Filomat 38:30 (2024), 10809–10817 https://doi.org/10.2298/FIL2430809J

Published by Faculty of Sciences and Mathematics, University of Nis, Serbia ˇ Available at: http://www.pmf.ni.ac.rs/filomat

The answers to some questions on H**-sober spaces**

Mengjie Jin^a , Qingguo Lib,[∗]

^aSchool of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan, 471023, China ^bSchool of Mathematics, Hunan University, Changsha, Hunan, 410082, China

Abstract. In this paper, we consider and solve several open problems posed by Xu in [\[11,](#page-8-0) [14\]](#page-8-1). Those open questions concern different categorical constructions of H-sober spaces and hyper-sober spaces. First, for an irreducible subset system H and a T_0 space X , we prove that H automatically satisfies property M , which was unknown before, hence we deduce that *X* is super H-sober iff *X* is H-sober and H satisfies property *Q* in the sense of [\[14\]](#page-8-1). Beyond the aforementioned work, many questions asked by Xu in [\[14\]](#page-8-1) are also solved in the paper. Second, we derive the concrete forms of coequalizers in **H**-**Sob**. Finally, we obtain that the finite product of hyper-sober spaces is hyper-sober, which gives a positive answer to a question posed in [\[11\]](#page-8-0).

1. Introduction

Sobriety, monotone convergence and well-filteredness are three of the most important and useful properties in non-Hausdorff topological spaces and domain theory (see [\[3\]](#page-8-2),[\[4\]](#page-8-3),[\[5\]](#page-8-4) and [\[13\]](#page-8-5)). In recent years, sober spaces, monotone convergence spaces (shortly called *d*-spaces), well-filtered spaces and their related structures have been introduced and investigated.

In [\[14\]](#page-8-1), Xu provided a uniform approach to sober spaces, *d*-spaces and well-filtered spaces and developed a general frame for dealing with all these spaces. The concepts of irreducible subset systems (*R*-subset systems for short), H-sober spaces and super H-sober spaces for an *R*-subset system H were proposed. Let \mathbf{Top}_0 be the category of all T_0 spaces and \mathbf{Sob} the category of all sober spaces. The category of all H-sober spaces (resp., super H-sober spaces) with continuous mappings is denoted by **H**-**Sob** (resp., **SH**-**Sob**). For any *R*-subset system H, it has been proven that **H-Sob** is a full subcategory of Top_0 containing Sob and is closed with respect to homeomorphisms. Moreover, **H**-**Sob** is adequate (see Theorem 7.9 in [\[14\]](#page-8-1)). Conversely, for a full subcategory K of Top_0 containing Sob , suppose that K is adequate and closed with respect to homeomorphisms. There is a natural question: Is there an R-subset system H such that $K = H$ -**Sob**? In this paper, we will prove the answer is positive. In [\[14\]](#page-8-1), Xu also proposed an *R*-subset system H : **Top**₀ → **Set** is said to satisfy property *M* if for any *T*₀ space *X*, *K* ∈ H($P_S(X)$) and *A* ∈ *M*(*K*), then ${\uparrow}$ ($K \cap A$) | $K \in \mathcal{K}$ } \in H($P_S(X)$). Furthermore, he obtained some results under the assumption that H has property *M*. Then he posed the following problems:

²⁰²⁰ *Mathematics Subject Classification*. Primary 54B20; Secondary 06B35, 06F30.

Keywords. coequalizer, H-sober space, property *M*, hyper-sober space, product.

Received: 02 May 2024; Revised: 30 July 2024; Accepted: 22 August 2024

Communicated by Santi Spadaro

Research supported by the National Natural Science Foundation of China (No.12231007).

^{*} Corresponding author: Qingguo Li

Email addresses: mengjiejinjin@163.com (Mengjie Jin), liqingguoli@aliyun.com (Qingguo Li)

Problem 1. Let $H : Top_0 \longrightarrow$ **Set** be an *R*-subset system (may not have property *M*) and {*X_i* | *i* \in *I*} a family of super H-sober spaces. Is the product space $\prod_{i \in I} X_i$ super H-sober?

Problem 2. Let H : $\text{Top}_0 \longrightarrow \text{Set}$ be an *R*-subset system, *X* a T_0 space and *Y* a super H-sober space. Is the function space *TOP*(*X*, *Y*) equipped with the topology of pointwise convergence super H-sober?

Problem 3. Let H : $\text{Top}_0 \longrightarrow \text{Set}$ be an *R*-subset system, *X* a super H-sober space and *Y* a T_0 space. For a pair of continuous mappings $f, g: X \to Y$, is the equalizer $E(f, g) = \{x \in X \mid f(x) = g(x)\}\$ (as a subspace of *X*) super H-sober?

Problem 4. For an *R*-subset system $H : Top_0 \longrightarrow Set$, is H **SH-Sob** complete?

Problem 5. If an *R*-subset system H : $\text{Top}_0 \longrightarrow \text{Set}$ has property *M*, do the induced *R*-subset systems H*^d* , H*^R* and H*^D* have property M?

Problem 6. For an *R*-subset system H : $\text{Top}_0 \longrightarrow \text{Set}$, is **SH-Sob** reflective in Top_0 ? Or equivalently, for any T_0 space *X*, does the super H-sobrification of *X* exist?

Problem 7. Let $H : Top_0 \longrightarrow$ **Set** be an *R*-subset system having property *M*. Is $R : H \rightarrow H$, $H \mapsto H^R$ a closure operator?

In [\[15\]](#page-8-6), Zhao and Ho introduced a new variant of sobriety, called hyper-sobriety. A topological space *X* is called hyper-sober if for any irreducible set *F*, there is a unique $x \in F$ such that $F \subseteq cl({x})$. Clearly, every hyper-sober space is sober. Later, Wen and Xu discussed some basic properties of hyper-sober spaces in [\[11\]](#page-8-0). Moreover, they posed a question:

Problem 8. Is the product space of two hyper-sober spaces again a hyper-sober space?

Let A and B be categories, $F : A \to B$ be left adjoint to $U : B \to A$. We know that *U* preserves limits and *F* preserves colimits (see [\[9\]](#page-8-7)). Xu has proven that **H**-**Sob** is adequate (see Theorem 7.9 in [\[14\]](#page-8-1)), in other words, it is reflective in Top_0 . In fact that Top_0 is also reflective in Top , so **H-Sob** is reflective in $\text{Top}.$ Since **Top** is complete and cocomplete (that is, limits and colimits all exist), we get that **H**-**Sob** is also complete and cocomplete. This implies that coequalizers in **H**-**Sob** exist. But we do not know its concrete forms. In Section 4, we investigate the coequalizers in **H**-**Sob**.

In Section 5, we find that property *M* mentioned above naturally holds for each *R*-subset system H. Based on this, for a *T*⁰ space *X*, we deduce that *X* is super H-sober iff *X* is H-sober and H satisfies property *Q* in the sense of [\[14\]](#page-8-1). Additionally, we give positive answers to Problem 1 ∼ Problem 6. Furthermore, we prove Problem 7 holds.

In Section 6, we will give a positive answer to Problem 8.

2. Preliminaries

In this section, we briefly recall some standard definitions and notations to be used in this paper. For further details, refer to [\[3–](#page-8-2)[6,](#page-8-8) [12\]](#page-8-9).

Let *P* be a poset and $A \subseteq P$. We denote $\downarrow A = \{x \in P \mid x \le a \text{ for some } a \in A\}$ and $\uparrow A = \{x \in P \mid x \ge a \text{ for some } a \in A\}$ a for some $a \in A$. For any $a \in P$, we denote $\lfloor \{a\} \rfloor = \lfloor a \rfloor = \{x \in P \mid x \le a\}$ and $\lceil \{a\} \rceil = \lceil a \rfloor = \{x \in P \mid x \ge a\}$. A subset *A* is called a *lower set* (resp., an *upper set*) if $A = \downarrow A$ (resp., $A = \uparrow A$).

The category of all topological spaces with continuous mappings is denoted by **Top**. For a topological space *X*, let O(*X*) (resp., Γ(*X*)) be the set of all open subsets (resp., closed subsets) of *X*. For a subset *A* of *X*, the closure of *A* is denoted by cl(*A*) or *A*. We use ≤*^X* to represent the specialization quasi-order of *X*, that is, $x \leq_X y$ iff $x \in \{y\}$. A subset *B* of *X* is called *saturated* if *B* equals the intersection of all open sets containing it (equivalently, *B* is an upper set in the specialization quasi-order). Let $S(X) = \{ \{x\} \mid x \in X \}$ and $S_c(X) = \{ \{x\} \mid x \in X \}.$

The category of all T_0 spaces with continuous mappings is denoted by Top_0 . For a T_0 space X and a nonempty subset *A* of *X*, *A* is called *irreducible* if for any $B, C \in \Gamma(X)$, $A \subseteq B \cup C$ implies $A \subseteq B$ or $A \subseteq C$. Denote by Irr(*X*) the set of all irreducible subsets of *X* and Irr_c(*X*) the set of all closed irreducible subsets of *X*. A topological space *X* is called *sober*, if for any *A* ∈ Irr_{*c*}(*X*), there is a unique point *a* ∈ *X* such that *A* = {*a*}. The category of all sober spaces with continuous mappings is denoted by **Sob**.

For a topological space X , $G \subseteq 2^X$ and $A \subseteq X$, let $\Box_G(A) = \{G \in G \mid G \subseteq A\}$ and $\diamond_G(A) = \{G \in G \mid G \cap A \neq \emptyset\}$. The symbols $\square_G(A)$ and $\diamond_G(A)$ will be simply written as $\square A$ and $\diamond A$ respectively if there is no confusion. The *upper Vietoris topology* on G is the topology that has $\{\Box U \mid U \in O(X)\}$ as a base, and the resulting space is denoted by $P_S(G)$. The *lower Vietoris topology* on G is the topology that has $\{\diamond U \mid U \in O(X)\}$ as a subbase, and the resulting space is denoted by $P_H(G)$. If $G \subseteq \text{Irr}(X)$, then $\{\diamond U \mid U \in O(X)\}$ is a topology on G .

We shall use *K*(*X*) to denote the set of all nonempty compact saturated subsets of *X* ordered by reverse inclusion, that is, for $K_1, K_2 \in K(X)$, $K_1 \leq_{K(X)} K_2$ iff $K_2 \subseteq K_1$. The space $P_S(K(X))$ denoted shortly by $P_S(X)$, is called the *Smyth power space* or *upper space* of *X* ([\[6\]](#page-8-8)).

Lemma 2.1. *(Topological Rudin Lemma)* [\[6\]](#page-8-8) Let X be a T_0 space, C a closed subset of X and K an irreducible subset *of the Smyth power space PS*(*X*)*. If C intersects all members of* K*, then there exists a minimal (irreducible) closed subset A of C that intersects all members of* K*.*

Definition 2.2. [\[1\]](#page-8-10) Let P be a poset. A map $c : P \to P$ is called a closure operator *(on P)* if, for all $x, y \in P$,

(1) $x \le y$ \Longrightarrow *c*(*x*) ≤ *c*(*y*) (*c is monotone*),

- *(2)* $x \leq c(x)$ *(c is expansive)*,
- (3) $c(c(x)) = c(x)$ *(c is idempotent)*.

Lemma 2.3. [\[7,](#page-8-11) [10\]](#page-8-12) Let X be an T_0 space. If $K \in K(P_S(X))$, then $\bigcup K \in K(X)$.

Corollary 2.4. [\[7,](#page-8-11) [10\]](#page-8-12) For a T₀ space X, the mapping \bigcup : $P_S(P_S(X)) \to P_S(X)$, $\mathcal{K} \mapsto \bigcup \mathcal{K}$, is continuous.

3. The K-category and H-sober spaces

In what follows, The category \bf{K} always refers to a full subcategory \bf{Top}_0 containing \bf{Sob} , the objects of **K** are called **K***-spaces*.

Definition 3.1. [\[12\]](#page-8-9) Let X be a T_0 space. A **K**-reflection of X is a pair $\langle \hat{X}, \mu \rangle$ consisting of a **K**-space \hat{X} and a *continuous mapping* $\mu: X \to \widehat{X}$ satisfying that for any continuous mapping $f: X \to Y$ to a **K**-space, there exists a *unique continuous mapping* $f^* : \widehat{X} \to Y$ such that $f^* \circ \mu = f$, that is, the following diagram commutes.

By a standard argument, **K**-reflections, if they exist, are unique to homeomorphisms. We shall use X^k to indicate the space of the **K**-reflection of *X* if it exists.

Definition 3.2. *[\[12\]](#page-8-9) Let* (*X*, τ) *be a T*⁰ *space. A nonempty subset A of X is called* **K**-determined *provided for any continuous mapping* $f : X \to Y$ *to a* **K**-space Y, there exists a unique $y_A \in Y$ such that $\text{cl}_Y(f(A)) = \text{cl}_Y(\{y_A\})$. *Clearly, a subset A of a space X is a* **K***-determined set i*ff cl(*A*) *is a K-determined set. Denote by* K*^d* (*X*) *the set of all* **K**-determined subsets of X and $K_c^d(X)$ the set of all closed **K**-determined subsets of X.

Lemma 3.3. Let X, Y be two T₀ spaces. If $f: X \to Y$ is a continuous mapping and $A \in K^d(X)$, then $f(A) \in K^d(Y)$.

Proof. Let *Z* be a **K**-space and $g: Y \to Z$ is continuous. Note that $g \circ f: X \to Z$ is continuous and $A \in K^d(X)$, then there exists an element $z \in Z$ such that $\overline{g \circ f(A)} = \overline{g(f(A))} = \overline{\{z\}}$. So $f(A) \in K^d(Y)$.

Definition 3.4. [\[12\]](#page-8-9) A full subcategory **K** of **Top**₀ is said to be closed with respect to homeomorphisms if *homeomorphic copies of* **K***-spaces are* **K***-spaces.*

Definition 3.5. [\[12\]](#page-8-9) **K** *is called* adequate *if for any* T_0 *space* X *,* $P_H(K_c^d(X))$ *is a* **K***-space.*

Corollary 3.6. [\[12\]](#page-8-9) Assume that **K** is adequate and closed with respect to homeomorphisms. Then for any T_0 space *X, the following conditions are equivalent:*

- *(1) X is a* **K***-space.*
- (2) $K_c^d(X) = S_c(X)$, that is, for each $A \in K_c^d(X)$, there exists an $x \in X$ such that $A = \overline{\{x\}}$.
- (3) $X \cong X^k$.

The category of all sets with mappings is denoted by **Set**.

Definition 3.7. [\[14\]](#page-8-1) A covariant functor $H : Top_0 \longrightarrow Set$ is called a subset system on Top_0 provided that the *following two conditions are satisfied:*

- *(1)* $S(X) \subseteq H(X) \subseteq 2^X$ *(the set of all subsets of X) for each* $X \in ob(\mathbf{Top}_0)$ *.*
- *(2) For any continuous mapping* $f : X \to Y$ *in* **Top**₀, $H(f)(A) = f(A) \in H(Y)$ *for all* $A \in H(X)$ *.*

For a subset system $H : Top_0 \longrightarrow Set$ *and a* T_0 *space* X *, let* $H_c(X) = \{ \overline{A} \mid A \in H(X) \}$ *. We call* $A \subseteq X$ *an* H -set *if* $A \in H(X)$ *. The sets in* $H_c(X)$ *are called* closed H-sets.

Definition 3.8. [\[14\]](#page-8-1) A subset system H : $\text{Top}_0 \longrightarrow \text{Set}$ *is called an* irreducible subset system, or an R-subset system *for short, if* $H(X) \subseteq \text{Irr}(X)$ *for all* $X \in ob(\text{Top}_0)$ *. The family of all* R-subset systems is denoted by H *.* Define *a partial order* \leq *on* $\mathcal H$ *by* $H_1 \leq H_2$ *iff* $H_1(X) \subseteq H_2(X)$ *for all* $X \in ob(Top_0)$ *.*

Definition 3.9. [\[14\]](#page-8-1) Let **H** : Top_0 → **Set** *be an R-subset system. A* T_0 *space X is called* H-sober *if for any A* ∈ H(*X*), there is a (unique) point $x \in X$ such that $A = \{x\}$ or, equivalently, if $H_c(X) = S_c(X)$. The category of all H*-sober spaces with continuous mappings is denoted by* **H***-***Sob***.*

It is not difficult to verify that **Sob** ⊆ **H**-**Sob**. By Definition [3.1,](#page-2-0) for **K** = **H**-**Sob**, the **K**-reflection of *X* is called the H*-sober reflection* of *X*, or the H*-sobrification* of *X* and *X h* to denote the space of H-sobrification of *X* if it exists. Moreover, a **K**-determined set of *X* in Definition [3.2](#page-2-1) is called a H*-sober determined set* of *X*, Denote by H*^d* (*X*) the set of all H-sober determined subsets of *X*. The set of all closed H-sober determined subsets of *X* is denoted by $H_c^d(X)$.

Theorem 3.10. [\[14\]](#page-8-1) Let H : Top_0 → Set be an R-subset system. Then H-Sob is adequate. Therefore, for any T_0 *space X,* $X^h = P_H(H_c^d(X))$ *with the canonical topological embedding* η_X^h *:* $X \to X^h$ *is the H-sobrification of X, where* $\eta_X^h(x) = \overline{\{x\}}$ *for all* $x \in X$.

Remark 3.11. If X is only a topological space, then $\langle P_H(H_c^d(X)), \eta_X^h \rangle$ is the H-sobrification of X, where $\eta_X^h(x) = \overline{\{x\}}$ *for all* $x \in X$ *.*

Let H : **Top**₀ → **Set** be an R-subset system. In [\[14\]](#page-8-1), it has been shown that **H-Sob** is a full subcategory of **Top**⁰ containing **Sob** and is closed with respect to homeomorphisms. Moreover, **H**-**Sob** is adequate by Theorem [3.10.](#page-3-0)

Conversely, suppose that **K** is adequate and closed with respect to homeomorphisms. Is there an R-subset system H such that **K** = **H**-**Sob**? The answer is positive, we will investigate it in Section 5.

4. Coequalizers in H-Sob

For any topological space *X*, since the H-sobrification of *X* exists, we have that **H**-**Sob** is reflective in **Top**. The fact that **Top** is complete and cocomplete (that is, limits and colimits all exist), so **H**-**Sob** is also complete and cocomplete. This implies that coequalizers in **H**-**Sob** exist. But we do not know its concrete forms. In this section, inspired by the construction of coequalizers in **Dcpo** (see [\[2\]](#page-8-13) and [\[8\]](#page-8-14)), we will investigate coequalizers in **H**-**Sob**.

Definition 4.1. [\[9\]](#page-8-7) Let C be a category and $f, g: A \rightarrow B$ be a pair of parallel arrows. A coequalizer of f and g is *an object* C together with an arrow $h : B \to C$ with the following properties:

$$
(1) \ \ h \circ f = h \circ g;
$$

(2) for each arrow $k : B \to D$ *such that* $k \circ f = k \circ q$, *there is a unique arrow* $l : C \to D$ *such that* $l \circ h = k$.

In order to give a specific characterization of coequalizers in **H**-**Sob**, first, we introduce the concept of *R*-topology on a topological space.

Definition 4.2. *[\[4\]](#page-8-3) Let X be a set and R an equivalence relation on X. A subset A of X is R*-saturated *if, for every a* ∈ *A, for every x* ∈ *X such that a R x, x is also in A. Equivalently, A is R-saturated i*ff *it is a union of equivalence classes for R.*

Let (*X*, τ) be a topological space and *R* an equivalence relation on *X*. We call a subset *U* of *X R-open* if it is an *R*-saturated open set. It is easy to see that ∅, *X* are *R*-open, the intersection of any finite family of *R*-open sets is *R*-open and the union of any family of *R*-open sets is *R*-open. Then the family of all *R*-open sets in *X* precisely forms a new topology on *X*. We call it an *R-topology* and denote it by τ*R*. Note that τ*^R* ⊆ τ. Dually, an *R*-closed subset *A* of *X* is the complement *X**U* of an *R*-open subset *U* of *X*. For a subset *A* of *X*, the closure of *A* in (X, τ_R) is denoted by $\text{cl}_R(A)$.

For any (X, τ) , $(Y, \mu) \in$ **H-Sob** and continuous maps $f, g: (X, \tau) \rightarrow (Y, \mu)$, define

K = { k | there exists an H-sober space (*Z*, *v*) such that $k : (Y, \mu) \to (Z, \nu)$ is continuous and $k \circ f = k \circ g$ }

and

$$
R = \{(x, y) \in Y \times Y \mid \text{for any } k \in \mathcal{K}, k(x) = k(y)\}.
$$

Then *R* is an equivalence relation on *Y*. It is not difficult to verify that $\{(f(x), g(x)) | x \in X\} \subseteq R$.

Let $H_c^R(Y) = \{A \subseteq Y \mid A \text{ is R-closed and for any continuous map } k : (Y, \mu) \to (Z, \nu) \in \mathcal{K}$, there exists a unique *z* ∈ *Z* such that $\overline{k(A)} = \overline{\{z\}}$. For the topological space (Y, μ_R) , we have the following lemma:

Lemma 4.3. For (Y, μ_R) , $Y^h = P_H(H_c^R(Y))$ with the canonical continuous map η_Y^h : $(Y, \mu_R) \to Y^h$ is the H-sobrification *of* (Y, μ_R) *, where* $\eta_Y^h(y) = \text{cl}_R(\lbrace y \rbrace)$ *for all* $y \in Y$ *.*

Proof. By Remark [3.11,](#page-3-1) we only need to prove that $H_c^R(Y) = H_c^d(Y)$. Define

 $\mathcal{L} = \{l | \text{there exists an H-sober space } (Z, \nu) \text{ such that } l : (Y, \mu_R) \to (Z, \nu) \text{ is continuous} \}.$

We claim that $\mathcal{K} = \mathcal{L}$. Since $\mu_R \subseteq \mu$ and $l : (\gamma, \mu_R) \to (\mathbb{Z}, \nu)$ is continuous, this implies that $l : (\gamma, \mu) \to (\mathbb{Z}, \nu)$ is continuous. Moreover, for any $x \in X$, we have $lf(x) = \frac{lg(x)}{x}$. Suppose not, there exists an element $x \in X$ such that $lf(x) \neq lg(x)$. Without loss of generality, assume that $lf(x) \nleq lg(x)$, then $lf(x) \in Z\setminus\{lg(x)\}$. So *f*(*x*) ∈ *l*⁻¹(*Z*\ \downarrow *lg*(*x*)). Since *Z* is an H-sober space, it is *T*₀, so *Z*\ \downarrow *lg*(*x*) is an open subset in *Z*. Because *l* : (Y, μ_R) → (Z, ν) is continuous, we have that $l^{-1}(Z\setminus\mathcal{U}g(x))$ is *R*-open. As $(f(x), g(x)) \in R$ and $f(x) \in$ *l*⁻¹(*Z*\ \downarrow *lg*(*x*)), we infer that $g(x) \in I^{-1}(Z\setminus \downarrow lg(x))$. Thus *lg*(*x*) ∈ *Z*\ \downarrow *lg*(*x*), which is a contradiction. Therefore, *l f*(*x*) = $lg(x)$. We conclude that $\mathcal{L} \subseteq \mathcal{K}$. Conversely, suppose that $k \in \mathcal{K}$. Let *U* ∈ *v*. Then $k^{-1}(U)$ is open in *Y*. It remains to show that $k^{-1}(U)$ is R-saturated. For every *x* in $k^{-1}(U)$ and *x R a,* as $k \in K$, we have $k(x) = k(a)$ and $k(x) \in U$. Hence, $k(a) \in U$, that is $a \in k^{-1}(U)$. Thus $k : (Y, \mu_R) \to (Z, \nu)$ is continuous. So $\mathcal{K} \subseteq \mathcal{L}$. Therefore, $\mathcal{K} = \mathcal{L}$. By the definitions of $H_c^R(Y)$ and $H_c^d(Y)$, we could get $H_c^R(Y) = H_c^d(Y)$.

By the above lemma, we could see $P_H(H_c^R(Y))$ is H-sober and η_Y^h : $(Y, \mu_R) \to P_H(H_c^R(Y))$ is continuous. Since $\mu_R \subseteq \mu$, we have η_Y^h : $(Y, \mu) \to P_H(H_c^R(Y))$ is also continuous.

Theorem 4.4. For (X, τ) , $(Y, \mu) \in H$ -Sob and continuous maps $f, g: (X, \tau) \to (Y, \mu)$, $P_H(H_c^R(Y))$ together with an *arrow* η_Y^h : $(Y, \mu) \to P_H(H_c^R(Y))$ *is a coequalizer of f and g.*

Proof. Let $x \in X$. Since $(f(x), g(x)) \in R$, $cl_R(\{f(x)\}) = cl_R(\{g(x)\})$. This implies $\eta_Y^h f(x) = \eta_Y^h g(x)$. That is, $\eta_Y^h \circ f = \eta_Y^h \circ g$. For any H-sober space (Z, ν) and any continuous map $k : (Y, \mu) \to (Z, \nu)$ such that $k \circ f = k \circ g$, from the proof of Lemma [4.3,](#page-4-0) we could see $k : (Y, \mu_R) \to (Z, \nu)$ is continuous. Because $P_H(H_c^R(Y))$ is the H-sobrification of (Y, μ_R) , there exists a unique continuous mapping $k^* : P_H(H_c^R(Y)) \to (Z, \nu)$ such that $k^* \circ \eta_Y^h = k$. So $P_H(H_c^R(Y))$ together with an arrow $\eta_Y^h: (Y, \mu) \to P_H(H_c^R(Y))$ is the coequalizer of f and g.

5. On some problems about super H-sober spaces

In this section, we will prove that for each irreducible subset system (*R*-subset system for short) H, property *M* mentioned in [\[14\]](#page-8-1) naturally holds. Based on this result, we get that Problem 1∼Problem 7 hold. Furthermore, we generalize some results in [\[14\]](#page-8-1).

Lemma 5.1. *For a* T_0 *space* X *,* $S(X) \subseteq K^d(X) \subseteq \text{Irr}(X)$ *.*

Proof. Clearly, $S(X) \subseteq K^d(X)$. Suppose that $A \in K^d(X)$. Consider the sobrification X^s (= $P_H(\text{Irr}_c(X))$) of X and the canonical topological embedding $\eta_X : X \to X^s$ defined by $\eta_X(x) = \overline{\{x\}}$. Then there is a $B \in \text{Irr}_c(X)$ such that $\overline{\eta_X(A)} = \overline{\{B\}}$. It is easy to check that $\overline{A} = B$. Hence, $A \in \text{Irr}(X)$. \square

Theorem 5.2. *Suppose that* **K** *is adequate and closed with respect to homeomorphisms. Then for a covariant functor* $K: \textbf{Top}_0 \longrightarrow \textbf{Set}$ *defined by* $K^d(X)$, $\forall X \in ob(\textbf{Top}_0)$, the following statements hold:

- (1) K : **Top**⁰ → **Set** *is an R-subset system.*
- *(2)* **K**=**K***-***sober***, that is for each* **K***-space X and any A* ∈ K*^d* (*X*)*, there exists a (unique) element x* ∈ *X such that* $\overline{A} = \overline{\{x\}}$.

Proof. These statements directly follow from Lemma [3.3,](#page-2-2) Lemma [5.1](#page-5-0) and Corollary [3.6.](#page-3-2) \Box

For a *T*₀ space *X* and $\mathcal{K} \subseteq K(X)$, let $M(\mathcal{K}) = \{A \in \Gamma(X) \mid A \cap K \neq \emptyset \}$ for all $K \in \mathcal{K}\}$ (that is, $\mathcal{K} \subseteq \Diamond A$) and $m(\mathcal{K}) = \{A \in \Gamma(X) \mid A \text{ is a minimal member of } M(\mathcal{K})\}$ ([\[12\]](#page-8-9)).

In [\[14\]](#page-8-1), Xu proposed that an *R*-subset system H : **Top**₀ \rightarrow **Set** is said to satisfy property *M* if for any *T*₀ space *X*, K ∈ H($P_S(X)$) and A ∈ *M*(K), then { \uparrow ($K \cap A$) | K ∈ K } ∈ H($P_S(X)$). Furthermore, he proved some conclusions under the assumption that H has property *M*. In the following, we find that property *M* naturally holds for each *R*-subset system H.

Proposition 5.3. *Let* $H : Top_0 \longrightarrow Set$ *be an R-subset system. Then property M holds.*

Proof. Suppose that *X* is a *T*₀ space, $K \in H(P_S(X))$ and $A \in M(K)$. Take a map $f : P_S(X) \to P_S(X)$ defined by

$$
f(K) = \uparrow(K \cap A)
$$

for any $K \in K(X)$. It is straightforward to check that *f* is well-defined.

Claim: *f* is continuous.

For any $U \in O(X)$, $f^{-1}(\Box U) = \{K \in K(X) \mid \mathcal{T}(K \cap A) \in \Box U\} = \{K \in K(X) \mid \mathcal{T}(K \cap A) \subseteq U\} = \Box((X \setminus A) \cup U)$. Hence, $f^{-1}(\Box U)$ is open in $K(X)$. So f is continuous.

Since H is an *R*-subset system and $\mathcal{K} \in H(P_S(X))$, we have that $f(\mathcal{K}) = \{ \uparrow (K \cap A) \mid K \in \mathcal{K} \} \in H(P_S(X))$, that is, property M holds. \square

By Theorem 6.19, Theorem 6.20, Proposition 6.21, Corollary 6.22, Theorem 7.16 in [\[14\]](#page-8-1) and Proposition [5.3,](#page-5-1) we get that Problem 1 ∼ Problem 6 hold.

Definition 5.4. [\[14\]](#page-8-1) Let H : Top_0 → Set *be an R-subset system.* A T_0 *space X is called* super H-sober *provided its Smyth power space PS*(*X*) *is* H*-sober. The category of all super* H*-sober spaces with continuous mappings is denoted by* **SH***-***Sob***.*

Definition 5.5. [\[14\]](#page-8-1) Let H : Top_0 → **Set** be an R-subset system and X a T₀ space. A nonempty subset A of X is *said to have* H-Rudin property, *if there exists* $K \in H(P_S(X))$ *such that* $\overline{A} \in m(K)$ *, that is,* \overline{A} *is a minimal closed set that intersects all members of* K . Let $H^R(X) = \{A \subseteq X \mid A \text{ has } H\text{-Rudin property}\}$. The sets in $H^R(X)$ will also be *called* H*-Rudin sets.*

Lemma 5.6. [\[14\]](#page-8-1) Let H : **Top**₀ → **Set** *be an R-subset system and X a* T_0 *space. Then* $H(X) ⊆ H^R(X) ⊆ Irr(X)$ *.*

Lemma 5.7. [\[14\]](#page-8-1) Let $H : Top_0 \longrightarrow$ Set *be an R-subset system.* Then $H^R : Top_0 \longrightarrow$ Set *is an R-subset system,* where for any continuous mapping $f:X\to Y$ in Top_0 , $H^R(f):H^R(X)\to H^R(Y)$ is defined by $H^R(f)(A)=f(A)$ for $\text{each } \overrightarrow{A} \in H^{\overrightarrow{R}}(X)$.

Theorem 5.8. [\[14\]](#page-8-1) Let H : $Top_0 \longrightarrow$ Set be an R-subset system and X a T_0 space. Then the following conditions *are equivalent:*

- *(1) X is super* H*-sober.*
- *(2)* X *is* H^R -sober.

Definition 5.9. [\[14\]](#page-8-1) An R-subset system **H** : **Top**₀ → **Set** is said to satisfy property *Q* if for any $\mathcal{K} \in H(P_S(X))$ *and any* $A \in M(\mathcal{K})$, A contains a closed H-set C such that $C \in M(\mathcal{K})$.

In [\[14\]](#page-8-1), Theorem 5.12 pointed out that if *X* is H-sober and H has property *Q*, then *X* is super H-sober. The following Theorem will show that the converse also holds.

Theorem 5.10. *Let* H : **Top**₀ → **Set** *be an R-subset system. For a T₀ <i>space X, the following two conditions are equivalent:*

- *(1) X is* H*-sober and* H *has property Q.*
- *(2) X is super* H*-sober.*

Proof. (1) \Rightarrow (2): Follows directly from Theorem 5.12 in [\[14\]](#page-8-1).

(2) \Rightarrow (1): We only need to show that H has property *Q*. For any *K* ∈ H(*P_S*(*X*)) and any *A* ∈ *M*(*K*), by Rudin Lemma, we have that there exists a minimal closed subset $B \subseteq A$ such that $B \in M(\mathcal{K})$. Thus $B \in H^R(X)$. Since *X* is super H-sober, by Theorem [5.8,](#page-6-0) we have that *X* is H^R -sober. Therefore, there exists *x* ∈ *X* such that *B* = {*x*}. This implies that *B* is a closed H-set. Thus H has property *Q*. \Box

In the following, we will prove that for an *R*-subset system H : **Top**₀ → **Set**, R : H → H , defined by $H \mapsto H^R$ is a closure operator.

Theorem 5.11. Let $H: Top_0 \longrightarrow$ Set be an R-subset system. Then $R: H \to H$, defined by $H \mapsto H^R$ is a closure *operator.*

Proof. For any *R*-subset system H, by Lemma [5.7,](#page-6-1) we have that H*^R* is also an *R*-subset system. So R is well-defined.

Claim 1: R is monotone, that is, for $H_1, H_2 \in \mathcal{H}$ and $H_1 \leq H_2, H_1^R \leq H_2^R$.

Assume that *X* is a T_0 space. For any $A \in H_1^R(X)$, by Definition [5.5,](#page-6-2) there exists $\mathcal{K} \in H_1(P_S(X))$ such that \overline{A} ∈ *m*(\mathcal{K}). Since H₁ ≤ H₂, that is, H₁($P_S(X)$) ⊆ H₂($P_S(X)$), we have that \mathcal{K} ∈ H₂($P_S(X)$) and hence, $A \in H_2^R(X)$. So $H_1^R(X) \subseteq H_2^R(X)$ for any T_0 space X , which implies that $H_1^R \le H_2^R$.

Claim 2: *R* is expansive, that is, for any $H \in \mathcal{H}$, $H \leq H^R$.

Follows directly from Lemma [5.6.](#page-6-3)

Claim 3: *R* is idempotent, that is, for any $H \in \mathcal{H}$, $(H^R)^R = H^R$.

Since *R* is expansive, we have that $H^R \leq (H^R)^R$. Conversely, we only need to show that $(H^R)^R(X) \subseteq H^R(X)$ for any T_0 space *X*. Suppose that $A \in (H^R)^R(X)$. By Definition [5.5,](#page-6-2) there exists $\mathcal{A} \in H^R(P_S(X))$ such that *A* ∈ *m*(\mathcal{A}). For \mathcal{A} , again by Definition [5.5,](#page-6-2) there exists $\mathcal{K} = \{K_i\}_{i \in I}$ ∈ H($P_S(P_S(X))$) such that $\overline{\mathcal{A}}$ ∈ *m*(\mathcal{K}). For

any *i* ∈ *I*, let $K_i = \bigcup \uparrow_{K(X)} (\mathcal{K}_i \cap \overline{\mathcal{A}}) = \bigcup (\mathcal{K}_i \cap \overline{\mathcal{A}})$. Then by Lemma [2.3,](#page-2-3) Corollary [2.4](#page-2-4) and property *M* of H, we have { K_i }_{*i*∈*I*} ∈ H($P_S(X)$) and K_i ∈ \overline{A} for each i ∈ *I* since \overline{A} is a lower set.

Claim 3.1: *A* ∈ *M*({ K_i }*i*∈*I*</sub>).

Suppose not, there exists $i \in I$ such that $\overline{A} \cap K_i = \emptyset$. That is $K_i \subseteq X \setminus \overline{A}$. So $K_i \in \Box(X \setminus \overline{A})$. Since $K_i \in \overline{\mathcal{A}}$, there exists $K \in \Box(X\backslash\overline{A})\bigcap\mathcal{A}$, which contradicts the fact that $\overline{A} \in m(\mathcal{A})$.

Claim 3.2: $\overline{A} \in m(\lbrace K_i \rbrace_{i \in I})$.

Let $B\subseteq \overline{A}$ be a closed subset and $B\in M(\{K_i\}_{i\in I})$. Then for any $i\in I$, there exists an element $N\in \mathcal{K}_i\cap\overline{\mathcal{A}}$ such that $B\cap N\neq\emptyset$, it is ◊ $B\bigcap \mathcal{K}_i\bigcap\overline{\mathcal{A}}\neq\emptyset$. By the minimality of $\overline{\mathcal{A}}$, we have $\overline{\mathcal{A}}=\diamond B\bigcap\overline{\mathcal{A}}$, and consequently, $A \subseteq \overline{A} \subseteq \Diamond B$. So $B \in M(\mathcal{A})$. By the minimality of \overline{A} , we have $\overline{A} = B$. Thus $\overline{A} \in m({K_i}]_{i \in I}$.

Therefore, for *A*, there exists $\{K_i\}_{i\in I} \in H(P_S(X))$ such that $A \in m(\{K_i\}_{i\in I})$, which means $A \in H^R(X)$.

6. The finite product of hyper-sober spaces

The concept of hyper-sober spaces was introduced in [\[15\]](#page-8-6). And in [\[11\]](#page-8-0), Wen and Xu gave a counterexample to show that the product of a countable infinite family of hyper-sober spaces is not hyper-sober in general. Meantime, they posed the following question:

Is the product space of two hyper-sober spaces again a hyper-sober space?

In this section, we will give a positive answer to the above question.

Definition 6.1. *([\[15\]](#page-8-6))* A topological space X is called hyper-sober if for any irreducible set F, there is a unique $x \in F$ *such that* $F \subseteq cl({x})$ *.*

Lemma 6.2. *([\[14\]](#page-8-1)) Let X be a space. Then the following conditions are equivalent for a subset A* \subseteq *X*:

(1) A is an irreducible subset of X.

(2) $cl_X(A)$ *is an irreducible subset of X.*

Lemma 6.3. *(*[\[14\]](#page-8-1)*)* If $f : X \to Y$ is continuous and $A \in \text{Irr}(X)$ *, then* $f(A) \in \text{Irr}(Y)$ *.*

Corollary 6.4. *([\[14\]](#page-8-1))* Let $\{X_i\}_{i \in I}$ be a family of T_0 spaces and $X = \prod$ $\prod_{i\in I} X_i$ *the product space. If A* ∈ Irr_{*c*}(*X*)*, then* $A = \prod$ *i*∈*I pi*(*A*) *and pi*(*A*) ∈ Irr*c*(*Xi*) *for each i* ∈ *I.*

Theorem 6.5. *Let X and Y be two hyper-sober spaces. Then the product space X* × *Y is also hyper-sober.*

Proof. Let *A* be an irreducible subset in *X* × *Y*. Suppose P_X : *X* × *Y* → *X* and P_Y : *X* × *Y* → *Y* are projections, respectively. Note that P_X and P_Y are continuous. By Lemma [6.3,](#page-7-0) $P_X(A) \in \text{Irr}(X)$ and $P_Y(A) \in \text{Irr}(Y)$. Since *X* and Y are hyper-sober, there exist $x \in P_X(A)$ and $y \in P_Y(A)$ such that $P_X(A) \subseteq cl({x})$ and $P_Y(A) \subseteq cl({y})$. This implies that $A \subseteq P_X(A) \times P_Y(A) \subseteq \text{cl}(\{x\}) \times \text{cl}(\{y\}) = \mathcal{L}(x, y)$, and $(x, y) \in P_X(A) \times P_Y(A) \subseteq P_X(\overline{A}) \times P_Y(\overline{A}) = \overline{A}$ by Corollary [6.4.](#page-7-1) It is sufficient to prove that $(x, y) \in A$.

Claim: $x \notin P_X(A) \setminus \{x\}$ and $y \notin P_Y(A) \setminus \{y\}$.

Suppose not, $x \in \overline{P_X(A) \setminus \{x\}}$. One can directly get $\overline{P_X(A) \setminus \{x\}} = \downarrow x$. Then $P_X(A) \setminus \{x\} \in \text{Irr}(X)$ by Lemma [6.2.](#page-7-2) Again since *X* is hyper-sober, there is an element $a \in P_X(A) \setminus \{x\}$ such that $P_X(A) \setminus \{x\} \subseteq \mathcal{A}$. This implies that $x \in X \setminus \downarrow a$. Thus $(P_X(A) \setminus \{x\}) \cap (X \setminus \downarrow a) \neq \emptyset$, which contradicts $P_X(A) \setminus \{x\} \subseteq \downarrow a$. So $x \notin \overline{P_X(A) \setminus \{x\}}$. For $\gamma \notin P_Y(A) \setminus \{y\}$, the proof is similar to that the case $x \notin P_X(A) \setminus \{x\}$.

Therefore, there exist open neighborhoods *U* of *x* and *V* of *y* such that $U \cap (P_X(A) \setminus \{x\}) = \emptyset$ and $V \cap (P_Y(A) \setminus \{y\}) = \emptyset$, respectively. Since $(x, y) \in U \times V$ and $(x, y) \in cl(A)$, there exists $(b, c) \in (U \times V) \cap A$. This implies that *b* ∈ *U* ∩ *P*_{*X*}(*A*) and *c* ∈ *V* ∩ *P*_{*Y*}(*A*). So *b* = *x* and *c* = *y*, and hence, $(x, y) \in A$. □

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments and valuable suggestions.

References

- [1] B.A. Davey, H. A. Priestley, *Introduction to Lattices and Order*, (2nd edition), Cambridge University Press, 2003.
- [2] A. Fiech, *Colimits in the category DCPO*, Math. Structures Comput. Sci. **6** (1995) 455–468.
- [3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, 2003.
- [4] J. Goubault-Larrecq, *Non-Hausdor*ff *Topology and Domain Theory*, Cambridge University Press, 2013.
- [5] R. Heckmann, *An upper power domain construction in terms of strongly compact sets*, Lecture Notes in Comput. Sci. **598** (1992) 272–293.
- [6] R. Heckmann, K. Keimel, *Quasicontinuous domains and the Smyth powerdomain*, Electron. Notes Theor. Comput. Sci. **298** (2013) 215–232.
- [7] X. Jia, A. Jung, Q. Li, *A note on coherence of dcpos*, Topology Appl. **209** (2016) 235–238.
- [8] A. Jung, M. Moshier, Steve Vickers, *A Hofmann-Mislove theorem for bitopological spaces*, J. Log. Algebr. Program. **76** (2008) 161–174.
- [9] S. Mac Lane, *Categories for the Working mathematician*, Springer, 1997.
- [10] A. Schalk, *Algebras for Generalized Power Constructions*, (PhD Thesis), Technische Hochschule Darmstadt, 1993.
- [11] N. Wen, X. Xu, *Some basic properties of hyper-sober spaces*, (in Chinese), Fuzzy Systems Math. **37** (2023), 165–174.
- [12] X. Xu, *A direct approach to* **K***-reflections of T*⁰ *spaces*, Topology Appl. **272** (2020) 107076.
- [13] X. Xu, D. Zhao, *On topological Rudin's Lemma, well-filtered spaces and sober spaces*, Topology Appl. **272** (2020) 107080.
- [14] X. Xu, *On* H*-sober spaces and* H*-sobrifications of T*⁰ *spaces*, Topology Appl. **289** (2021) 107548.
- [15] D. Zhao, W. Ho, *On topologies defined by irreducible sets*, J. Log. Algebr. Methods Program. **84** (2015) 185–195.