $M = \mathbb{Z}_2 \oplus \mathbb{Z}_{p^{\infty}}$ and $N = 0 \oplus \mathbb{Z}_{p^{\infty}}$. Then N is a copure submodule of M but N is not a $d\sigma$ -submodule of M.

Let *M* be an *R*-module and *P* be a prime ideal of *R* [3, 4, 7]. Then

 $I_{P}^{M}(M) = \cap \{L \mid L \text{ is a completely irreducible submodule of } M \text{ and } M$

 $(L:_R M) \not\subseteq P\}.$

Theorem 2.7. Let M be an R-module such that $M/I_P^M(M)$ is a finitely cogenerated R-module for each maximal ideal P of R. Then a submodule N of M is a $d\sigma$ -submodule if and only if $N = \sum_Q I_Q^M(M)$, where Q denotes any maximal ideal of R that containing $Ann_R(N)$.

Proof. ⇒: Let *L* be a completely irreducible submodule of *M* such that $N \subseteq L$. Since *N* is a *dσ*-submodule of *M*, We have that $Ann_R(N) + (L :_R M) = R$. Let *P* be a maximal ideal of *R* containing $Ann_R(N)$. Then $(L :_R M) \notin P$. Thus $I_P^M(M) \subseteq L$. This implies that $\sum_Q I_Q^M(M) \subseteq L$ and so $\sum_Q I_Q^M(M) \subseteq N$ by Remark 2.2. Conversely, assume that *L* is a completely irreducible submodule of *M* such that $\sum_Q I_Q^M(M) \subseteq L$, where *Q* is any maximal ideal containing $Ann_R(N)$. Let *P* be a maximal ideal of *R*. If *P* contains $Ann_R(N)$, then $I_P^M(M) \subseteq L$ and so $(L :_R M) \notin P$ by using [7, Lemma 2.3]. This implies that $(L :_R M)_P = R_P$. Otherwise, we would have $Ann_R(N) \notin P$ and so $Ann_R(N)_P = R_P$. In both cases we have $Ann_R(N)_P + (L :_R M)_P = R_P$ for all maximal ideal *P* of *R*. This implies that $Ann_R(N) + (L :_R M) = R$. Hence $Ann_R(N)N + (L :_R M)N = N$ and so $N \subseteq (L :_R M)M \subseteq L$. Therefore, $N \subseteq \sum_Q I_Q^M(M)$ by Remark 2.2.

⇐: Let $N = \sum_{Q} I_Q^M(M)$, where Q denotes any maximal ideal of R that containing $Ann_R(N)$. We show that N is a $d\sigma$ -submodule of M. Let L be a completely irreducible submodule of M such that $N \subseteq L$. Assume contrary that $Ann_R(N) + (L :_R M) \neq R$. Then there exists a maximal ideal \acute{Q} of R such that $Ann_R(N) + (L :_R M) \subseteq \acute{Q}$. Since $I_{\acute{Q}}^M(M) \subseteq \sum_{Q} I_{\acute{Q}}^M(M) = N \subseteq L$, we have $(L :_R M) \notin \acute{Q}$ by using [7, Lemma 2.3]. Which is a contradiction. □

Proposition 2.8. Let N be a submodule of an R-module M. Then the following statements are equivalent:

- (a) N is a co-Baer submodule of M;
- (b) $(L:_R M) \subseteq (\hat{L}:_R M)$ with L, \hat{L} are completely irreducible submodules of M and $N \subseteq L$ implies that $N \subseteq \hat{L}$;

Proof. (*a*) \Rightarrow (*b*) Let *N* be a co-Baer submodule of *M* and (*L* :_{*R*} *M*) \subseteq (\hat{L} :_{*R*} *M*) with *L*, \hat{L} are completely irreducible submodules of *M* and *N* \subseteq *L*. Then

$$N \subseteq (L:_R M)M \subseteq (\hat{L}:_R M)M \subseteq \hat{L}.$$

 $(b) \Rightarrow (a)$ Let *N* be a submodule of *M* and *L* be a completely irreducible submodule of *M* with $N \subseteq L$. Assume that \hat{L} is a completely irreducible submodule of *M* such that $(L :_R M)M \subseteq \hat{L}$. Then $(L :_R M) \subseteq (\hat{L} :_R M)$. Thus by part (a), $N \subseteq \hat{L}$. Thus $N \subseteq (L :_R M)M$ by Remark 2.2. \Box Let R_i be a commutative ring with identity and M_i be an R_i -module for i = 1, 2, ..., n. Let $R = R_1 \times R_2 \times \cdots \times R_n$. Then $M = M_1 \times M_2 \times \cdots \times M_n$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2 \times \cdots \times N_n$ for some submodules N_i of M_i for i = 1, 2, ..., n.

Proposition 2.9. Let M_i be an R_i -module for each i = 1, 2. Set $M := M_1 \times M_2$, $R := R_1 \times R_2$, and $N := N_1 \times N_2$ a submodule of M. If N is a co-Baer submodule of M, then N_i is a co-Baer submodule of M_i for i = 1, 2.

Proof. Let L_1 be a completely irreducible submodule of M_1 such that $N_1 \subseteq L_1$. Then $L_1 \times M_2$ is a completely irreducible submodule of M with $N \subseteq L_1 \times M_2$ and so by assumption, $N_1 \times N_2 \subseteq (L_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)(M_1 \times M_2)$. Now the result follows form the fact that

$$(L_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2) = (L_1 :_{R_1} M_1) \times (M_2 :_{R_2} M_2)$$

Proposition 2.10. Let $f : M \to M$ be an epimorphism of R-modules. If N is a co-Baer submodule of M, then f(N) is a co-Baer submodule of M.

Proof. Let *N* be a co-Baer submodule of *M* and \hat{L} be a completely irreducible submodule of \hat{M} such that $f(N) \subseteq \hat{L}$. Then by [11, Lemma 2.8.(b)], $f^{-1}(\hat{L})$ is a completely irreducible submodule of *M*. Thus $N \subseteq f^{-1}(f(N)) \subseteq f^{-1}(\hat{L})$ implies that $N \subseteq (f^{-1}(\hat{L}) :_R M)M$ since *N* is a co-Baer submodule of *M*. Hence $f(N) \subseteq (f^{-1}(\hat{L}) :_R M)M$. Now $(f^{-1}(\hat{L}) :_R M) \subseteq (\hat{L} :_R M)$ implies that $f(N) \subseteq (\hat{L} :_R M)M$, as needed. \Box

Corollary 2.11. *Let* M *be an* R*-module and* N*,* K *be two submodules of* M *such that* $N \subseteq K \subseteq M$ *. If* K *is a co-Baer submodule of* M*, then* K/N *is a co-Baer submodule of* M/N*.*

Proposition 2.12. Let M be an R-module. Then every submodule of M is a co-Baer submodule if and only if every completely irreducible submodule of M is a co-Baer submodule.

Proof. Let *N* be a submodule of *M* and *L* be a completely irreducible submodule of *M* with $N \subseteq L$. Let \hat{L} be a completely irreducible submodule of *M* such that $(L :_R M)M \subseteq \hat{L}$. Then $(L :_R M) \subseteq (\hat{L} :_R M)$. Now since *L* is a co-Baer submodule of *M* and $L \subseteq L$, we have $L \subseteq \hat{L}$ by Proposition 2.8. This implies that $N \subseteq \hat{L}$. Now the result follows from Remark 2.2.

The converse is clear. \Box

3. co-Baer modules and conormal modules

Definition 3.1. We say that an *R*-module *M* is a co-Baer module if for each completely irreducible submodule *L* of *M* there exists a weak idempotent element $e \in R$ such that $(0 :_M (L :_R M)) = (0 :_M e)$.

Example 3.2. (a) Every prime R-module is a co-Baer module

(b) Every simple R-module is a co-Baer module.

Definition 3.3. We say that an *R*-module *M* is a μ_0 -module if for each finite number of ideals $I_1, I_2, ..., I_n$ of *R* we have

$$\sum_{i=1}^{n} (0:_{M} I_{i}) = (0:_{M} \bigcap_{i=1}^{n} (I_{i} + Ann_{R}(M))).$$

Example 3.4. By [2, Theorem 115 (c)], every strong comultiplication R-module is a μ_0 -module.

Proposition 3.5. Let an *R*-module *M* be a μ_0 -module. The following statements are equivalent:

(a) M is a Baer R-module;

(b) For any submodule N of M with M/N is a finitely cogenerated R-module, $(0:_M (N:_R M)) = (0:_M e)$ for some weak idempotent $e \in R$.

Proof. (*a*) \Rightarrow (*b*). Let *N* be a submodule of *M* with *M*/*N* is a finitely cogenerated *R*-module. Then there exist completely irreducible submodules L_1, L_2, \ldots, L_n of *M* such that $N = \bigcap_{i=1}^n L_i$. As *M* is co-Baer module, there exist weak idempotents $e_i \in R$ such that $(0 :_M (L_i :_R M)) = (0 :_M e_i)$ for each $i = 1, 2, \ldots, n$. Since *M* is a μ_0 -module, we have

$$\sum_{i=1}^{n} (0:_{M} e_{i}) = \sum_{i=1}^{n} (0:_{M} (L_{i}:_{R} M)) = (0:_{M} \bigcap_{i=1}^{n} ((L_{i}:_{R} M) + Ann_{R}(M))).$$

Now the result follows from the fact that $\sum_{i=1}^{n} (0:_{M} e_{i}) = (0:_{M} e_{1}e_{2}\cdots e_{n})$ and $e_{1}e_{2}\cdots e_{n}$ is a weak idempotent element of *R*.

 $(a) \Rightarrow (b)$. This is clear. \Box

Let *R* be an integral domain. A submodule *N* of an *R*-module *M* is said to be a *cotorsion-free submodule* of *M* (the dual of torsion-free) if $I_0^M(N) = N$. Also, *M* said to be a *cotorsion-free module* if *M* is a cotorsion-free submodule of itself [3].

Example 3.6. *Every cotorsion free R-module is a co-Baer R-module.*

Example 3.7. Let M be an R-module with $Ann_R(M)$ be a maximal ideal of R and let L be a completely irreducible submodule of M. As $Ann_R(M) \subseteq (L :_R M)$, we have that either $(L :_R M) = Ann_R(M)$ or $(L :_R M) = R$. Thus $(0 :_M (L :_R M)) = (0 :_M Ann_R(M)) = M = (0 :_M 0)$ or $(0 :_M (L :_R M)) = (0 :_M R) = 0 = (0 :_M 1)$. Hence M is a co-Baer R-module. For instance, for a prime number p, the \mathbb{Z} -module $\mathbb{Z}_p \times \mathbb{Z}_p$ is a co-Baer \mathbb{Z} -module, and also it is neither a simple nor a cotorsion free \mathbb{Z} -module.

Theorem 3.8. Every finitely generated comultiplication co-Baer R-module is a coreduced R-module.

Proof. Let *M* be a finitely generated comultiplication co-Baer *R*-module. Assume that *L* is a completely irreducible submodule of *M* and $a \in R$ such that $(L :_M a^2) = M$. Then $a \in ((L :_M a) :_R M)$. By [7, Lemma 2.1], $(L :_M a)$ is a completely irreducible submodule of *M*. Thus as *M* is a co-Baer *R*-module, there exists a weak idempotent element $e \in R$ such that

$$(0:_M (L:_R aM)) = (0:_M ((L:_M a):_R M)) = (0:_M e).$$

On the other hand, e(1 - e)M = 0 implies that $(1 - e)M \subseteq (0 :_M e) \subseteq (0 :_M a)$. Thus $a(1 - e)M = 0 \subseteq L$. It follows that $(1 - e) \in (L :_R aM)$ and so $(0 :_M (L :_R aM)) \subseteq (0 :_M 1 - e)$. Therefore $(0 :_M e) \subseteq (0 :_M 1 - e)$. This implies that $(0 :_M e) = (0 :_M e) \cap (0 :_M 1 - e) = 0$. Therefore, $(0 :_M (L :_R aM)) = 0$. Now we will show that $(L :_R aM) = R$. Assume to the contrary that $(L :_R aM) \neq R$. Then there exists a maximal ideal Q of R which containing $(L :_R aM)$. As $(0 :_M (L :_R aM)) = 0$, we get $(0 :_M Q) = 0$. So by [2, Theorem 7 (d)], there exists $q \in Q$ such that (1 - q)M = 0. Since $Ann_R(M) \subseteq Q$, we have that $1 \in Q$, which is a contradiction. Therefore $(L :_R aM) = R$ and hence M is a coreduced R-module. \Box

Proposition 3.9. Let N be a copure submodule of a co-Baer R-module M. Then M/N is a co-Baer R-module.

Proof. Let L/N be a completely irreducible submodule of M/N. Then by using $(M/N)/(L/N) \cong M/L$ and [12, Remark 1.1], we have L is a completely irreducible submodule of M. Thus as M is a co-Baer R-module, we get that $(0 :_M (L :_R M)) = (0 :_M e)$ for some weak idempotent $e \in R$. Now since N is copure, we have

$$(0:_{M/N} (L/N:_R M/N)) = (N:_M (L:_R M))/N = (N + (0:_M (L:_R M))/N)$$

$$= (N + (0 :_M e))/N = (0 :_{M/N} e).$$

Thus M/N is a co-Baer *R*-module. \Box

Definition 3.10. We say that an *R*-module *M* is an annihilator comultiplication module if for each completely irreducible submodule *L* of *M* there exists a finitely generated ideal I of *R* such that $(L :_R M) = Ann_R(IM)$.

Lemma 3.11. *Every comultiplication R-module M is an annihilator comultiplication module.*

Proof. Let *L* be a completely irreducible submodule of *M*. Then by assumption, $L = (0 :_M Ann_R(L))$. Thus $L = \bigcap_{a \in Ann_R(L)} (0 :_M Ra)$. This implies that $L = (0 :_M Ra)$ for some $a \in Ann_R(L)$ since *L* is a completely irreducible submodule of *M*. Hence *M* is an annihilator comultiplication *R*-module. \Box

An *R*-module *M* is said to satisfy the *condition* (\star) if (0 :_{*M*} *Q*) = 0 implies that (1 – *q*)*M* = 0 for some $q \in Q$, where *Q* is a maximal ideal of *R*.

Proposition 3.12. Let M be a finitely generated co-Baer R-module satisfying the condition (\star) . Then M is an annihilator comultiplication R-module.

Proof. Assume that *L* is a completely irreducible submodule of *M*. Then there exists a weak idempotent $e \in R$ such that $((0:_M (L:_R M)) = (0:_M e))$. It follows that

$$0 = (0:_M (L:_R M)) \cap (0:_M 1 - e) = (0:_M (L:_R M) + R(1 - e)).$$

Now we will show that $(L :_R M) + R(1 - e) = R$. Assume to the contrary that $(L :_R M) + R(1 - e) \neq R$. Then there exists a maximal ideal Q of R that containing $(L :_R M) + R(1 - e)$. This implies that $(0 :_M Q) = 0$. As M satisfying the condition (\star) , we get (1 - r)M = 0 for some $r \in Q$. Since $1 - r \in Ann_R(M) \subseteq Q$, we get $1 \in Q$, which is a contradiction. Thus we have $(L :_R M) + R(1 - e) = R$. Then $r_1 + (1 - e)x = 1$ for some $r_1 \in (L :_R M)$ and $x \in R$. This implies that $e = er_1 + e(1 - e)x$ and so $e \in (L :_R M) + Ann_R(M) = (L :_R M)$. Therefore, $Re \subseteq (L :_R M)$. Now let $r_2 \in (L :_R M)$. Then

$$M = (0:_M (L:_R M)(1-e)) \subseteq (0:_M r_2(1-e))$$

and hence $r_2(1 - e) \in Ann_R(M)$. This implies that $r_2 = r_2e + r_2(1 - e) \in Re + Ann_R(M)$. Thus we have $(L :_R M) = Re + Ann_R(M)$. Since $Ann_R((1 - e)M) = Re + Ann_R(M)$, we get $(L :_R M) = Ann_R((1 - e)M)$ as needed. \Box

Theorem 3.13. Let M be a finitely generated comultiplication co-Baer R-module. Then $R/Ann_R(M)$ is a Baer ring.

Proof. Let $\bar{R} = R/Ann_R(M)$ and $a + Ann_R(M) \in \bar{R}$. It is enough to show that $Ann_{\bar{R}}(a + Ann_R(M)) = (e + Ann_R(M))\bar{R}$ for some idempotent $e + Ann_R(M) \in \bar{R}$. Clearly, $Ann_{\bar{R}}(a + Ann_R(M)) = Ann_R(aM)/Ann_R(M)$. By using [2, Theorem 24], M is a finitely cogenerated R-module. Thus there exist completely irreducible submodules L_i of M for i = 1, 2, ..., n such that $\bigcap_{i=1}^n L_i = 0$. Thus $(0 :_M a) = \bigcap_{i=1}^n (L_i :_M a)$. It follows that $Ann_R(aM) = \bigcap_{i=1}^n (L_i :_M a) :_R M$. As M is a finitely generated comultiplication co-Baer R-module, a similar argument as in the proof of Proposition 3.12 shows that $((L_i :_M a) :_R M) = Re_i + Ann_R(M)$ for some weak idempotent $e_i \in R$. This implies that $((L_i :_M a) :_R M)/Ann_R(M) = (e_i + Ann_R(M))\bar{R}$. Then note that $e_i + Ann_R(M)$ is an idempotent of \bar{R} and hence

$$Ann_{R}(aM)/Ann_{R}(M) = \bigcap_{i=1}^{n} ((L_{i} :_{M} a) :_{R} M)/Ann_{R}(M) =$$
$$\bigcap_{i=1}^{n} (((L_{i} :_{M} a) :_{R} M)/Ann_{R}(M)) = \bigcap_{i=1}^{n} ((e_{i} + Ann_{R}(M))\bar{R})$$
$$= (e_{1}e_{2} \cdots e_{n} + Ann_{R}(M)) = (e + Ann_{R}(M))\bar{R},$$

where $e = e_1 e_2 \cdots e_n$ and $e + Ann_R(M)$ is an idempotent of \overline{R} .

Theorem 3.14. *Let* M *be an annihilator comultiplication* R*-module and let* $R/Ann_R(M)$ *be a Baer ring. Then* M *is a co-Baer* R*-module.*

Proof. Let *L* be a completely irreducible submodule of *M* As *M* is an annihilator comultiplication *R*-module, we have $(L :_R M) = Ann_R(IM)$ for some finitely generated ideal $I = R(a_1, a_2, ..., a_n)$ of *R*. This implies that $(L :_R M) = Ann_R(a_1M + a_nM) = \bigcap_{i=1}^n Ann_R(a_iM)$. Since $R/Ann_R(M)$ is a Baer ring, for each $a_i \in R$ we have

 $Ann_{R/Ann_{R}(M)}(a_{i} + Ann_{R}(M)) = Ann_{R}(a_{i}M)/Ann_{R}(M)$

 $= ((e_i)R + Ann_R(M))/Ann_R(M)$

for some weak idempotent $e_i \in R$. This implies that $Ann_R(a_iM) = (e_i)R + Ann_R(M)$. Then we have

$$(L:_R M) = \bigcap_{i=1}^n Ann_R(a_i M) = \bigcap_{i=1}^n ((e_i)R + Ann_R(M)).$$

Since $\bigcap_{i=1}^{n}((e_i)R + Ann_R(M)) = (e)R + Ann_R(M)$, where $e = e_1e_2 \cdots e_n$ is a weak idempotent of R, we conclude that $(0:_M (L:_R M)) = (0:_M e)$, which completes the proof. \Box

Example 3.15. By Theorem 3.14, the \mathbb{Z} -module \mathbb{Z}_n is a co-Baer \mathbb{Z} -module if n is square free.

Proposition 3.16. Let $\{M_i\}_{i \in I}$ be a family of *R*-modules. Consider the following cases:

- (a) $\prod_{i \in I} M_i$ is a co-Baer R-module.
- (b) $\bigoplus_{i \in I} M_i$ is a co-Baer R-module.
- (c) M_i is a co-Baer R-module for each $i \in I$.

Then $(a) \Rightarrow (b) \Rightarrow (c)$ always holds.

Proof. The proof is straightforward. \Box

The following example shows that in Proposition 3.16 the implication (c) \Rightarrow (a) is not true in general.

Example 3.17. Consider the \mathbb{Z} -module $M = \mathbb{Z}_2 \oplus \mathbb{Z}_3$. For completely irreducible submodule $L = 0 \oplus \mathbb{Z}_3$ of M we have $(0:_M (L:_R M)) \neq (0:_M 0)$ and $(0:_M (L:_R M)) \neq (0:_M 1)$. Thus we have M is not a co-Baer \mathbb{Z} -module since the only weak idempotents of \mathbb{Z} are 0 and 1. But \mathbb{Z}_2 and \mathbb{Z}_3 are co-Baer \mathbb{Z} -modules by Example 3.15.

Lemma 3.18. Let L be a completely irreducible submodule of an R-module M. Then $(L :_R M)M$ is a co-Baer submodule of M.

Proof. Let \hat{L} be a completely irreducible submodule of M such that $(L :_R M)M \subseteq \hat{L}$. Then $(L :_R M) \subseteq (\hat{L} :_R M)$. Thus $(L :_R M)M \subseteq (\hat{L} :_R M)M$ as needed. \Box

Lemma 3.19. Let N be a submodule of a comultiplication R-module M and e be a weak idempotent of R such that $(0:_M (N:_R M)) = (0:_M e)$. Then $(N:_R M) = Re + Ann_R(M)$.

Proof. As *M* is a comultiplication *R*-module, $(0 :_M (N :_R M)) = (0 :_M e)$ implies that $(N :_R M)M = eM$. Thus $eM \subseteq N$ and so $Re \subseteq (N :_R M)$. Hence $Re + Ann_R(M) \subseteq (N :_R M)$. On the other hand $(1 - e)M \subseteq (0 :_M e)$. Thus $(1 - e)(N :_R M)M = 0$. Hence

$$(N :_R M) \subseteq Ann_R((1 - e)M) \subseteq Re + Ann_R(M).$$

Theorem 3.20. Let M be a comultiplication R-module. Then M is a co-Baer module if and only if every co-Baer submodule of M is a $d\sigma$ -submodule of M.

Proof. Let *M* be a co-Baer *R*-module and *N* be a co-Baer submodule of *M*. Assume that *L* is a completely irreducible submodule of *M* such that $N \subseteq L$. As *N* is a co-Baer submodule of *M*, we have $N \subseteq (L :_R M)M$. Since *M* is a co-Baer *R*-module, $(0 :_M (L :_R M)) = (0 :_M e)$ for some weak idempotent $e \in R$. Thus $(L :_R M) = Re + Ann_R(M)$ by Lemma 3.19. As we can see in the proof of Lemma 3.19, $(L :_R M)(1 - e)M = 0$ and $N \subseteq (L :_R M)M = eM$. These in turn imply that $R = Re + Ann_R(M) + R(1 - e) \subseteq Ann_R(N) + (L :_R M)$. Therefore, $Ann_R(N) + (L :_R M) = R$ as needed. For the converse, assume that every co-Baer submodule of *M* is a *d* σ -submodule of *M* and *L* is a completely irreducible submodule of *M*. By Lemma 3.18, $(L :_R M)M$ is a *d* σ -submodule of *M*. Hence, $Ann_R((L :_R M)M) + (L :_R M) = R$ because $(L :_R M)M \subseteq L$. Now since $Ann_R((L :_R M)M)(L :_R M) \subseteq Ann_R(M)$, we have $(L :_R M) + Ann_R(M) = Re + Ann_R(M)$ for some weak idempotent $e \in R$ by [14, Lemma 2 (i)]. It follows that $(0 :_M (L :_R M)) = (0 :_M e)$ for some weak idempotent $e \in R$ and so *M* is a co-Baer *R*-module.

Theorem 3.21. Let M be a comultiplication R-module. Then M is a co-Baer R-module if and only if for every submodule N of M we have M/N is a co-Baer R-module.

Proof. The "only if" part is clear. Now let *M* be a co-Baer *R*-module and N be a submodule of *M*. Assume that L/N is a completely irreducible submodule of M/N. Then *L* is a completely irreducible submodule of *M*. Thus $(0 :_M (L :_R M)) = (0 :_M e)$ for some weak idempotent $e \in R$. So, $(L :_R M) = Re + Ann_R(M)$ by Lemma 3.19. Therefore,

$$(0:_{M/N} (L/N:_R M/N)) = (N:_M (L:_R M))/N =$$

$$((N:_M e) \cap (N:_M Ann_R(M)))/N = (N:_M e)/N = (0:_{M/N} e),$$

as desired \Box

Proposition 3.22. Let M be a second R-module. Then M is a co-Baer R-module.

Proof. Let *L* be a completely irreducible submodule of *M*. As *M* is second, $(L :_R M)M = 0$ or $M = (L :_R M)M \subseteq L$. Hence $(0 :_M (L :_R M)) = M = (0 :_M 0)$ or $(0 :_M (L :_R M)) = (0 :_M (M :_R M)) = (0 :_M 1)$, as needed. \Box

The following example shows that the converse of Proposition 3.22 is not true in general.

Example 3.23. By Example 3.15, the \mathbb{Z} -module \mathbb{Z}_6 is a co-Baer \mathbb{Z} -module. But the \mathbb{Z} -module \mathbb{Z}_6 is not a second \mathbb{Z} -module.

Definition 3.24. We say that a finitely cogenerated coreduced *R*-module *M* is a conormal module if for any two distinct maximal second submodules S_1 and S_2 of *M* we have $S_1 \cap S_2 = 0$.

Proposition 3.25. Let *M* be a finitely generated comultiplication co-Baer R-module. Then for any two distinct maximal second submodules S_1 and S_2 of *M* we have $S_1 \cap S_2 = 0$.

Proof. First note that minimal submodules and hence second submodules and maximal second submodules exist in comultiplication *R*-modules [2, Theorem 7 (e)]. Let S_1 and S_2 be two distinct maximal second submodules of *M*. Then $Ann_R(S_1)$ and $Ann_R(S_2)$ are prime ideals of *R* containing $Ann_R(M)$. Thus $Ann_R(S_1)$ contains P_1 and $Ann_R(S_2)$ contains P_2 , where P_1 and P_2 are prime ideals which are minimal over $Ann_R(M)$. Therefore $P_1/Ann_R(M)$ and $P_2/Ann_R(M)$ are minimal prime ideals of $R/Ann_R(M)$. By Theorem 3.13, $R/Ann_R(M)$ is a Baer ring. Hence $P_1/Ann_R(M) + P_2/Ann_R(M) = R/Ann_R(M)$, which implies that $P_1 + P_2 = R$. It follows that $Ann_R(S_1) + Ann_R(S_2) = R$ and so $S_1 \cap S_2 = 0$. \Box

Corollary 3.26. Every finitely generated comultiplication co-Baer R-module is a conormal R-module.

Proof. By using [2, Theorem 24], *M* is a finitely cogenerated *R*-module. Now the result follows from Theorem 3.8 and Proposition 3.25.

Theorem 3.27. *Let M* be a finitely generated comultiplication *R*-module. Then *M* is a conormal module if and only if $R/Ann_R(M)$ is a normal ring.

Proof. ⇒: Let *M* be a conormal *R*-module. Since *M* is a coreduced *R*-module, we have $R/Ann_R(M)$ is reduced ring by [10, Proposition 2.16 (b)]. Take two distinct minimal prime ideals $P_1/Ann_R(M)$ and $P_2/Ann_R(M)$ of $R/Ann_R(M)$. Then P_1 and P_2 are two distinct minimal prime ideals of $Ann_R(M)$. By [10, Proposition 2.1 (a), (d)], (0 :_M P_1) and (0 :_M P_2) are two distinct maximal second submodules of *M*. Therefore (0 :_M P_1) \cap (0 :_M P_2) = 0 and so (0 :_M $P_1 + P_2$) = 0. Thus as *M* is a comultiplication *R*-module, ($P_1 + P_2$)*M* = *M*. Hence since *M* is finitely generated and $Ann_R(M) \subseteq P_1 + P_2$, we have $P_1 + P_2 = R$ by [8, Corollary 2.5]. Thus $P_1/Ann_R(M) + P_2/Ann_R(M) = R/Ann_R(M)$ and so $R/Ann_R(M)$ is a normal ring.

⇐: Let $R/Ann_R(M)$ be a normal ring. Then as $R/Ann_R(M)$ is a reduced ring, we have M is a coreduced module by [10, Proposition 2.16 (a)]. Now let S_1 and S_2 be two distinct maximal second submodules of M. Then $Ann_R(S_1)$ and $Ann_R(S_2)$ are two distinct minimal prime ideals of R containing $Ann_R(M)$ by [10, Proposition 2.1 (c)]. Thus $Ann_R(S_1)/Ann_R(M)$ and $Ann_R(S_2)/Ann_R(M)$ are two distinct minimal prime ideals of $R/Ann_R(M)$. Hence

$$Ann_{R}(S_{1})/Ann_{R}(M) + Ann_{R}(S_{2})/Ann_{R}(M) = R/Ann_{R}(M),$$

which implies that $Ann_R(S_1) + Ann_R(S_2) = R$. It follows that $S_1 \cap S_2 = 0$, as needed.

Corollary 3.28. *Let M be a finitely generated multiplication and comultiplication R-module. Then M is a normal R-module if and only if M is a conormal R-module.*

Proof. This follows from [16, Proposition 2.12] and Theorem 3.27.

Proposition 3.29. Let M_i be an R_i -module for each i = 1, 2, ..., n. Set $M := M_1 \times M_2 \times \cdots \times M_n$ and $R := R_1 \times R_2 \times \cdots \times R_n$. Then the following statements are equivalent:

- (a) *M* is a conormal *R*-module;
- (a) M_i is a conormal R_i -module for each i = 1, 2, ..., n.

Proof. First note that *M* is a finitely cogenerated coreduced *R*-module if and only if each M_i is a finitely cogenerated coreduced R_i -module for i = 1, 2, ..., n.

(*a*) \Rightarrow (*b*) Let *M* be a conormal *R*-module and choose $i \in \{1, 2, ..., n\}$. Assume that S_{i1} and S_{i2} are two distinct maximal second submodules of M_i . Then $N_1 = 0 \times 0 \times \cdots \times S_{i1} \times \cdots \times 0$ and $N_2 = 0 \times 0 \times \cdots \times S_{i2} \times \cdots \times 0$ are two distinct maximal second submodules of *M*. As *M* is a conormal *R*-module, we have $N_1 \cap N_2 = 0$ which implies that $S_{i1} \cap S_{i2} = 0$. Therefore, M_i is a conormal R_i -module.

 $(b) \Rightarrow (a)$ Let M_i be a conormal R_i -module for each i = 1, 2, ..., n. Suppose that S and K are two maximal second submodules of M. Then $S = 0 \times 0 \times X_t \times \cdots \times 0$ and $K = 0 \times 0 \times \cdots \times K_j \times \cdots \times 0$ for some maximal second submodules S_t of M_t and K_j of M_j . If $j \neq t$, we have $S \cap K = 0$. So assume that j = t. Since $K \neq S$ and M_t is conormal, we have $S_t \neq K_t$ so that $S_t \cap K_t = 0$ which implies that $S \cap K = 0$. Therefore, M is a conormal R-module. \Box

References

[1] W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

[2] H. Ansari-Toroghy and F. Farshadifar, *Survey on comultiplication modules*, Surv. Math. Appl., **14** (2019), 61-108.

- [3] H. Ansari-Toroghy and F. Farshadifar. On the dual notion of prime submodules (II). Mediterr. J. Math., 9 (2) (2012), 327-336.
- [4] H. Ansari-Toroghy and F. Farshadifar. On the dual notion of prime submodules. Algebra Colloq., 19 (Special Issue 1) (2012), 1109-1116.
 [5] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
- [6] H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenar. On the ideal- based zero-divisor graphs. Int. Electron. J. Algebra, 23 (2018), 115-130.
- [7] H. Ansari-Toroghy, F. Farshadifar, and S. S. Pourmortazavi. On the P-interiors of submodules of Artinian modules. Hacet. J. Math. Stat., 45 (3) (2016), 675-682.
- [8] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra. Addison Wesley Publishing Company. Inc. (1969).
- [9] C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
- [10] F. Farshadifar, Finitely generated coreduced comultiplication modules, J. Algebra its Appl., 23(6) (2024), 2450120.

- [11] F. Farshadifar. The dual notion of morphic modules over commutative rings, J. Math. Sci., to appear.
- [12] L. Fuchs, W. Heinzer, and B. Olberding. *Commutative ideal theory without finiteness conditions*: irreducibility in the quotient field. **249** (2006), 121-145.
- [13] C. B. Huijsmans, Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element, Nederl. Akad. Wetensch. Proc. Ser. A 77. Indag. Math., 36 (1974), 132-147.
- [14] C. Jayaram and Ü. Tekir, Von Neumann regular modules, Comm. Algebra, 46 (5) (2018), 2205.2217.
- [15] C. Jayaram, U. Tekir, and S. Koç, On Baer modules, Rev. Un. Mat. Argentina, 63 (1) (2022), 109-128.
- [16] C. Jayaram, Ü. Tekir, S.Koç, and S. Çeken, On normal modules, Comm. Algebra, 51 (4) (2023), 1479-1491.
- [17] J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc., 13 (3) (1963), 31-50.
- [18] K. Samei. Reduced multiplication modules. Proc. Indian Acad. Sci. Math. Sci., 121 (2) (2011), 121-132.
- [19] R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
- [20] L. Tsiu-Kwen and Z. Yiqiang, *Reduced modules*. In Rings, modules, alge- bras, and abelian groups, volume 236 of Lecture Notes in Pure and Appl. Math., pages 365-377. Dekker, New York, 2004.
- [21] R. Wisbauer, Foundations of Module and Ring Theory, Gordon Breach, Philadel-phia, PA, 1991.
- [22] S. Yassemi. The dual notion of prime submodules. Arch. Math. (Brno), 37 (4) (2001), 273-278.