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The dual notion of Baer modules and related topics
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Abstract. The aim of this paper is to introduce and investigate the dual notions of σ-submodules of
modules, normal modules, and Baer modules over a commutative ring. Furthermore, we obtain some
results about the relations between them.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will denote the ring of
integers. For a submodule N of an R-module M, a non-empty subset K of M, and a non-empty subset J of
R, the residuals of N by K and J are defined as (N :R K) = {a ∈ R : aK ⊆ N} and (N :M J) = {m ∈M : Jm ⊆ N},
respectively. In particular, we use AnnR(M) to denote (0 :R M).

Let M be an R-module. A submodule N of M is said to be a σ-submodule of M if m ∈ N implies that
AnnR(m)+(N :R M) = R. In particular, an ideal I of R is called a σ-ideal if I is a σ-submodule of the R-module R
[15]. A non-zero submodule N of M is said to be second if for each a ∈ R, the homomorphism N a

→ N is either
surjective or zero [22]. A second submodule N of M is said to be a maximal second submodule of M, if there
does not exist a second submodule K of M such that N ⊂ K ⊂ M [4]. M is called a reduced module if rm = 0
implies that rM∩ Rm = 0, where r ∈ R and m ∈M [20]. R is said to be a normal ring if it is reduced (without
nilpotent elements) and every two distinct minimal prime ideals are comaximal [13]. A finitely generated
reduced R-module M is said to be a normal module if every two distinct minimal prime submodules are
comaximal [16]. R is said to be a Baer ring if for each a ∈ R, the annihilator AnnR(a) = {r ∈ R : ra = 0} of a is
generated by an idempotent element e ∈ R [17]. An element e ∈ R is said to be a weak idempotent element if
em = e2m for each m ∈ M, or equivalently, e − e2

∈ AnnR(M). Also, M is said to be a Baer module if for each
m ∈M there exists a weak idempotent element e ∈ R such that AnnR(m)M = eM [15].

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if N =
⋂

i∈I Ni,
where {Ni}i∈I is a family of submodules of M, implies that N = Ni for some i ∈ I. Every submodule of M is an
intersection of completely irreducible submodules of M. Thus the intersection of all completely irreducible
submodules of M is zero [12]. M is said to be coreduced module if (L :M r) = M implies that L + (0 :M r) = M,
where r ∈ R and L is a completely irreducible submodule of M [6]. A submodule N of M is said to be a
co-Baer submodule if for each completely irreducible submodule L of M with N ⊆ L, we have N ⊆ (L :R M)M
[11].

In Section 2 of this paper, we define the dual notion of σ-submodules of an R-module M and obtain
some results about dσ-submodules and co-Baer submodules. We say that a submodule N of an R-module
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M is a dual of σ-submodule (dσ-submodule in short) if for each completely irreducible submodule L of M
with N ⊆ L we have AnnR(N) + (L :R M) = R (see Definition 2.1). Among various results, we show that if
every submodule of M is a dσ-submodule of M, then M is a comultiplication R-module (see Proposition 2.3
(b)). Also, it is shown that every dσ-submodule of M is a copure submodule of M, but the converse is not
true in general (see Proposition 2.5 (c) and Example 2.6). Moreover, we prove that if M is an R-module such
that M/IM

P (M) is a finitely cogenerated R-module for each maximal ideal P of R, then a submodule N of M
is a dσ-submodule if and only if N =

∑
Q IM

Q (M), where Q denotes any maximal ideal of R that containing
AnnR(N) (see Theorem 2.7).

In Section 3, we introduce and investigate the dual notions of Baer R-modules and normal R-modules.
Also, we obtain some results about the relations of dσ-submodules, co-Baer submodules, normal R-modules
with co-Baer R-modules. We say that an R-module M is a co-Baer module if for each completely irreducible
submodule L of M there exists a weak idempotent element e ∈ R such that (0 :M (L :R M)) = (0 :M
e) (see Definition 3.1). Among the other results in this section, we show that every finitely generated
comultiplication co-Baer R-module is a coreduced R-module (see Theorem 3.8). Furthermore, it is proved
that if M is a finitely generated comultiplication co-Baer R-module, then R/AnnR(M) is a Baer ring (see
Theorem 3.13). Also, we determine the condition under which if R/AnnR(M) is a Baer ring, then M is a
co-Baer R-module. In particular, the Z-module Zn is a co-Baer Z-module if n is square free (Theorem 3.14
and Example 3.15). Let M be a comultiplication R-module. Then we show that M is a co-Baer module if
and only if every co-Baer submodule of M is a dσ-submodule of M (see Theorem 3.20). It is shown that if
M is a comultiplication R-module, then M is a co-Baer R-module if and only if for every submodule N of
M we have M/N is a co-Baer R-module (see Theorem 3.21). We say that a finitely cogenerated coreduced
R-module M is a conormal module if for any two distinct maximal second submodules S1 and S2 of M we have
S1 ∩ S2 = 0 (see Definition 3.24). Every finitely generated comultiplication co-Baer R-module is a conormal
R-module (see Corollary 3.26). It is proved that if M is a finitely generated comultiplication R-module, then
M is a conormal module if and only if R/AnnR(M) is a normal ring (see Theorem 3.27). Finally we determine
the conditions under which M is a normal R-module if and only if M is a conormal R-module (see Corollary
3.28).

2. dσ-submodules and co-Baer submodules

Definition 2.1. We say that a submodule N of an R-module M is a dual of σ-submodule (dσ-submodule in short) if
for each completely irreducible submodule L of M with N ⊆ L we have AnnR(N) + (L :R M) = R.

Remark 2.2. (See [5].) Let N and K be two submodules of an R-module M. To prove N ⊆ K, it is enough to show
that if L is a completely irreducible submodule of M such that K ⊆ L, then N ⊆ L.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal
I of R such that N = (0 :M I). For more information about comultiplication R-modules, we refer the reader
to [2].

Proposition 2.3. Let N be a dσ-submodule of an R-module M. Then we have the following.

(a) If K is a submodule of M such that N ⊆ K and M/K is a finitely cogenerated R-module, then AnnR(N) + (K :R
M) = R.

(b) N = (0 :M AnnR(N)). In particular, if every submodule of M is a dσ-submodule of M, then M is a comultipli-
cation R-module.

Proof. (a) Let K be a submodule of M such that N ⊆ K and M/K be a finitely cogenerated R-module. Then
there exist completely irreducible submodules Li for i = 1, 2, . . . ,n such that K = ∩n

i=1Li. By assumption,
AnnR(N) + (Li :R M) = R for i = 1, 2, . . . ,n. Hence by [19, Proposition 3.59], AnnR(N) + ∩n

i=1(Li :R M) = R.
Thus AnnR(N) + (K :R M) = R.
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(b) Always we have N ⊆ (0 :M AnnR(N)). Now let L be a completely irreducible submodule of M such
that N ⊆ L. By assumption, AnnR(N) + (L :R M) = R. Thus we have

L = (L :M R) = (L :M AnnR(N) + (L :R M)) =

(L :M AnnR(N)) ∩ (L :M (L :R M)) =

(L :M AnnR(N)) ∩M ⊇ (0 :M AnnR(N)).

Now the result follows from Remark 2.2.

Let M be an R-module. A submodule N of M is said to be pure if IN = N ∩ IM for each ideal I of R [1].
A submodule N of M is said to be copure if (N :M I) = N + (0 :M I) for each ideal I of R [2].

Proposition 2.4. Let M be a multiplication R-module. Then we have the following.

(a) If N is a pure submodule of M, then N is σ-submodule of M.

(b) If N is a copure submodule of M, then N is σ-submodule of M.

Proof. (a) Let N be a pure submodule of M and x ∈ N. Since M is a multiplication R-module, there exist
ideals I and J of R such that Rx = IM and N = JM. As N is pure, we get that Rx = IM = IM∩ JM = IJM = JRx.
Thus by [8, Corollary 2.5], AnnR(Rx) + J = R. Since J ⊆ (JM :R M), we have AnnR(Rx) + (JM :R M) = R.

(b) Let N be a copure submodule of M and x ∈ N. Since M is a multiplication R-module, there exist
ideals I and J of R such that Rx = IM and N = JM. As IM ⊆ JM, we have M = (JM :R I). Now since N is
copure, M = JM + (0 :M I). Thus Rx = IM = IJM = JRx and so AnnR(Rx) + J = R by [8, Corollary 2.5]. Now
the result follows from the fact that J ⊆ (JM :R M).

A family {Ni}i∈I of submodules of an R-module M is said to be an inverse family of submodules of M
if the intersection of two of its submodules contains a module in {Ni}i∈I . Also, M satisfies Grothendieck’s
condition AB5∗ (the property AB5∗ in short) if for every submodule K of M and every inverse family {Ni}i∈I
of submodules of M, K + ∩i∈INi = ∩i∈I(Ni + K)[21, p.435].

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R we have
I = AnnR(0 :M I) [9].

An R-module M is said to be a strong comultiplication module if M is a comultiplication R-module and
satisfies the DAC conditions [2].

Proposition 2.5. Let M be an R-module. Then we have the following.

(a) If N1,N2, ..,Nk are dσ-submodules of M, then
∑k

i=1 Ni is a dσ-submodule of M.

(b) If M satisfies the property AB5∗ and {Ni}i∈I is a inverse family of dσ-submodules of M, then ∩i∈INi is a
dσ-submodule of M.

(c) Every dσ-submodule of M is a copure submodule of M.

(d) If N is a pure submodule of a strong comultiplication R-module M, then N is dσ-submodule of M.

Proof. (a) Let N1,N2, ..,Nk be dσ-submodules of M and let L be a completely irreducible submodule of M
such that

∑k
i=1 Ni ⊆ L. Then Ni ⊆ L for i = 1, 2, .., k. So by assumption, AnnR(Ni)+(L :R M) = R for i = 1, 2, .., k.

This implies that AnnR(
∑k

i=1 Ni) + (L :R M) = ∩k
i=1AnnR(Ni) + (L :R M) = R by [19, Proposition 3.59]. Hence∑k

i=1 Ni is a dσ-submodule of M.
(b) Let M satisfies the property AB5∗ and {Ni}i∈I be a inverse family of dσ-submodules of M. Let L be

a completely irreducible submodule of M such that ∩i∈INi ⊆ L. Then ∩i∈INi + L = L. Since M satisfies the
property AB5∗, we have ∩i∈I(Ni + L) = L. Thus Ni ⊆ L for some i ∈ I because L is completely irreducible
submodule of M. So by assumption, AnnR(Ni)+ (L :R M) = R. This implies that AnnR(∩i∈INi)+ (L :R M) = R,
as needed.
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(c) Let N be a dσ-submodule of M and I be an ideal of R. Clearly N + (0 :M I) ⊆ (N :M I). Assume that L
is a completely irreducible submodule of M such that N + (0 :M I) ⊆ L. By Remark 2.2, it is enough to show
that (N :M I) ⊆ L. As N is a dσ-submodule of M, we have AnnR(N) + (L :R M) = R. Thus 1 = s + t for some
s ∈ AnnR(N) and t ∈ (L :R M). Let x ∈ (N :M I). Then xI ⊆ N. We have x = 1x = sx + tx. Since Isx ⊆ sN = 0,
we have sx ∈ (0 :M I). Thus x ∈ (0 :M I) + L = L, as needed.

(d) Let N be a pure submodule of a strong comultiplication R-module M. Suppose that L is a completely
irreducible submodule of M such that N ⊆ L. As M is a comultiplication R-module, there exist ideals I and
J of R such that L = (0 :M I) and N = (0 :M J). As (0 :M J) ⊆ (0 :M I), we have I(0 :M J) = 0. Now since N is
a pure submodule of M, (0 :M J) ∩ IM = 0. This implies that (0 :M J + AnnR(IM)) = (0 :M R). It follows that
J +AnnR(IM) = R because M is a strong comultiplication R-module. Hence AnnR((0 :M J)) +AnnR(IM) = R,
as needed.

The following example shows that a copure submodule of an R-module M is not a dσ-submodule of M
in general.

Example 2.6. Consider theZ-module M = Z2 ⊕Zp∞ and N = 0⊕Zp∞ . Then N is a copure submodule of M but N
is not a dσ-submodule of M.

Let M be an R-module and P be a prime ideal of R [3, 4, 7]. Then

IM
P (M) = ∩{L | L is a completely irreducible submodule o f M and

(L :R M) ⊈ P}.

Theorem 2.7. Let M be an R-module such that M/IM
P (M) is a finitely cogenerated R-module for each maximal ideal

P of R. Then a submodule N of M is a dσ-submodule if and only if N =
∑

Q IM
Q (M), where Q denotes any maximal

ideal of R that containing AnnR(N).

Proof. ⇒: Let L be a completely irreducible submodule of M such that N ⊆ L. Since N is a dσ-submodule
of M, We have that AnnR(N) + (L :R M) = R. Let P be a maximal ideal of R containing AnnR(N). Then
(L :R M) ⊈ P. Thus IM

P (M) ⊆ L. This implies that
∑

Q IM
Q (M) ⊆ L and so

∑
Q IM

Q (M) ⊆ N by Remark 2.2.
Conversely, assume that L is a completely irreducible submodule of M such that

∑
Q IM

Q (M) ⊆ L, where
Q is any maximal ideal containing AnnR(N). Let P be a maximal ideal of R. If P contains AnnR(N), then
IM
P (M) ⊆ L and so (L :R M) ⊈ P by using [7, Lemma 2.3]. This implies that (L :R M)P = RP. Otherwise, we

would have AnnR(N) ⊈ P and so AnnR(N)P = RP. In both cases we have AnnR(N)P + (L :R M)P = RP for all
maximal ideal P of R. This implies that AnnR(N) + (L :R M) = R. Hence AnnR(N)N + (L :R M)N = N and so
N ⊆ (L :R M)M ⊆ L. Therefore, N ⊆

∑
Q IM

Q (M) by Remark 2.2.
⇐: Let N =

∑
Q IM

Q (M), where Q denotes any maximal ideal of R that containing AnnR(N). We show
that N is a dσ-submodule of M. Let L be a completely irreducible submodule of M such that N ⊆ L.
Assume contrary that AnnR(N) + (L :R M) , R. Then there exists a maximal ideal Q́ of R such that
AnnR(N) + (L :R M) ⊆ Q́. Since IM

Q́
(M) ⊆

∑
Q IM

Q (M) = N ⊆ L, we have (L :R M) ⊈ Q́ by using [7, Lemma 2.3].
Which is a contradiction.

Proposition 2.8. Let N be a submodule of an R-module M. Then the following statements are equivalent:

(a) N is a co-Baer submodule of M;

(b) (L :R M) ⊆ (Ĺ :R M) with L, Ĺ are completely irreducible submodules of M and N ⊆ L implies that N ⊆ Ĺ;

Proof. (a) ⇒ (b) Let N be a co-Baer submodule of M and (L :R M) ⊆ (Ĺ :R M) with L, Ĺ are completely
irreducible submodules of M and N ⊆ L. Then

N ⊆ (L :R M)M ⊆ (Ĺ :R M)M ⊆ Ĺ.

(b) ⇒ (a) Let N be a submodule of M and L be a completely irreducible submodule of M with N ⊆ L.
Assume that Ĺ is a completely irreducible submodule of M such that (L :R M)M ⊆ Ĺ. Then (L :R M) ⊆ (Ĺ :R
M). Thus by part (a), N ⊆ Ĺ. Thus N ⊆ (L :R M)M by Remark 2.2.
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Let Ri be a commutative ring with identity and Mi be an Ri-module for i = 1, 2, . . . ,n. Let R =
R1 ×R2 × · · · ×Rn. Then M =M1 ×M2 × · · · ×Mn is an R-module and each submodule of M is in the form of
N = N1 ×N2 × · · · ×Nn for some submodules Ni of Mi for i = 1, 2, . . . ,n.

Proposition 2.9. Let Mi be an Ri-module for each i = 1, 2. Set M := M1 ×M2, R := R1 × R2, and N := N1 ×N2 a
submodule of M. If N is a co-Baer submodule of M, then Ni is a co-Baer submodule of Mi for i = 1, 2.

Proof. Let L1 be a completely irreducible submodule of M1 such that N1 ⊆ L1. Then L1 ×M2 is a completely
irreducible submodule of M with N ⊆ L1 ×M2 and so by assumption, N1 × N2 ⊆ (L1 ×M2 :R1×R2 M1 ×

M2)(M1 ×M2). Now the result follows form the fact that

(L1 ×M2 :R1×R2 M1 ×M2) = (L1 :R1 M1) × (M2 :R2 M2).

Proposition 2.10. Let f : M → Ḿ be an epimorphism of R-modules. If N is a co-Baer submodule of M, then f (N)
is a co-Baer submodule of Ḿ.

Proof. Let N be a co-Baer submodule of M and Ĺ be a completely irreducible submodule of Ḿ such that
f (N) ⊆ Ĺ. Then by [11, Lemma 2.8.(b)], f−1(Ĺ) is a completely irreducible submodule of M. Thus N ⊆
f−1( f (N)) ⊆ f−1(Ĺ) implies that N ⊆ ( f−1(Ĺ) :R M)M since N is a co-Baer submodule of M. Hence f (N) ⊆
( f−1(Ĺ) :R M)Ḿ. Now ( f−1(Ĺ) :R M) ⊆ (Ĺ :R Ḿ) implies that f (N) ⊆ (Ĺ :R Ḿ)Ḿ, as needed.

Corollary 2.11. Let M be an R-module and N, K be two submodules of M such that N ⊆ K ⊆ M. If K is a co-Baer
submodule of M, then K/N is a co-Baer submodule of M/N.

Proposition 2.12. Let M be an R-module. Then every submodule of M is a co-Baer submodule if and only if every
completely irreducible submodule of M is a co-Baer submodule.

Proof. Let N be a submodule of M and L be a completely irreducible submodule of M with N ⊆ L. Let Ĺ be
a completely irreducible submodule of M such that (L :R M)M ⊆ Ĺ. Then (L :R M) ⊆ (Ĺ :R M). Now since L
is a co-Baer submodule of M and L ⊆ L, we have L ⊆ Ĺ by Proposition 2.8. This implies that N ⊆ Ĺ. Now
the result follows from Remark 2.2.

The converse is clear.

3. co-Baer modules and conormal modules

Definition 3.1. We say that an R-module M is a co-Baer module if for each completely irreducible submodule L of
M there exists a weak idempotent element e ∈ R such that (0 :M (L :R M)) = (0 :M e).

Example 3.2. (a) Every prime R-module is a co-Baer module

(b) Every simple R-module is a co-Baer module.

Definition 3.3. We say that an R-module M is a µ0-module if for each finite number of ideals I1, I2, . . . , In of R we
have

n∑
i=1

(0 :M Ii) = (0 :M
n⋂

i=1

(Ii + AnnR(M))).

Example 3.4. By [2, Theorem 115 (c)], every strong comultiplication R-module is a µ0-module.

Proposition 3.5. Let an R-module M be a µ0-module. The following statements are equivalent:

(a) M is a Baer R-module;
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(b) For any submodule N of M with M/N is a finitely cogenerated R-module, (0 :M (N :R M)) = (0 :M e) for some
weak idempotent e ∈ R.

Proof. (a)⇒ (b). Let N be a submodule of M with M/N is a finitely cogenerated R-module. Then there exist
completely irreducible submodules L1,L2, . . . ,Ln of M such that N = ∩n

i=1Li. As M is co-Baer module, there
exist weak idempotents ei ∈ R such that (0 :M (Li :R M)) = (0 :M ei) for each i = 1, 2, . . . ,n. Since M is a
µ0-module, we have

n∑
i=1

(0 :M ei) =
n∑

i=1

(0 :M (Li :R M)) = (0 :M
n⋂

i=1

((Li :R M) + AnnR(M))).

Now the result follows from the fact that
∑n

i=1(0 :M ei) = (0 :M e1e2 · · · en) and e1e2 · · · en is a weak idempotent
element of R.

(a)⇒ (b). This is clear.

Let R be an integral domain. A submodule N of an R-module M is said to be a cotorsion-free submodule
of M (the dual of torsion-free) if IM

0 (N) = N. Also, M said to be a cotorsion-free module if M is a cotorsion-free
submodule of itself [3].

Example 3.6. Every cotorsion free R-module is a co-Baer R-module.

Example 3.7. Let M be an R-module with AnnR(M) be a maximal ideal of R and let L be a completely irreducible
submodule of M. As AnnR(M) ⊆ (L :R M), we have that either (L :R M) = AnnR(M) or (L :R M) = R. Thus
(0 :M (L :R M)) = (0 :M AnnR(M)) = M = (0 :M 0) or (0 :M (L :R M)) = (0 :M R) = 0 = (0 :M 1). Hence M is a
co-Baer R-module. For instance, for a prime number p, the Z-module Zp ×Zp is a co-Baer Z-module, and also it is
neither a simple nor a cotorsion free Z-module.

Theorem 3.8. Every finitely generated comultiplication co-Baer R-module is a coreduced R-module.

Proof. Let M be a finitely generated comultiplication co-Baer R-module. Assume that L is a completely
irreducible submodule of M and a ∈ R such that (L :M a2) =M. Then a ∈ ((L :M a) :R M). By [7, Lemma 2.1],
(L :M a) is a completely irreducible submodule of M. Thus as M is a co-Baer R-module, there exists a weak
idempotent element e ∈ R such that

(0 :M (L :R aM)) = (0 :M ((L :M a) :R M)) = (0 :M e).

On the other hand, e(1 − e)M = 0 implies that (1 − e)M ⊆ (0 :M e) ⊆ (0 :M a). Thus a(1 − e)M = 0 ⊆ L. It
follows that (1 − e) ∈ (L :R aM) and so (0 :M (L :R aM)) ⊆ (0 :M 1 − e). Therefore (0 :M e) ⊆ (0 :M 1 − e). This
implies that (0 :M e) = (0 :M e) ∩ (0 :M 1 − e) = 0. Therefore, (0 :M (L :R aM)) = 0. Now we will show that
(L :R aM) = R. Assume to the contrary that (L :R aM) , R. Then there exists a maximal ideal Q of R which
containing (L :R aM). As (0 :M (L :R aM)) = 0, we get (0 :M Q) = 0. So by [2, Theorem 7 (d)], there exists
q ∈ Q such that (1 − q)M = 0. Since AnnR(M) ⊆ Q, we have that 1 ∈ Q, which is a contradiction. Therefore
(L :R aM) = R and hence M is a coreduced R-module.

Proposition 3.9. Let N be a copure submodule of a co-Baer R-module M. Then M/N is a co-Baer R-module.

Proof. Let L/N be a completely irreducible submodule of M/N. Then by using (M/N)/(L/N) �M/L and [12,
Remark 1.1], we have L is a completely irreducible submodule of M. Thus as M is a co-Baer R-module, we
get that (0 :M (L :R M)) = (0 :M e) for some weak idempotent e ∈ R. Now since N is copure, we have

(0 :M/N (L/N :R M/N)) = (N :M (L :R M))/N = (N + (0 :M (L :R M))/N

= (N + (0 :M e))/N = (0 :M/N e).

Thus M/N is a co-Baer R-module.
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Definition 3.10. We say that an R-module M is an annihilator comultiplication module if for each completely
irreducible submodule L of M there exists a finitely generated ideal I of R such that (L :R M) = AnnR(IM).

Lemma 3.11. Every comultiplication R-module M is an annihilator comultiplication module.

Proof. Let L be a completely irreducible submodule of M. Then by assumption, L = (0 :M AnnR(L)). Thus
L = ∩a∈AnnR(L)(0 :M Ra). This implies that L = (0 :M Ra) for some a ∈ AnnR(L) since L is a completely
irreducible submodule of M. Hence M is an annihilator comultiplication R-module.

An R-module M is said to satisfy the condition (⋆) if (0 :M Q) = 0 implies that (1 − q)M = 0 for some
q ∈ Q, where Q is a maximal ideal of R.

Proposition 3.12. Let M be a finitely generated co-Baer R-module satisfying the condition (⋆). Then M is an
annihilator comultiplication R-module.

Proof. Assume that L is a completely irreducible submodule of M. Then there exists a weak idempotent
e ∈ R such that ((0 :M (L :R M)) = (0 :M e). It follows that

0 = (0 :M (L :R M)) ∩ (0 :M 1 − e) = (0 :M (L :R M) + R(1 − e)).

Now we will show that (L :R M) + R(1 − e) = R. Assume to the contrary that (L :R M) + R(1 − e) , R. Then
there exists a maximal ideal Q of R that containing (L :R M) + R(1 − e). This implies that (0 :M Q) = 0. As
M satisfying the condition (⋆), we get (1 − r)M = 0 for some r ∈ Q. Since 1 − r ∈ AnnR(M) ⊆ Q, we get
1 ∈ Q, which is a contradiction. Thus we have (L :R M) + R(1 − e) = R. Then r1 + (1 − e)x = 1 for some
r1 ∈ (L :R M) and x ∈ R. This implies that e = er1 + e(1 − e)x and so e ∈ (L :R M) + AnnR(M) = (L :R M).
Therefore, Re ⊆ (L :R M). Now let r2 ∈ (L :R M). Then

M = (0 :M (L :R M)(1 − e)) ⊆ (0 :M r2(1 − e))

and hence r2(1 − e) ∈ AnnR(M). This implies that r2 = r2e + r2(1 − e) ∈ Re + AnnR(M). Thus we have
(L :R M) = Re + AnnR(M). Since AnnR((1 − e)M) = Re + AnnR(M), we get (L :R M) = AnnR((1 − e)M) as
needed.

Theorem 3.13. Let M be a finitely generated comultiplication co-Baer R-module. Then R/AnnR(M) is a Baer ring.

Proof. Let R̄ = R/AnnR(M) and a + AnnR(M) ∈ R̄. It is enough to show that AnnR̄(a + AnnR(M)) = (e +
AnnR(M))R̄ for some idempotent e + AnnR(M) ∈ R̄. Clearly, AnnR̄(a + AnnR(M)) = AnnR(aM)/AnnR(M).
By using [2, Theorem 24], M is a finitely cogenerated R-module. Thus there exist completely irreducible
submodules Li of M for i = 1, 2, . . . ,n such that ∩n

i=1Li = 0. Thus (0 :M a) = ∩n
i=1(Li :M a). It follows that

AnnR(aM) = ∩n
i=1((Li :M a) :R M). As M is a finitely generated comultiplication co-Baer R-module, a similar

argument as in the proof of Proposition 3.12 shows that ((Li :M a) :R M) = Rei + AnnR(M) for some weak
idempotent ei ∈ R. This implies that ((Li :M a) :R M)/AnnR(M) = (ei+AnnR(M))R̄. Then note that ei+AnnR(M)
is an idempotent of R̄ and hence

AnnR(aM)/AnnR(M) = ∩n
i=1((Li :M a) :R M)/AnnR(M) =

∩
n
i=1(((Li :M a) :R M)/AnnR(M)) = ∩n

i=1((ei + AnnR(M))R̄)

= (e1e2 · · · en + AnnR(M)) = (e + AnnR(M))R̄,

where e = e1e2 · · · en and e + AnnR(M) is an idempotent of R̄.

Theorem 3.14. Let M be an annihilator comultiplication R-module and let R/AnnR(M) be a Baer ring. Then M is a
co-Baer R-module.
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Proof. Let L be a completely irreducible submodule of M As M is an annihilator comultiplication R-module,
we have (L :R M) = AnnR(IM) for some finitely generated ideal I = R(a1, a2, ..., an) of R. This implies that
(L :R M) = AnnR(a1M + + anM) = ∩n

i=1AnnR(aiM). Since R/AnnR(M) is a Baer ring, for each ai ∈ R we have

AnnR/AnnR(M)(ai + AnnR(M)) = AnnR(aiM)/AnnR(M)

= ((ei)R + AnnR(M))/AnnR(M)

for some weak idempotent ei ∈ R. This implies that AnnR(aiM) = (ei)R + AnnR(M). Then we have

(L :R M) = ∩n
i=1AnnR(aiM) = ∩n

i=1((ei)R + AnnR(M)).

Since ∩n
i=1((ei)R + AnnR(M)) = (e)R + AnnR(M), where e = e1e2 · · · en is a weak idempotent of R, we conclude

that (0 :M (L :R M)) = (0 :M e), which completes the proof.

Example 3.15. By Theorem 3.14, the Z-module Zn is a co-Baer Z-module if n is square free.

Proposition 3.16. Let {Mi}i∈I be a family of R-modules. Consider the following cases:

(a)
∏

i∈I Mi is a co-Baer R-module.

(b)
⊕

i∈I Mi is a co-Baer R-module.

(c) Mi is a co-Baer R-module for each i ∈ I.

Then (a)⇒ (b)⇒ (c) always holds.

Proof. The proof is straightforward.

The following example shows that in Proposition 3.16 the implication (c)⇒ (a) is not true in general.

Example 3.17. Consider the Z-module M = Z2 ⊕Z3. For completely irreducible submodule L = 0 ⊕Z3 of M we
have (0 :M (L :R M)) , (0 :M 0) and (0 :M (L :R M)) , (0 :M 1). Thus we have M is not a co-Baer Z-module since
the only weak idempotents of Z are 0 and 1. But Z2 and Z3 are co-Baer Z-modules by Example 3.15.

Lemma 3.18. Let L be a completely irreducible submodule of an R-module M. Then (L :R M)M is a co-Baer
submodule of M.

Proof. Let Ĺ be a completely irreducible submodule of M such that (L :R M)M ⊆ Ĺ. Then (L :R M) ⊆ (Ĺ :R M).
Thus (L :R M)M ⊆ (Ĺ :R M)M as needed.

Lemma 3.19. Let N be a submodule of a comultiplication R-module M and e be a weak idempotent of R such that
(0 :M (N :R M)) = (0 :M e). Then (N :R M) = Re + AnnR(M).

Proof. As M is a comultiplication R-module, (0 :M (N :R M)) = (0 :M e) implies that (N :R M)M = eM. Thus
eM ⊆ N and so Re ⊆ (N :R M). Hence Re+AnnR(M) ⊆ (N :R M). On the other hand (1− e)M ⊆ (0 :M e). Thus
(1 − e)(N :R M)M = 0. Hence

(N :R M) ⊆ AnnR((1 − e)M) ⊆ Re + AnnR(M).

Theorem 3.20. Let M be a comultiplication R-module. Then M is a co-Baer module if and only if every co-Baer
submodule of M is a dσ-submodule of M.
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Proof. Let M be a co-Baer R-module and N be a co-Baer submodule of M. Assume that L is a completely
irreducible submodule of M such that N ⊆ L. As N is a co-Baer submodule of M, we have N ⊆ (L :R M)M.
Since M is a co-Baer R-module, (0 :M (L :R M)) = (0 :M e) for some weak idempotent e ∈ R. Thus
(L :R M) = Re + AnnR(M) by Lemma 3.19. As we can see in the proof of Lemma 3.19, (L :R M)(1 − e)M = 0
and N ⊆ (L :R M)M = eM. These in turn imply that R = Re + AnnR(M) + R(1 − e) ⊆ AnnR(N) + (L :R M).
Therefore, AnnR(N) + (L :R M) = R as needed. For the converse, assume that every co-Baer submodule of
M is a dσ-submodule of M and L is a completely irreducible submodule of M. By Lemma 3.18, (L :R M)M
is a co-Baer submodule of M. Thus by assumption, (L :R M)M is a dσ-submodule of M. Hence, AnnR((L :R
M)M) + (L :R M) = R because (L :R M)M ⊆ L. Now since AnnR((L :R M)M)(L :R M) ⊆ AnnR(M), we have
(L :R M) + AnnR(M) = Re + AnnR(M) for some weak idempotent e ∈ R by [14, Lemma 2 (i)]. It follows that
(0 :M (L :R M)) = (0 :M e) for some weak idempotent e ∈ R and so M is a co-Baer R-module.

Theorem 3.21. Let M be a comultiplication R-module. Then M is a co-Baer R-module if and only if for every
submodule N of M we have M/N is a co-Baer R-module.

Proof. The “only if” part is clear. Now let M be a co-Baer R-module and N be a submodule of M. Assume
that L/N is a completely irreducible submodule of M/N. Then L is a completely irreducible submodule of
M. Thus (0 :M (L :R M)) = (0 :M e) for some weak idempotent e ∈ R. So, (L :R M) = Re+AnnR(M) by Lemma
3.19. Therefore,

(0 :M/N (L/N :R M/N)) = (N :M (L :R M))/N =

((N :M e) ∩ (N :M AnnR(M)))/N = (N :M e)/N = (0 :M/N e),

as desired

Proposition 3.22. Let M be a second R-module. Then M is a co-Baer R-module.

Proof. Let L be a completely irreducible submodule of M. As M is second, (L :R M)M = 0 or M = (L :R
M)M ⊆ L. Hence (0 :M (L :R M)) =M = (0 :M 0) or (0 :M (L :R M)) = (0 :M (M :R M)) = (0 :M 1), as needed.

The following example shows that the converse of Proposition 3.22 is not true in general.

Example 3.23. By Example 3.15, the Z-module Z6 is a co-Baer Z-module. But the Z-module Z6 is not a second
Z-module.

Definition 3.24. We say that a finitely cogenerated coreduced R-module M is a conormal module if for any two
distinct maximal second submodules S1 and S2 of M we have S1 ∩ S2 = 0.

Proposition 3.25. Let M be a finitely generated comultiplication co-Baer R-module. Then for any two distinct
maximal second submodules S1 and S2 of M we have S1 ∩ S2 = 0.

Proof. First note that minimal submodules and hence second submodules and maximal second submod-
ules exist in comultiplication R-modules [2, Theorem 7 (e)]. Let S1 and S2 be two distinct maximal sec-
ond submodules of M. Then AnnR(S1) and AnnR(S2) are prime ideals of R containing AnnR(M). Thus
AnnR(S1) contains P1 and AnnR(S2) contains P2, where P1 and P2 are prime ideals which are minimal over
AnnR(M). Therefore P1/AnnR(M) and P2/AnnR(M) are minimal prime ideals of R/AnnR(M). By Theo-
rem 3.13, R/AnnR(M) is a Baer ring. Hence P1/AnnR(M) + P2/AnnR(M) = R/AnnR(M), which implies that
P1 + P2 = R. It follows that AnnR(S1) + AnnR(S2) = R and so S1 ∩ S2 = 0.

Corollary 3.26. Every finitely generated comultiplication co-Baer R-module is a conormal R-module.

Proof. By using [2, Theorem 24], M is a finitely cogenerated R-module. Now the result follows from Theorem
3.8 and Proposition 3.25.

Theorem 3.27. Let M be a finitely generated comultiplication R-module. Then M is a conormal module if and only
if R/AnnR(M) is a normal ring.
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Proof. ⇒: Let M be a conormal R-module. Since M is a coreduced R-module, we have R/AnnR(M) is reduced
ring by [10, Proposition 2.16 (b)]. Take two distinct minimal prime ideals P1/AnnR(M) and P2/AnnR(M) of
R/AnnR(M). Then P1 and P2 are two distinct minimal prime ideals of AnnR(M). By [10, Proposition 2.1 (a),
(d)], (0 :M P1) and (0 :M P2) are two distinct maximal second submodules of M. Therefore (0 :M P1) ∩ (0 :M
P2) = 0 and so (0 :M P1 + P2) = 0. Thus as M is a comultiplication R-module, (P1 + P2)M = M. Hence
since M is finitely generated and AnnR(M) ⊆ P1 + P2, we have P1 + P2 = R by [8, Corollary 2.5]. Thus
P1/AnnR(M) + P2/AnnR(M) = R/AnnR(M) and so R/AnnR(M) is a normal ring.
⇐: Let R/AnnR(M) be a normal ring. Then as R/AnnR(M) is a reduced ring, we have M is a coreduced

module by [10, Proposition 2.16 (a)]. Now let S1 and S2 be two distinct maximal second submodules of
M. Then AnnR(S1) and AnnR(S2) are two distinct minimal prime ideals of R containing AnnR(M) by [10,
Proposition 2.1 (c)]. Thus AnnR(S1)/AnnR(M) and AnnR(S2)/AnnR(M) are two distinct minimal prime ideals
of R/AnnR(M). Hence

AnnR(S1)/AnnR(M) + AnnR(S2)/AnnR(M) = R/AnnR(M),

which implies that AnnR(S1) + AnnR(S2) = R. It follows that S1 ∩ S2 = 0, as needed.

Corollary 3.28. Let M be a finitely generated multiplication and comultiplication R-module. Then M is a normal
R-module if and only if M is a conormal R-module.

Proof. This follows from [16, Proposition 2.12] and Theorem 3.27.

Proposition 3.29. Let Mi be an Ri-module for each i = 1, 2, . . . ,n. Set M := M1 × M2 × · · · × Mn and R :=
R1 × R2 × · · · × Rn. Then the following statements are equivalent:

(a) M is a conormal R-module;

(a) Mi is a conormal Ri-module for each i = 1, 2, . . . ,n.

Proof. First note that M is a finitely cogenerated coreduced R-module if and only if each Mi is a finitely
cogenerated coreduced Ri-module for i = 1, 2, . . . ,n.

(a) ⇒ (b) Let M be a conormal R-module and choose i ∈ {1, 2, . . . ,n}. Assume that Si1 and Si2 are two
distinct maximal second submodules of Mi. Then N1 = 0×0×· · ·×Si1×· · ·×0 and N2 = 0×0×· · ·×Si2×· · ·×0
are two distinct maximal second submodules of M. As M is a conormal R-module, we have N1 ∩ N2 = 0
which implies that Si1 ∩ Si2 = 0. Therefore, Mi is a conormal Ri-module.

(b)⇒ (a) Let Mi be a conormal Ri-module for each i = 1, 2, . . . ,n. Suppose that S and K are two maximal
second submodules of M. Then S = 0× 0× × St × · · · × 0 and K = 0× 0× · · · ×K j × · · · × 0 for some maximal
second submodules St of Mt and K j of M j. If j , t, we have S∩K = 0. So assume that j = t. Since K , S and
Mt is conormal, we have St , Kt so that St ∩Kt = 0 which implies that S∩K = 0. Therefore, M is a conormal
R-module.
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[14] C. Jayaram and Ü. Tekir, Von Neumann regular modules, Comm. Algebra, 46 (5) (2018), 2205.2217.
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