Filomat 38:30 (2024), 10809–10817 https://doi.org/10.2298/FIL2430809J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The answers to some questions on H-sober spaces

Mengjie Jin^a, Qingguo Li^{b,*}

^a School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan, 471023, China ^b School of Mathematics, Hunan University, Changsha, Hunan, 410082, China

Abstract. In this paper, we consider and solve several open problems posed by Xu in [11, 14]. Those open questions concern different categorical constructions of H-sober spaces and hyper-sober spaces. First, for an irreducible subset system H and a T_0 space X, we prove that H automatically satisfies property M, which was unknown before, hence we deduce that X is super H-sober iff X is H-sober and H satisfies property Q in the sense of [14]. Beyond the aforementioned work, many questions asked by Xu in [14] are also solved in the paper. Second, we derive the concrete forms of coequalizers in **H-Sob**. Finally, we obtain that the finite product of hyper-sober spaces is hyper-sober, which gives a positive answer to a question posed in [11].

1. Introduction

Sobriety, monotone convergence and well-filteredness are three of the most important and useful properties in non-Hausdorff topological spaces and domain theory (see [3],[4],[5] and [13]). In recent years, sober spaces, monotone convergence spaces (shortly called *d*-spaces), well-filtered spaces and their related structures have been introduced and investigated.

In [14], Xu provided a uniform approach to sober spaces, *d*-spaces and well-filtered spaces and developed a general frame for dealing with all these spaces. The concepts of irreducible subset systems (*R*-subset systems for short), H-sober spaces and super H-sober spaces for an *R*-subset system H were proposed. Let **Top**₀ be the category of all T_0 spaces and **Sob** the category of all sober spaces. The category of all H-sober spaces (resp., super H-sober spaces) with continuous mappings is denoted by **H-Sob** (resp., **SH-Sob**). For any *R*-subset system H, it has been proven that **H-Sob** is a full subcategory of **Top**₀ containing **Sob** and is closed with respect to homeomorphisms. Moreover, **H-Sob** is adequate (see Theorem 7.9 in [14]). Conversely, for a full subcategory **K** of **Top**₀ containing **Sob**, suppose that **K** is adequate and closed with respect to homeomorphisms. There is a natural question: Is there an R-subset system H such that **K** = **H**-**Sob**? In this paper, we will prove the answer is positive. In [14], Xu also proposed an *R*-subset system H : **Top**₀ \rightarrow **Set** is said to satisfy property *M* if for any T_0 space *X*, $\mathcal{K} \in H(P_S(X))$ and $A \in M(\mathcal{K})$, then { $(K \cap A) \mid K \in \mathcal{K} \in H(P_S(X))$. Furthermore, he obtained some results under the assumption that H has property *M*. Then he posed the following problems:

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 06B35, 06F30.

Keywords. coequalizer, H-sober space, property M, hyper-sober space, product.

Received: 02 May 2024; Revised: 30 July 2024; Accepted: 22 August 2024

Communicated by Santi Spadaro

Research supported by the National Natural Science Foundation of China (No.12231007).

^{*} Corresponding author: Qingguo Li

Email addresses: mengjiejinjin@163.com (Mengjie Jin), liqingguoli@aliyun.com (Qingguo Li)

Problem 1. Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an *R*-subset system (may not have property *M*) and $\{X_i \mid i \in I\}$ a family of super H-sober spaces. Is the product space $\prod_{i \in I} X_i$ super H-sober?

Problem 2. Let H : **Top**₀ \rightarrow **Set** be an *R*-subset system, *X* a *T*₀ space and *Y* a super H-sober space. Is the function space *TOP*(*X*, *Y*) equipped with the topology of pointwise convergence super H-sober?

Problem 3. Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system, *X* a super H-sober space and *Y* a T_0 space. For a pair of continuous mappings $f, g : X \to Y$, is the equalizer $E(f, g) = \{x \in X \mid f(x) = g(x)\}$ (as a subspace of *X*) super H-sober?

Problem 4. For an *R*-subset system $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$, is $H \mathbf{SH}$ -Sob complete?

Problem 5. If an *R*-subset system H : **Top**₀ \rightarrow **Set** has property *M*, do the induced *R*-subset systems H^{*d*}, H^{*R*} and H^{*D*} have property M?

Problem 6. For an *R*-subset system H : **Top**₀ \rightarrow **Set**, is **SH-Sob** reflective in **Top**₀? Or equivalently, for any *T*₀ space *X*, does the super H-sobrification of *X* exist?

Problem 7. Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an *R*-subset system having property *M*. Is $R : \mathcal{H} \to \mathcal{H}, H \mapsto H^R$ a closure operator?

In [15], Zhao and Ho introduced a new variant of sobriety, called hyper-sobriety. A topological space *X* is called hyper-sober if for any irreducible set *F*, there is a unique $x \in F$ such that $F \subseteq cl(\{x\})$. Clearly, every hyper-sober space is sober. Later, Wen and Xu discussed some basic properties of hyper-sober spaces in [11]. Moreover, they posed a question:

Problem 8. Is the product space of two hyper-sober spaces again a hyper-sober space?

Let \mathcal{A} and \mathcal{B} be categories, $F : \mathcal{A} \to \mathcal{B}$ be left adjoint to $U : \mathcal{B} \to \mathcal{A}$. We know that U preserves limits and F preserves colimits (see [9]). Xu has proven that **H-Sob** is adequate (see Theorem 7.9 in [14]), in other words, it is reflective in **Top**₀. In fact that **Top**₀ is also reflective in **Top**, so **H-Sob** is reflective in **Top**. Since **Top** is complete and cocomplete (that is, limits and colimits all exist), we get that **H-Sob** is also complete and cocomplete. This implies that coequalizers in **H-Sob** exist. But we do not know its concrete forms. In Section 4, we investigate the coequalizers in **H-Sob**.

In Section 5, we find that property M mentioned above naturally holds for each R-subset system H. Based on this, for a T_0 space X, we deduce that X is super H-sober iff X is H-sober and H satisfies property Q in the sense of [14]. Additionally, we give positive answers to Problem 1 ~ Problem 6. Furthermore, we prove Problem 7 holds.

In Section 6, we will give a positive answer to Problem 8.

2. Preliminaries

In this section, we briefly recall some standard definitions and notations to be used in this paper. For further details, refer to [3–6, 12].

Let *P* be a poset and $A \subseteq P$. We denote $\downarrow A = \{x \in P \mid x \leq a \text{ for some } a \in A\}$ and $\uparrow A = \{x \in P \mid x \geq a \text{ for some } a \in A\}$. For any $a \in P$, we denote $\downarrow \{a\} = \downarrow a = \{x \in P \mid x \leq a\}$ and $\uparrow \{a\} = \uparrow a = \{x \in P \mid x \geq a\}$. A subset *A* is called a *lower set* (resp., an *upper set*) if $A = \downarrow A$ (resp., $A = \uparrow A$).

The category of all topological spaces with continuous mappings is denoted by **Top**. For a topological space *X*, let O(X) (resp., $\Gamma(X)$) be the set of all open subsets (resp., closed subsets) of *X*. For a subset *A* of *X*, the closure of *A* is denoted by cl(*A*) or \overline{A} . We use \leq_X to represent the specialization quasi-order of *X*, that is, $x \leq_X y$ iff $x \in \overline{\{y\}}$. A subset *B* of *X* is called *saturated* if *B* equals the intersection of all open sets containing it (equivalently, *B* is an upper set in the specialization quasi-order). Let $S(X) = \{\{x\} \mid x \in X\}$ and $S_c(X) = \{\overline{\{x\}} \mid x \in X\}$.

The category of all T_0 spaces with continuous mappings is denoted by \mathbf{Top}_0 . For a T_0 space X and a nonempty subset A of X, A is called *irreducible* if for any $B, C \in \Gamma(X), A \subseteq B \cup C$ implies $A \subseteq B$ or $A \subseteq C$. Denote by Irr(X) the set of all irreducible subsets of X and $Irr_c(X)$ the set of all closed irreducible subsets of X. A topological space X is called *sober*, if for any $A \in Irr_c(X)$, there is a unique point $a \in X$ such that $A = \overline{\{a\}}$. The category of all sober spaces with continuous mappings is denoted by **Sob**.

For a topological space $X, \mathcal{G} \subseteq 2^X$ and $A \subseteq X$, let $\Box_{\mathcal{G}}(A) = \{G \in \mathcal{G} \mid G \subseteq A\}$ and $\diamond_{\mathcal{G}}(A) = \{G \in \mathcal{G} \mid G \cap A \neq \emptyset\}$. The symbols $\Box_{\mathcal{G}}(A)$ and $\diamond_{\mathcal{G}}(A)$ will be simply written as $\Box A$ and $\diamond A$ respectively if there is no confusion. The *upper Vietoris topology* on G is the topology that has $\{\Box U \mid U \in O(X)\}$ as a base, and the resulting space is denoted by $P_S(G)$. The *lower Vietoris topology* on G is the topology that has $\{\diamond U \mid U \in O(X)\}$ as a subbase, and the resulting space is denoted by $P_H(G)$. If $G \subseteq Irr(X)$, then $\{\diamond U \mid U \in O(X)\}$ is a topology on G.

We shall use K(X) to denote the set of all nonempty compact saturated subsets of X ordered by reverse inclusion, that is, for $K_1, K_2 \in K(X), K_1 \leq_{K(X)} K_2$ iff $K_2 \subseteq K_1$. The space $P_S(K(X))$ denoted shortly by $P_S(X)$, is called the *Smyth power space* or *upper space* of X ([6]).

Lemma 2.1. (Topological Rudin Lemma) [6] Let X be a T_0 space, C a closed subset of X and \mathcal{K} an irreducible subset of the Smyth power space $P_S(X)$. If C intersects all members of \mathcal{K} , then there exists a minimal (irreducible) closed subset A of C that intersects all members of \mathcal{K} .

Definition 2.2. [1] Let P be a poset. A map $c : P \to P$ is called a closure operator (on P) if, for all $x, y \in P$,

(1) $x \le y \Longrightarrow c(x) \le c(y)$ (*c* is monotone),

- (2) $x \le c(x)$ (*c* is expansive),
- (3) c(c(x)) = c(x) (c is idempotent).

Lemma 2.3. [7, 10] Let X be an T_0 space. If $\mathcal{K} \in K(P_S(X))$, then $\bigcup \mathcal{K} \in K(X)$.

Corollary 2.4. [7, 10] For a T_0 space X, the mapping $\bigcup : P_S(P_S(X)) \to P_S(X), \mathcal{K} \mapsto \bigcup \mathcal{K}$, is continuous.

3. The K-category and H-sober spaces

In what follows, The category **K** always refers to a full subcategory **Top**₀ containing **Sob**, the objects of **K** are called **K**-*spaces*.

Definition 3.1. [12] Let X be a T_0 space. A **K**-reflection of X is a pair $\langle \widehat{X}, \mu \rangle$ consisting of a **K**-space \widehat{X} and a continuous mapping $\mu : X \to \widehat{X}$ satisfying that for any continuous mapping $f : X \to Y$ to a **K**-space, there exists a unique continuous mapping $f^* : \widehat{X} \to Y$ such that $f^* \circ \mu = f$, that is, the following diagram commutes.

By a standard argument, **K**-reflections, if they exist, are unique to homeomorphisms. We shall use X^k to indicate the space of the **K**-reflection of X if it exists.

Definition 3.2. [12] Let (X, τ) be a T_0 space. A nonempty subset A of X is called **K**-determined provided for any continuous mapping $f : X \to Y$ to a **K**-space Y, there exists a unique $y_A \in Y$ such that $cl_Y(f(A)) = cl_Y(\{y_A\})$. Clearly, a subset A of a space X is a **K**-determined set iff cl(A) is a K-determined set. Denote by $K^d(X)$ the set of all **K**-determined subsets of X and $K_c^d(X)$ the set of all closed **K**-determined subsets of X.

Lemma 3.3. Let X, Y be two T_0 spaces. If $f : X \to Y$ is a continuous mapping and $A \in K^d(X)$, then $f(A) \in K^d(Y)$.

Proof. Let *Z* be a **K**-space and $g : Y \to Z$ is continuous. Note that $g \circ f : X \to Z$ is continuous and $A \in K^d(X)$, then there exists an element $z \in Z$ such that $\overline{g \circ f(A)} = \overline{g(f(A))} = \overline{\{z\}}$. So $f(A) \in K^d(Y)$. \Box

Definition 3.4. [12] A full subcategory **K** of Top_0 is said to be closed with respect to homeomorphisms if homeomorphic copies of **K**-spaces are **K**-spaces.

Definition 3.5. [12] **K** *is called* adequate *if for any* T_0 *space* X, $P_H(K_c^d(X))$ *is a* **K***-space.*

Corollary 3.6. [12] Assume that **K** is adequate and closed with respect to homeomorphisms. Then for any T_0 space *X*, the following conditions are equivalent:

(1) X is a K-space.

(2) $K_c^d(X) = S_c(X)$, that is, for each $A \in K_c^d(X)$, there exists an $x \in X$ such that $A = \overline{\{x\}}$.

(3) $X \cong X^k$.

The category of all sets with mappings is denoted by Set.

Definition 3.7. [14] A covariant functor $H : Top_0 \longrightarrow Set$ is called a subset system on Top_0 provided that the following two conditions are satisfied:

(1) $S(X) \subseteq H(X) \subseteq 2^X$ (the set of all subsets of X) for each $X \in ob(\mathbf{Top}_0)$.

(2) For any continuous mapping $f : X \to Y$ in $\operatorname{Top}_{0'} \operatorname{H}(f)(A) = f(A) \in \operatorname{H}(Y)$ for all $A \in \operatorname{H}(X)$.

For a subset system $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set} and a T_0$ space X, let $H_c(X) = \{\overline{A} \mid A \in H(X)\}$. We call $A \subseteq X$ an H-set if $A \in H(X)$. The sets in $H_c(X)$ are called closed H-sets.

Definition 3.8. [14] A subset system $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ is called an irreducible subset system, or an R-subset system for short, if $H(X) \subseteq Irr(X)$ for all $X \in ob(\mathbf{Top}_0)$. The family of all R-subset systems is denoted by \mathcal{H} . Define a partial order \leq on \mathcal{H} by $H_1 \leq H_2$ iff $H_1(X) \subseteq H_2(X)$ for all $X \in ob(\mathbf{Top}_0)$.

Definition 3.9. [14] Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system. A T_0 space X is called H-sober if for any $A \in H(X)$, there is a (unique) point $x \in X$ such that $\overline{A} = \overline{\{x\}}$ or, equivalently, if $H_c(X) = S_c(X)$. The category of all H-sober spaces with continuous mappings is denoted by H-Sob.

It is not difficult to verify that **Sob** \subseteq **H-Sob**. By Definition 3.1, for **K** = **H-Sob**, the **K**-reflection of *X* is called the H-*sober reflection* of *X*, or the H-*sobrification* of *X* and *X*^{*h*} to denote the space of H-sobrification of *X* if it exists. Moreover, a **K**-determined set of *X* in Definition 3.2 is called a H-*sober determined set* of *X*, Denote by H^{*d*}(*X*) the set of all H-sober determined subsets of *X*. The set of all closed H-sober determined subsets of *X* is denoted by H^{*d*}_{*c*}(*X*).

Theorem 3.10. [14] Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an *R*-subset system. Then **H**-**Sob** is adequate. Therefore, for any T_0 space $X, X^h = P_H(H^d_c(X))$ with the canonical topological embedding $\eta^h_X \colon X \to X^h$ is the H-sobrification of X, where $\eta^h_X(x) = \overline{\{x\}}$ for all $x \in X$.

Remark 3.11. If X is only a topological space, then $\langle P_H(H_c^d(X)), \eta_X^h \rangle$ is the H-sobrification of X, where $\eta_X^h(x) = \overline{\{x\}}$ for all $x \in X$.

Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an R-subset system. In [14], it has been shown that **H-Sob** is a full subcategory of **Top**₀ containing **Sob** and is closed with respect to homeomorphisms. Moreover, **H-Sob** is adequate by Theorem 3.10.

Conversely, suppose that **K** is adequate and closed with respect to homeomorphisms. Is there an R-subset system H such that $\mathbf{K} = \mathbf{H}$ -Sob? The answer is positive, we will investigate it in Section 5.

4. Coequalizers in H-Sob

For any topological space *X*, since the H-sobrification of *X* exists, we have that **H-Sob** is reflective in **Top**. The fact that **Top** is complete and cocomplete (that is, limits and colimits all exist), so **H-Sob** is also complete and cocomplete. This implies that coequalizers in **H-Sob** exist. But we do not know its concrete forms. In this section, inspired by the construction of coequalizers in **Dcpo** (see [2] and [8]), we will investigate coequalizers in **H-Sob**.

Definition 4.1. [9] Let C be a category and $f, g : A \to B$ be a pair of parallel arrows. A coequalizer of f and g is an object C together with an arrow $h : B \to C$ with the following properties:

(1)
$$h \circ f = h \circ g;$$

(2) for each arrow $k : B \to D$ such that $k \circ f = k \circ q$, there is a unique arrow $l : C \to D$ such that $l \circ h = k$.

In order to give a specific characterization of coequalizers in **H-Sob**, first, we introduce the concept of *R*-topology on a topological space.

Definition 4.2. [4] Let X be a set and R an equivalence relation on X. A subset A of X is R-saturated if, for every $a \in A$, for every $x \in X$ such that a R x, x is also in A. Equivalently, A is R-saturated iff it is a union of equivalence classes for R.

Let (X, τ) be a topological space and R an equivalence relation on X. We call a subset U of X *R-open* if it is an R-saturated open set. It is easy to see that \emptyset , X are R-open, the intersection of any finite family of R-open sets is R-open and the union of any family of R-open sets is R-open. Then the family of all R-open sets in X precisely forms a new topology on X. We call it an R-topology and denote it by τ_R . Note that $\tau_R \subseteq \tau$. Dually, an R-closed subset A of X is the complement $X \setminus U$ of an R-open subset U of X. For a subset A of X, the closure of A in (X, τ_R) is denoted by $cl_R(A)$.

For any $(X, \tau), (Y, \mu) \in \mathbf{H}$ -Sob and continuous maps $f, g : (X, \tau) \to (Y, \mu)$, define

 $\mathcal{K} = \{k \mid \text{there exists an H-sober space } (Z, v) \text{ such that } k : (Y, \mu) \rightarrow (Z, v) \text{ is continuous and } k \circ f = k \circ g\}$

and

$$R = \{(x, y) \in Y \times Y \mid \text{ for any } k \in \mathcal{K}, \ k(x) = k(y)\}.$$

Then *R* is an equivalence relation on *Y*. It is not difficult to verify that $\{(f(x), q(x)) \mid x \in X\} \subseteq R$.

Let $H_c^R(Y) = \{A \subseteq Y \mid A \text{ is } R\text{-closed and for any continuous map } k : (Y, \mu) \to (Z, \nu) \in \mathcal{K}, \text{ there exists a unique } z \in Z \text{ such that } \overline{k(A)} = \overline{\{z\}}\}.$ For the topological space (Y, μ_R) , we have the following lemma:

Lemma 4.3. For (Y, μ_R) , $Y^h = P_H(H_c^R(Y))$ with the canonical continuous map η_Y^h : $(Y, \mu_R) \to Y^h$ is the H-sobrification of (Y, μ_R) , where $\eta_Y^h(y) = cl_R(\{y\})$ for all $y \in Y$.

Proof. By Remark 3.11, we only need to prove that $H_c^R(Y) = H_c^d(Y)$. Define

 $\mathcal{L} = \{l \mid \text{there exists an H-sober space } (Z, \nu) \text{ such that } l : (Y, \mu_R) \to (Z, \nu) \text{ is continuous} \}.$

We claim that $\mathcal{K} = \mathcal{L}$. Since $\mu_R \subseteq \mu$ and $l : (Y, \mu_R) \to (Z, \nu)$ is continuous, this implies that $l : (Y, \mu) \to (Z, \nu)$ is continuous. Moreover, for any $x \in X$, we have lf(x) = lg(x). Suppose not, there exists an element $x \in X$ such that $lf(x) \neq lg(x)$. Without loss of generality, assume that $lf(x) \nleq lg(x)$, then $lf(x) \in Z \setminus \lfloor lg(x)$. So $f(x) \in l^{-1}(Z \setminus \lfloor lg(x))$. Since Z is an H-sober space, it is T_0 , so $Z \setminus \lfloor lg(x)$ is an open subset in Z. Because $l : (Y, \mu_R) \to (Z, \nu)$ is continuous, we have that $l^{-1}(Z \setminus \lfloor lg(x))$ is *R*-open. As $(f(x), g(x)) \in R$ and $f(x) \in l^{-1}(Z \setminus \lfloor lg(x))$, we infer that $g(x) \in l^{-1}(Z \setminus \lfloor lg(x))$. Thus $lg(x) \in Z \setminus \lfloor lg(x)$, which is a contradiction. Therefore, lf(x) = lg(x). We conclude that $\mathcal{L} \subseteq \mathcal{K}$. Conversely, suppose that $k \in \mathcal{K}$. Let $U \in \nu$. Then $k^{-1}(U)$ is open in Y. It remains to show that $k^{-1}(U)$ is *R*-saturated. For every x in $k^{-1}(U)$ and x R a, as $k \in \mathcal{K}$, we have k(x) = k(a) and $k(x) \in U$. Hence, $k(a) \in U$, that is $a \in k^{-1}(U)$. Thus $k : (Y, \mu_R) \to (Z, \nu)$ is continuous. So $\mathcal{K} \subseteq \mathcal{L}$. Therefore, $\mathcal{K} = \mathcal{L}$. By the definitions of $H_c^R(Y)$ and $H_c^d(Y)$, we could get $H_c^R(Y) = H_c^d(Y)$.

By the above lemma, we could see $P_H(H_c^R(Y))$ is H-sober and η_Y^h : $(Y, \mu_R) \to P_H(H_c^R(Y))$ is continuous. Since $\mu_R \subseteq \mu$, we have η_Y^h : $(Y, \mu) \to P_H(H_c^R(Y))$ is also continuous.

Theorem 4.4. For $(X, \tau), (Y, \mu) \in \mathbf{H}$ -Sob and continuous maps $f, g : (X, \tau) \to (Y, \mu), P_H(\mathbf{H}_c^R(Y))$ together with an arrow $\eta_Y^h: (Y, \mu) \to P_H(\mathbf{H}_c^R(Y))$ is a coequalizer of f and g.

Proof. Let $x \in X$. Since $(f(x), g(x)) \in R$, $cl_R(\{f(x)\}) = cl_R(\{g(x)\})$. This implies $\eta_Y^h f(x) = \eta_Y^h g(x)$. That is, $\eta_Y^h \circ f = \eta_Y^h \circ g$. For any H-sober space (Z, v) and any continuous map $k : (Y, \mu) \to (Z, v)$ such that $k \circ f = k \circ g$, from the proof of Lemma 4.3, we could see $k : (Y, \mu_R) \to (Z, v)$ is continuous. Because $P_H(H_c^R(Y))$ is the H-sobrification of (Y, μ_R) , there exists a unique continuous mapping $k^* : P_H(H_c^R(Y)) \to (Z, v)$ such that $k^* \circ \eta_Y^h = k$. So $P_H(H_c^R(Y))$ together with an arrow $\eta_Y^h: (Y, \mu) \to P_H(H_c^R(Y))$ is the coequalizer of f and g. \Box

5. On some problems about super H-sober spaces

In this section, we will prove that for each irreducible subset system (*R*-subset system for short) H, property *M* mentioned in [14] naturally holds. Based on this result, we get that Problem 1~Problem 7 hold. Furthermore, we generalize some results in [14].

Lemma 5.1. For a T_0 space X, $S(X) \subseteq K^d(X) \subseteq Irr(X)$.

Proof. Clearly, $S(X) \subseteq K^d(X)$. Suppose that $A \in K^d(X)$. Consider the sobrification X^s (= $P_H(\operatorname{Irr}_c(X))$) of X and the canonical topological embedding $\eta_X : X \to X^s$ defined by $\eta_X(x) = \overline{\{x\}}$. Then there is a $B \in \operatorname{Irr}_c(X)$ such that $\overline{\eta_X(A)} = \overline{\{B\}}$. It is easy to check that $\overline{A} = B$. Hence, $A \in \operatorname{Irr}(X)$. \Box

Theorem 5.2. Suppose that **K** is adequate and closed with respect to homeomorphisms. Then for a covariant functor $K : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ defined by $K^d(X), \forall X \in ob(\mathbf{Top}_0)$, the following statements hold:

- (1) $K : \mathbf{Top}_0 \longrightarrow \mathbf{Set} \text{ is an } R\text{-subset system.}$
- (2) **K=K-sober**, that is for each **K**-space X and any $A \in K^d(X)$, there exists a (unique) element $x \in X$ such that $\overline{A} = \overline{\{x\}}$.

Proof. These statements directly follow from Lemma 3.3, Lemma 5.1 and Corollary 3.6.

For a T_0 space X and $\mathcal{K} \subseteq K(X)$, let $M(\mathcal{K}) = \{A \in \Gamma(X) \mid A \cap K \neq \emptyset \text{ for all } K \in \mathcal{K}\}$ (that is, $\mathcal{K} \subseteq \Diamond A$) and $m(\mathcal{K}) = \{A \in \Gamma(X) \mid A \text{ is a minimal member of } M(\mathcal{K})\}$ ([12]).

In [14], Xu proposed that an *R*-subset system $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ is said to satisfy property *M* if for any T_0 space $X, \mathcal{K} \in H(P_S(X))$ and $A \in M(\mathcal{K})$, then $\{\uparrow(K \cap A) \mid K \in \mathcal{K}\} \in H(P_S(X))$. Furthermore, he proved some conclusions under the assumption that H has property *M*. In the following, we find that property *M* naturally holds for each *R*-subset system H.

Proposition 5.3. Let $H : Top_0 \longrightarrow Set$ be an *R*-subset system. Then property *M* holds.

Proof. Suppose that X is a T_0 space, $\mathcal{K} \in H(P_S(X))$ and $A \in M(\mathcal{K})$. Take a map $f : P_S(X) \to P_S(X)$ defined by

$$f(K) = \uparrow (K \cap A)$$

for any $K \in K(X)$. It is straightforward to check that f is well-defined.

Claim: *f* is continuous.

For any $U \in O(X)$, $f^{-1}(\Box U) = \{K \in K(X) \mid \uparrow (K \cap A) \in \Box U\} = \{K \in K(X) \mid \uparrow (K \cap A) \subseteq U\} = \Box((X \setminus A) \cup U)$. Hence, $f^{-1}(\Box U)$ is open in K(X). So f is continuous.

Since H is an *R*-subset system and $\mathcal{K} \in H(P_S(X))$, we have that $f(\mathcal{K}) = \{\uparrow (K \cap A) \mid K \in \mathcal{K}\} \in H(P_S(X))$, that is, property *M* holds. \Box

By Theorem 6.19, Theorem 6.20, Proposition 6.21, Corollary 6.22, Theorem 7.16 in [14] and Proposition 5.3, we get that Problem 1 ~ Problem 6 hold.

Definition 5.4. [14] Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system. A T_0 space X is called super H-sober provided its Smyth power space $P_S(X)$ is H-sober. The category of all super H-sober spaces with continuous mappings is denoted by SH-Sob.

Definition 5.5. [14] Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system and *X* a T_0 space. A nonempty subset *A* of *X* is said to have H-Rudin property, if there exists $\mathcal{K} \in H(P_S(X))$ such that $\overline{A} \in m(\mathcal{K})$, that is, \overline{A} is a minimal closed set that intersects all members of \mathcal{K} . Let $H^R(X) = \{A \subseteq X \mid A \text{ has H-Rudin property}\}$. The sets in $H^R(X)$ will also be called H-Rudin sets.

Lemma 5.6. [14] Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system and *X* a T_0 space. Then $H(X) \subseteq H^R(X) \subseteq \operatorname{Irr}(X)$.

Lemma 5.7. [14] Let $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ be an *R*-subset system. Then $H^R : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ is an *R*-subset system, where for any continuous mapping $f : X \to Y$ in $\operatorname{Top}_0, H^R(f) : H^R(X) \to H^R(Y)$ is defined by $H^R(f)(A) = f(A)$ for each $A \in H^R(X)$.

Theorem 5.8. [14] Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an *R*-subset system and *X* a T_0 space. Then the following conditions are equivalent:

- (1) X is super H-sober.
- (2) X is H^R -sober.

Definition 5.9. [14] An R-subset system $H : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$ is said to satisfy property Q if for any $\mathcal{K} \in H(P_S(X))$ and any $A \in M(\mathcal{K})$, A contains a closed H-set C such that $C \in M(\mathcal{K})$.

In [14], Theorem 5.12 pointed out that if *X* is H-sober and H has property *Q*, then *X* is super H-sober. The following Theorem will show that the converse also holds.

Theorem 5.10. Let $H : Top_0 \longrightarrow Set$ be an *R*-subset system. For a T_0 space *X*, the following two conditions are equivalent:

- (1) X is H-sober and H has property Q.
- (2) X is super H-sober.

Proof. (1) \Rightarrow (2): Follows directly from Theorem 5.12 in [14].

(2) \Rightarrow (1): We only need to show that H has property *Q*. For any $\mathcal{K} \in H(P_S(X))$ and any $A \in M(\mathcal{K})$, by Rudin Lemma, we have that there exists a minimal closed subset $B \subseteq A$ such that $B \in M(\mathcal{K})$. Thus $B \in H^R(X)$. Since *X* is super H-sober, by Theorem 5.8, we have that *X* is H^R -sober. Therefore, there exists $x \in X$ such that $B = \overline{\{x\}}$. This implies that *B* is a closed H-set. Thus H has property *Q*.

In the following, we will prove that for an *R*-subset system $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}, R : \mathcal{H} \to \mathcal{H}$, defined by $H \mapsto H^R$ is a closure operator.

Theorem 5.11. Let $H : \mathbf{Top}_0 \longrightarrow \mathbf{Set}$ be an *R*-subset system. Then $R : \mathcal{H} \to \mathcal{H}$, defined by $H \mapsto H^R$ is a closure operator.

Proof. For any *R*-subset system H, by Lemma 5.7, we have that H^R is also an *R*-subset system. So R is well-defined.

Claim 1: R is monotone, that is, for $H_1, H_2 \in \mathcal{H}$ and $H_1 \leq H_2, H_1^R \leq H_2^R$.

Assume that X is a T_0 space. For any $A \in H_1^R(X)$, by Definition 5.5, there exists $\mathcal{K} \in H_1(P_S(X))$ such that $\overline{A} \in m(\mathcal{K})$. Since $H_1 \leq H_2$, that is, $H_1(P_S(X)) \subseteq H_2(P_S(X))$, we have that $\mathcal{K} \in H_2(P_S(X))$ and hence, $A \in H_2^R(X)$. So $H_1^R(X) \subseteq H_2^R(X)$ for any T_0 space X, which implies that $H_1^R \leq H_2^R$.

Claim 2: *R* is expansive, that is, for any $H \in \mathcal{H}$, $H \leq H^{R}$.

Follows directly from Lemma 5.6.

Claim 3: *R* is idempotent, that is, for any $H \in \mathcal{H}$, $(H^R)^R = H^R$.

Since *R* is expansive, we have that $H^R \leq (H^R)^R$. Conversely, we only need to show that $(H^R)^R(X) \subseteq H^R(X)$ for any T_0 space *X*. Suppose that $A \in (H^R)^R(X)$. By Definition 5.5, there exists $\mathcal{A} \in H^R(P_S(X))$ such that $\overline{A} \in m(\mathcal{A})$. For \mathcal{A} , again by Definition 5.5, there exists $\mathcal{K} = \{\mathcal{K}_i\}_{i \in I} \in H(P_S(X))$ such that $\overline{\mathcal{A}} \in m(\mathcal{K})$. For

any $i \in I$, let $K_i = \bigcup \uparrow_{K(X)}(\mathcal{K}_i \cap \overline{\mathcal{A}}) = \bigcup (\mathcal{K}_i \cap \overline{\mathcal{A}})$. Then by Lemma 2.3, Corollary 2.4 and property *M* of H, we have $\{K_i\}_{i \in I} \in H(P_S(X))$ and $K_i \in \overline{\mathcal{A}}$ for each $i \in I$ since $\overline{\mathcal{A}}$ is a lower set.

Claim 3.1: $A \in M(\{K_i\}_{i \in I})$.

Suppose not, there exists $i \in I$ such that $\overline{A} \cap K_i = \emptyset$. That is $K_i \subseteq X \setminus \overline{A}$. So $K_i \in \Box(X \setminus \overline{A})$. Since $K_i \in \overline{\mathcal{A}}$, there exists $K \in \Box(X \setminus \overline{A}) \cap \mathcal{A}$, which contradicts the fact that $\overline{A} \in m(\mathcal{A})$.

Claim 3.2: $\overline{A} \in m(\{K_i\}_{i \in I})$.

Let $B \subseteq \overline{A}$ be a closed subset and $B \in M(\{K_i\}_{i \in I})$. Then for any $i \in I$, there exists an element $N \in \mathcal{K}_i \cap \overline{\mathcal{A}}$ such that $B \cap N \neq \emptyset$, it is $\diamond B \cap \mathcal{K}_i \cap \overline{\mathcal{A}} \neq \emptyset$. By the minimality of $\overline{\mathcal{A}}$, we have $\overline{\mathcal{A}} = \diamond B \cap \overline{\mathcal{A}}$, and consequently, $\mathcal{A} \subseteq \overline{\mathcal{A}} \subseteq \diamond B$. So $B \in M(\mathcal{A})$. By the minimality of \overline{A} , we have $\overline{A} = B$. Thus $\overline{A} \in m(\{K_i\}_{i \in I})$.

Therefore, for A, there exists $\{K_i\}_{i \in I} \in H(P_S(X))$ such that $A \in m(\{K_i\}_{i \in I})$, which means $A \in H^R(X)$.

6. The finite product of hyper-sober spaces

The concept of hyper-sober spaces was introduced in [15]. And in [11], Wen and Xu gave a counterexample to show that the product of a countable infinite family of hyper-sober spaces is not hyper-sober in general. Meantime, they posed the following question:

Is the product space of two hyper-sober spaces again a hyper-sober space?

In this section, we will give a positive answer to the above question.

Definition 6.1. ([15]) A topological space X is called hyper-sober if for any irreducible set F, there is a unique $x \in F$ such that $F \subseteq cl({x})$.

Lemma 6.2. ([14]) Let X be a space. Then the following conditions are equivalent for a subset $A \subseteq X$:

(1) A is an irreducible subset of X.

(2) $cl_X(A)$ is an irreducible subset of X.

Lemma 6.3. ([14]) If $f : X \to Y$ is continuous and $A \in Irr(X)$, then $f(A) \in Irr(Y)$.

Corollary 6.4. ([14]) Let $\{X_i\}_{i \in I}$ be a family of T_0 spaces and $X = \prod_{i \in I} X_i$ the product space. If $A \in \operatorname{Irr}_c(X)$, then $A = \prod_{i \in I} p_i(A)$ and $p_i(A) \in \operatorname{Irr}_c(X_i)$ for each $i \in I$.

Theorem 6.5. Let X and Y be two hyper-sober spaces. Then the product space $X \times Y$ is also hyper-sober.

Proof. Let *A* be an irreducible subset in $X \times Y$. Suppose $P_X : X \times Y \to X$ and $P_Y : X \times Y \to Y$ are projections, respectively. Note that P_X and P_Y are continuous. By Lemma 6.3, $P_X(A) \in Irr(X)$ and $P_Y(A) \in Irr(Y)$. Since *X* and *Y* are hyper-sober, there exist $x \in P_X(A)$ and $y \in P_Y(A)$ such that $P_X(A) \subseteq cl(\{x\})$ and $P_Y(A) \subseteq cl(\{y\})$. This implies that $A \subseteq P_X(A) \times P_Y(A) \subseteq cl(\{x\}) \times cl(\{y\}) = \downarrow(x, y)$, and $(x, y) \in P_X(A) \times P_Y(A) \subseteq P_X(\overline{A}) \times P_Y(\overline{A}) = \overline{A}$ by Corollary 6.4. It is sufficient to prove that $(x, y) \in A$.

Claim: $x \notin P_X(A) \setminus \{x\}$ and $y \notin P_Y(A) \setminus \{y\}$.

Suppose not, $x \in \overline{P_X(A) \setminus \{x\}}$. One can directly get $\overline{P_X(A) \setminus \{x\}} = \downarrow x$. Then $P_X(A) \setminus \{x\} \in \operatorname{Irr}(X)$ by Lemma 6.2. Again since *X* is hyper-sober, there is an element $a \in P_X(A) \setminus \{x\}$ such that $P_X(A) \setminus \{x\} \subseteq \downarrow a$. This implies that $x \in X \setminus \downarrow a$. Thus $(P_X(A) \setminus \{x\}) \cap (X \setminus \downarrow a) \neq \emptyset$, which contradicts $P_X(A) \setminus \{x\} \subseteq \downarrow a$. So $x \notin \overline{P_X(A) \setminus \{x\}}$. For $y \notin \overline{P_Y(A) \setminus \{y\}}$, the proof is similar to that the case $x \notin \overline{P_X(A) \setminus \{x\}}$.

Therefore, there exist open neighborhoods U of x and V of y such that $U \cap (P_X(A) \setminus \{x\}) = \emptyset$ and $V \cap (P_Y(A) \setminus \{y\}) = \emptyset$, respectively. Since $(x, y) \in U \times V$ and $(x, y) \in cl(A)$, there exists $(b, c) \in (U \times V) \cap A$. This implies that $b \in U \cap P_X(A)$ and $c \in V \cap P_Y(A)$. So b = x and c = y, and hence, $(x, y) \in A$. \Box

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments and valuable suggestions.

References

- [1] B.A. Davey, H. A. Priestley, Introduction to Lattices and Order, (2nd edition), Cambridge University Press, 2003.
- [2] A. Fiech, Colimits in the category DCPO, Math. Structures Comput. Sci. 6 (1995) 455-468.
- [3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
- [4] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
- [5] R. Heckmann, An upper power domain construction in terms of strongly compact sets, Lecture Notes in Comput. Sci. 598 (1992) 272-293.
- [6] R. Heckmann, K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci. 298 (2013) 215-232.
- [7] X. Jia, A. Jung, Q. Li, A note on coherence of dcpos, Topology Appl. 209 (2016) 235-238.
- [8] A. Jung, M. Moshier, Steve Vickers, A Hofmann-Mislove theorem for bitopological spaces, J. Log. Algebr. Program. 76 (2008) 161–174.
- [9] S. Mac Lane, Categories for the Working mathematician, Springer, 1997.
- [10] A. Schalk, Algebras for Generalized Power Constructions, (PhD Thesis), Technische Hochschule Darmstadt, 1993.
- [11] N. Wen, X. Xu, Some basic properties of hyper-sober spaces, (in Chinese), Fuzzy Systems Math. 37 (2023), 165–174.
- [12] X. Xu, A direct approach to K-reflections of T₀ spaces, Topology Appl. 272 (2020) 107076.
 [13] X. Xu, D. Zhao, On topological Rudin's Lemma, well-filtered spaces and sober spaces, Topology Appl. 272 (2020) 107080.
- [14] X. Xu, On H-sober spaces and H-sobrifications of T₀ spaces, Topology Appl. 289 (2021) 107548.
- [15] D. Zhao, W. Ho, On topologies defined by irreducible sets, J. Log. Algebr. Methods Program. 84 (2015) 185–195.