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Available at: http://www.pmf.ni.ac.rs/filomat

The answers to some questions on H-sober spaces

Mengjie Jina, Qingguo Lib,∗

aSchool of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan, 471023, China
bSchool of Mathematics, Hunan University, Changsha, Hunan, 410082, China

Abstract. In this paper, we consider and solve several open problems posed by Xu in [11, 14]. Those open
questions concern different categorical constructions of H-sober spaces and hyper-sober spaces. First, for
an irreducible subset system H and a T0 space X, we prove that H automatically satisfies property M, which
was unknown before, hence we deduce that X is super H-sober iffX is H-sober and H satisfies property Q in
the sense of [14]. Beyond the aforementioned work, many questions asked by Xu in [14] are also solved in
the paper. Second, we derive the concrete forms of coequalizers in H-Sob. Finally, we obtain that the finite
product of hyper-sober spaces is hyper-sober, which gives a positive answer to a question posed in [11].

1. Introduction

Sobriety, monotone convergence and well-filteredness are three of the most important and useful prop-
erties in non-Hausdorff topological spaces and domain theory (see [3],[4],[5] and [13]). In recent years,
sober spaces, monotone convergence spaces (shortly called d-spaces), well-filtered spaces and their related
structures have been introduced and investigated.

In [14], Xu provided a uniform approach to sober spaces, d-spaces and well-filtered spaces and developed
a general frame for dealing with all these spaces. The concepts of irreducible subset systems (R-subset
systems for short), H-sober spaces and super H-sober spaces for an R-subset system H were proposed. Let
Top0 be the category of all T0 spaces and Sob the category of all sober spaces. The category of all H-sober
spaces (resp., super H-sober spaces) with continuous mappings is denoted by H-Sob (resp., SH-Sob).
For any R-subset system H, it has been proven that H-Sob is a full subcategory of Top0 containing Sob
and is closed with respect to homeomorphisms. Moreover, H-Sob is adequate (see Theorem 7.9 in [14]).
Conversely, for a full subcategory K of Top0 containing Sob, suppose that K is adequate and closed with
respect to homeomorphisms. There is a natural question: Is there an R-subset system H such that K = H-
Sob? In this paper, we will prove the answer is positive. In [14], Xu also proposed an R-subset system
H : Top0 −→ Set is said to satisfy property M if for any T0 space X, K ∈ H(PS(X)) and A ∈ M(K ), then
{↑(K ∩ A) | K ∈ K} ∈ H(PS(X)). Furthermore, he obtained some results under the assumption that H has
property M. Then he posed the following problems:
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Problem 1. Let H : Top0 −→ Set be an R-subset system (may not have property M) and {Xi | i ∈ I} a
family of super H-sober spaces. Is the product space

∏
i∈I Xi super H-sober?

Problem 2. Let H : Top0 −→ Set be an R-subset system, X a T0 space and Y a super H-sober space. Is
the function space TOP(X,Y) equipped with the topology of pointwise convergence super H-sober?

Problem 3. Let H : Top0 −→ Set be an R-subset system, X a super H-sober space and Y a T0 space. For
a pair of continuous mappings f , 1 : X→ Y, is the equalizer E( f , 1) = {x ∈ X | f (x) = 1(x)} (as a subspace of
X) super H-sober?

Problem 4. For an R-subset system H : Top0 −→ Set, is H SH-Sob complete?
Problem 5. If an R-subset system H : Top0 −→ Set has property M, do the induced R-subset systems

Hd, HR and HD have property M?
Problem 6. For an R-subset system H : Top0 −→ Set, is SH-Sob reflective in Top0? Or equivalently, for

any T0 space X, does the super H-sobrification of X exist?
Problem 7. Let H : Top0 −→ Set be an R-subset system having property M. Is R : H → H , H 7→ HR a

closure operator?
In [15], Zhao and Ho introduced a new variant of sobriety, called hyper-sobriety. A topological space

X is called hyper-sober if for any irreducible set F, there is a unique x ∈ F such that F ⊆ cl({x}). Clearly,
every hyper-sober space is sober. Later, Wen and Xu discussed some basic properties of hyper-sober spaces
in [11]. Moreover, they posed a question:

Problem 8. Is the product space of two hyper-sober spaces again a hyper-sober space?
Let A and B be categories, F : A → B be left adjoint to U : B → A. We know that U preserves limits

and F preserves colimits (see [9]). Xu has proven that H-Sob is adequate (see Theorem 7.9 in [14]), in other
words, it is reflective in Top0. In fact that Top0 is also reflective in Top, so H-Sob is reflective in Top. Since
Top is complete and cocomplete (that is, limits and colimits all exist), we get that H-Sob is also complete
and cocomplete. This implies that coequalizers in H-Sob exist. But we do not know its concrete forms. In
Section 4, we investigate the coequalizers in H-Sob.

In Section 5, we find that property M mentioned above naturally holds for each R-subset system H.
Based on this, for a T0 space X, we deduce that X is super H-sober iff X is H-sober and H satisfies property
Q in the sense of [14]. Additionally, we give positive answers to Problem 1 ∼ Problem 6. Furthermore, we
prove Problem 7 holds.

In Section 6, we will give a positive answer to Problem 8.

2. Preliminaries

In this section, we briefly recall some standard definitions and notations to be used in this paper. For
further details, refer to [3–6, 12].

Let P be a poset and A ⊆ P. We denote ↓A = {x ∈ P | x ≤ a for some a ∈ A} and ↑A = {x ∈ P | x ≥
a for some a ∈ A}. For any a ∈ P, we denote ↓{a} = ↓a = {x ∈ P | x ≤ a} and ↑{a} = ↑a = {x ∈ P | x ≥ a}. A
subset A is called a lower set (resp., an upper set) if A = ↓A (resp., A = ↑A).

The category of all topological spaces with continuous mappings is denoted by Top. For a topological
space X, let O(X) (resp., Γ(X)) be the set of all open subsets (resp., closed subsets) of X. For a subset A of
X, the closure of A is denoted by cl(A) or A. We use ≤X to represent the specialization quasi-order of X,
that is, x ≤X y iff x ∈ {y}. A subset B of X is called saturated if B equals the intersection of all open sets
containing it (equivalently, B is an upper set in the specialization quasi-order). Let S(X) = {{x} | x ∈ X} and
Sc(X) = {{x} | x ∈ X}.

The category of all T0 spaces with continuous mappings is denoted by Top0. For a T0 space X and a
nonempty subset A of X, A is called irreducible if for any B,C ∈ Γ(X), A ⊆ B ∪ C implies A ⊆ B or A ⊆ C.
Denote by Irr(X) the set of all irreducible subsets of X and Irrc(X) the set of all closed irreducible subsets of
X. A topological space X is called sober, if for any A ∈ Irrc(X), there is a unique point a ∈ X such that A = {a}.
The category of all sober spaces with continuous mappings is denoted by Sob.

For a topological space X,G ⊆ 2X and A ⊆ X, let□G(A) = {G ∈ G | G ⊆ A} and ♢G(A) = {G ∈ G | G∩A , ∅}.
The symbols □G(A) and ♢G(A) will be simply written as □A and ♢A respectively if there is no confusion.



M. Jin, Q. Li / Filomat 38:30 (2024), 10809–10817 10811

The upper Vietoris topology on G is the topology that has {□U | U ∈ O(X)} as a base, and the resulting space
is denoted by PS(G). The lower Vietoris topology on G is the topology that has {♢U | U ∈ O(X)} as a subbase,
and the resulting space is denoted by PH(G). If G ⊆ Irr(X), then {♢U | U ∈ O(X)} is a topology on G.

We shall use K(X) to denote the set of all nonempty compact saturated subsets of X ordered by reverse
inclusion, that is, for K1,K2 ∈ K(X), K1 ≤K(X) K2 iff K2 ⊆ K1. The space PS(K(X)) denoted shortly by PS(X), is
called the Smyth power space or upper space of X ([6]).

Lemma 2.1. (Topological Rudin Lemma) [6] Let X be a T0 space, C a closed subset of X andK an irreducible subset
of the Smyth power space PS(X). If C intersects all members of K , then there exists a minimal (irreducible) closed
subset A of C that intersects all members ofK .

Definition 2.2. [1] Let P be a poset. A map c : P→ P is called a closure operator (on P) if, for all x, y ∈ P,

(1) x ≤ y =⇒ c(x) ≤ c(y) (c is monotone),

(2) x ≤ c(x) (c is expansive),

(3) c(c(x)) = c(x) (c is idempotent).

Lemma 2.3. [7, 10] Let X be an T0 space. IfK ∈ K(PS(X)), then
⋃
K ∈ K(X).

Corollary 2.4. [7, 10] For a T0 space X, the mapping
⋃

: PS(PS(X))→ PS(X),K 7→
⋃
K , is continuous.

3. The K-category and H-sober spaces

In what follows, The category K always refers to a full subcategory Top0 containing Sob, the objects of
K are called K-spaces.

Definition 3.1. [12] Let X be a T0 space. A K-reflection of X is a pair ⟨X̂, µ⟩ consisting of a K-space X̂ and a
continuous mapping µ : X → X̂ satisfying that for any continuous mapping f : X → Y to a K-space, there exists a
unique continuous mapping f ∗ : X̂→ Y such that f ∗ ◦ µ = f , that is, the following diagram commutes.

X

f ��

µ // X̂

f ∗

��
Y

By a standard argument, K-reflections, if they exist, are unique to homeomorphisms. We shall use Xk to
indicate the space of the K-reflection of X if it exists.

Definition 3.2. [12] Let (X, τ) be a T0 space. A nonempty subset A of X is called K-determined provided for any
continuous mapping f : X → Y to a K-space Y, there exists a unique yA ∈ Y such that clY( f (A)) = clY({yA}).
Clearly, a subset A of a space X is a K-determined set iff cl(A) is a K-determined set. Denote by Kd(X) the set of all
K-determined subsets of X and Kd

c (X) the set of all closed K-determined subsets of X.

Lemma 3.3. Let X, Y be two T0 spaces. If f : X→ Y is a continuous mapping and A ∈ Kd(X), then f (A) ∈ Kd(Y).

Proof. Let Z be a K-space and 1 : Y→ Z is continuous. Note that 1◦ f : X→ Z is continuous and A ∈ Kd(X),
then there exists an element z ∈ Z such that 1 ◦ f (A) = 1( f (A)) = {z}. So f (A) ∈ Kd(Y).

Definition 3.4. [12] A full subcategory K of Top0 is said to be closed with respect to homeomorphisms if
homeomorphic copies of K-spaces are K-spaces.

Definition 3.5. [12] K is called adequate if for any T0 space X, PH(Kd
c (X)) is a K-space.
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Corollary 3.6. [12] Assume that K is adequate and closed with respect to homeomorphisms. Then for any T0 space
X, the following conditions are equivalent:

(1) X is a K-space.

(2) Kd
c (X) = Sc(X), that is, for each A ∈ Kd

c (X), there exists an x ∈ X such that A = {x}.

(3) X � Xk.

The category of all sets with mappings is denoted by Set.

Definition 3.7. [14] A covariant functor H : Top0 −→ Set is called a subset system on Top0 provided that the
following two conditions are satisfied:

(1) S(X) ⊆ H(X) ⊆ 2X (the set of all subsets of X) for each X ∈ ob(Top0).

(2) For any continuous mapping f : X→ Y in Top0, H( f )(A) = f (A) ∈ H(Y) for all A ∈ H(X).

For a subset system H : Top0 −→ Set and a T0 space X, let Hc(X) = {A | A ∈ H(X)}. We call A ⊆ X an H-set if
A ∈ H(X). The sets in Hc(X) are called closed H-sets.

Definition 3.8. [14] A subset system H : Top0 −→ Set is called an irreducible subset system, or an R-subset
system for short, if H(X) ⊆ Irr(X) for all X ∈ ob(Top0). The family of all R-subset systems is denoted byH . Define
a partial order ≤ onH by H1 ≤ H2 iff H1(X) ⊆ H2(X) for all X ∈ ob(Top0).

Definition 3.9. [14] Let H : Top0 −→ Set be an R-subset system. A T0 space X is called H-sober if for any
A ∈ H(X), there is a (unique) point x ∈ X such that A = {x} or, equivalently, if Hc(X) = Sc(X). The category of all
H-sober spaces with continuous mappings is denoted by H-Sob.

It is not difficult to verify that Sob ⊆ H-Sob. By Definition 3.1, for K = H-Sob, the K-reflection of X
is called the H-sober reflection of X, or the H-sobrification of X and Xh to denote the space of H-sobrification
of X if it exists. Moreover, a K-determined set of X in Definition 3.2 is called a H-sober determined set of X,
Denote by Hd(X) the set of all H-sober determined subsets of X. The set of all closed H-sober determined
subsets of X is denoted by Hd

c (X).

Theorem 3.10. [14] Let H : Top0 −→ Set be an R-subset system. Then H-Sob is adequate. Therefore, for any T0
space X, Xh = PH(Hd

c (X)) with the canonical topological embedding ηh
X: X → Xh is the H-sobrification of X, where

ηh
X(x) = {x} for all x ∈ X.

Remark 3.11. If X is only a topological space, then ⟨PH(Hd
c (X)), ηh

X⟩ is the H-sobrification of X, where ηh
X(x) = {x}

for all x ∈ X.

Let H : Top0 −→ Set be an R-subset system. In [14], it has been shown that H-Sob is a full subcategory
of Top0 containing Sob and is closed with respect to homeomorphisms. Moreover, H-Sob is adequate by
Theorem 3.10.

Conversely, suppose that K is adequate and closed with respect to homeomorphisms. Is there an
R-subset system H such that K = H-Sob? The answer is positive, we will investigate it in Section 5.

4. Coequalizers in H-Sob

For any topological space X, since the H-sobrification of X exists, we have that H-Sob is reflective in Top.
The fact that Top is complete and cocomplete (that is, limits and colimits all exist), so H-Sob is also complete
and cocomplete. This implies that coequalizers in H-Sob exist. But we do not know its concrete forms.
In this section, inspired by the construction of coequalizers in Dcpo (see [2] and [8]), we will investigate
coequalizers in H-Sob.
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Definition 4.1. [9] Let C be a category and f , 1 : A → B be a pair of parallel arrows. A coequalizer of f and 1 is
an object C together with an arrow h : B→ C with the following properties:

(1) h ◦ f = h ◦ 1;

(2) for each arrow k : B→ D such that k ◦ f = k ◦ 1, there is a unique arrow l : C→ D such that l ◦ h = k.

In order to give a specific characterization of coequalizers in H-Sob, first, we introduce the concept of
R-topology on a topological space.

Definition 4.2. [4] Let X be a set and R an equivalence relation on X. A subset A of X is R-saturated if, for every
a ∈ A, for every x ∈ X such that a R x, x is also in A. Equivalently, A is R-saturated iff it is a union of equivalence
classes for R.

Let (X, τ) be a topological space and R an equivalence relation on X. We call a subset U of X R-open if
it is an R-saturated open set. It is easy to see that ∅,X are R-open, the intersection of any finite family of
R-open sets is R-open and the union of any family of R-open sets is R-open. Then the family of all R-open
sets in X precisely forms a new topology on X. We call it an R-topology and denote it by τR. Note that τR ⊆ τ.
Dually, an R-closed subset A of X is the complement X\U of an R-open subset U of X. For a subset A of X,
the closure of A in (X, τR) is denoted by clR(A).

For any (X, τ), (Y, µ) ∈ H-Sob and continuous maps f , 1 : (X, τ)→ (Y, µ), define

K = {k | there exists an H-sober space (Z, ν) such that k : (Y, µ)→ (Z, ν) is continuous and k ◦ f = k ◦ 1}

and
R = {(x, y) ∈ Y × Y | for any k ∈ K , k(x) = k(y)}.

Then R is an equivalence relation on Y. It is not difficult to verify that {( f (x), 1(x)) | x ∈ X} ⊆ R.
Let HR

c (Y) = {A ⊆ Y | A is R-closed and for any continuous map k : (Y, µ) → (Z, ν) ∈ K , there exists a
unique z ∈ Z such that k(A) = {z}}. For the topological space (Y, µR), we have the following lemma:

Lemma 4.3. For (Y, µR), Yh = PH(HR
c (Y)) with the canonical continuous map ηh

Y: (Y, µR)→ Yh is the H-sobrification
of (Y, µR), where ηh

Y(y) = clR({y}) for all y ∈ Y.

Proof. By Remark 3.11, we only need to prove that HR
c (Y) = Hd

c (Y). Define

L = {l | there exists an H-sober space (Z, ν) such that l : (Y, µR)→ (Z, ν) is continuous}.

We claim that K = L. Since µR ⊆ µ and l : (Y, µR)→ (Z, ν) is continuous, this implies that l : (Y, µ)→ (Z, ν)
is continuous. Moreover, for any x ∈ X, we have l f (x) = l1(x). Suppose not, there exists an element x ∈ X
such that l f (x) , l1(x). Without loss of generality, assume that l f (x) ≰ l1(x), then l f (x) ∈ Z\↓l1(x). So
f (x) ∈ l−1(Z\↓l1(x)). Since Z is an H-sober space, it is T0, so Z\↓l1(x) is an open subset in Z. Because
l : (Y, µR) → (Z, ν) is continuous, we have that l−1(Z\↓l1(x)) is R-open. As ( f (x), 1(x)) ∈ R and f (x) ∈
l−1(Z\↓l1(x)), we infer that 1(x) ∈ l−1(Z\↓l1(x)). Thus l1(x) ∈ Z\↓l1(x), which is a contradiction. Therefore,
l f (x) = l1(x). We conclude that L ⊆ K . Conversely, suppose that k ∈ K . Let U ∈ ν. Then k−1(U) is open
in Y. It remains to show that k−1(U) is R-saturated. For every x in k−1(U) and x R a, as k ∈ K , we have
k(x) = k(a) and k(x) ∈ U. Hence, k(a) ∈ U, that is a ∈ k−1(U). Thus k : (Y, µR) → (Z, ν) is continuous. So
K ⊆ L. Therefore,K = L. By the definitions of HR

c (Y) and Hd
c (Y), we could get HR

c (Y) = Hd
c (Y).

By the above lemma, we could see PH(HR
c (Y)) is H-sober and ηh

Y: (Y, µR) → PH(HR
c (Y)) is continuous.

Since µR ⊆ µ, we have ηh
Y: (Y, µ)→ PH(HR

c (Y)) is also continuous.

Theorem 4.4. For (X, τ), (Y, µ) ∈ H-Sob and continuous maps f , 1 : (X, τ) → (Y, µ), PH(HR
c (Y)) together with an

arrow ηh
Y: (Y, µ)→ PH(HR

c (Y)) is a coequalizer of f and 1.
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Proof. Let x ∈ X. Since ( f (x), 1(x)) ∈ R, clR({ f (x)}) = clR({1(x)}). This implies ηh
Y f (x) = ηh

Y1(x). That is,
ηh

Y ◦ f = ηh
Y ◦1. For any H-sober space (Z, ν) and any continuous map k : (Y, µ)→ (Z, ν) such that k◦ f = k◦1,

from the proof of Lemma 4.3, we could see k : (Y, µR) → (Z, ν) is continuous. Because PH(HR
c (Y)) is the

H-sobrification of (Y, µR), there exists a unique continuous mapping k∗ : PH(HR
c (Y)) → (Z, ν) such that

k∗ ◦ ηh
Y = k. So PH(HR

c (Y)) together with an arrow ηh
Y: (Y, µ)→ PH(HR

c (Y)) is the coequalizer of f and 1.

5. On some problems about super H-sober spaces

In this section, we will prove that for each irreducible subset system (R-subset system for short) H,
property M mentioned in [14] naturally holds. Based on this result, we get that Problem 1∼Problem 7 hold.
Furthermore, we generalize some results in [14].

Lemma 5.1. For a T0 space X, S(X) ⊆ Kd(X) ⊆ Irr(X).

Proof. Clearly, S(X) ⊆ Kd(X). Suppose that A ∈ Kd(X). Consider the sobrification Xs (= PH(Irrc(X))) of X
and the canonical topological embedding ηX : X → Xs defined by ηX(x) = {x}. Then there is a B ∈ Irrc(X)
such that ηX(A) = {B}. It is easy to check that A = B. Hence, A ∈ Irr(X).

Theorem 5.2. Suppose that K is adequate and closed with respect to homeomorphisms. Then for a covariant functor
K : Top0 −→ Set defined by Kd(X), ∀ X ∈ ob(Top0), the following statements hold:

(1) K : Top0 −→ Set is an R-subset system.

(2) K=K-sober, that is for each K-space X and any A ∈ Kd(X), there exists a (unique) element x ∈ X such that
A = {x}.

Proof. These statements directly follow from Lemma 3.3, Lemma 5.1 and Corollary 3.6.

For a T0 space X and K ⊆ K(X), let M(K ) = {A ∈ Γ(X) | A ∩ K , ∅ for all K ∈ K} (that is, K ⊆ ♢A) and
m(K ) = {A ∈ Γ(X) | A is a minimal member of M(K )} ([12]).

In [14], Xu proposed that an R-subset system H : Top0 −→ Set is said to satisfy property M if for any
T0 space X, K ∈ H(PS(X)) and A ∈ M(K ), then {↑(K ∩ A) | K ∈ K} ∈ H(PS(X)). Furthermore, he proved
some conclusions under the assumption that H has property M. In the following, we find that property M
naturally holds for each R-subset system H.

Proposition 5.3. Let H : Top0 −→ Set be an R-subset system. Then property M holds.

Proof. Suppose that X is a T0 space,K ∈ H(PS(X)) and A ∈M(K ). Take a map f : PS(X)→ PS(X) defined by

f (K) = ↑(K ∩ A)

for any K ∈ K(X). It is straightforward to check that f is well-defined.
Claim: f is continuous.
For any U ∈ O(X), f−1(□U) = {K ∈ K(X) | ↑(K ∩ A) ∈ □U} = {K ∈ K(X) | ↑(K ∩ A) ⊆ U} = □((X\A) ∪ U).

Hence, f−1(□U) is open in K(X). So f is continuous.
Since H is an R-subset system and K ∈ H(PS(X)), we have that f (K ) = {↑(K ∩ A) | K ∈ K} ∈ H(PS(X)),

that is, property M holds.

By Theorem 6.19, Theorem 6.20, Proposition 6.21, Corollary 6.22, Theorem 7.16 in [14] and Proposition
5.3, we get that Problem 1 ∼ Problem 6 hold.

Definition 5.4. [14] Let H : Top0 −→ Set be an R-subset system. A T0 space X is called super H-sober provided
its Smyth power space PS(X) is H-sober. The category of all super H-sober spaces with continuous mappings is
denoted by SH-Sob.
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Definition 5.5. [14] Let H : Top0 −→ Set be an R-subset system and X a T0 space. A nonempty subset A of X is
said to have H-Rudin property, if there existsK ∈ H(PS(X)) such that A ∈ m(K ), that is, A is a minimal closed set
that intersects all members of K . Let HR(X) = {A ⊆ X | A has H-Rudin property}. The sets in HR(X) will also be
called H-Rudin sets.

Lemma 5.6. [14] Let H : Top0 −→ Set be an R-subset system and X a T0 space. Then H(X) ⊆ HR(X) ⊆ Irr(X).

Lemma 5.7. [14] Let H : Top0 −→ Set be an R-subset system. Then HR : Top0 −→ Set is an R-subset system,
where for any continuous mapping f : X→ Y in Top0, HR( f ) : HR(X)→ HR(Y) is defined by HR( f )(A) = f (A) for
each A ∈ HR(X).

Theorem 5.8. [14] Let H : Top0 −→ Set be an R-subset system and X a T0 space. Then the following conditions
are equivalent:

(1) X is super H-sober.

(2) X is HR-sober.

Definition 5.9. [14] An R-subset system H : Top0 −→ Set is said to satisfy property Q if for any K ∈ H(PS(X))
and any A ∈M(K ), A contains a closed H-set C such that C ∈M(K ).

In [14], Theorem 5.12 pointed out that if X is H-sober and H has property Q, then X is super H-sober.
The following Theorem will show that the converse also holds.

Theorem 5.10. Let H : Top0 −→ Set be an R-subset system. For a T0 space X, the following two conditions are
equivalent:

(1) X is H-sober and H has property Q.

(2) X is super H-sober.

Proof. (1)⇒ (2): Follows directly from Theorem 5.12 in [14].
(2) ⇒ (1): We only need to show that H has property Q. For any K ∈ H(PS(X)) and any A ∈ M(K ),

by Rudin Lemma, we have that there exists a minimal closed subset B ⊆ A such that B ∈ M(K ). Thus
B ∈ HR(X). Since X is super H-sober, by Theorem 5.8, we have that X is HR-sober. Therefore, there exists
x ∈ X such that B = {x}. This implies that B is a closed H-set. Thus H has property Q.

In the following, we will prove that for an R-subset system H : Top0 −→ Set, R : H → H , defined by
H 7→ HR is a closure operator.

Theorem 5.11. Let H : Top0 −→ Set be an R-subset system. Then R : H → H , defined by H 7→ HR is a closure
operator.

Proof. For any R-subset system H, by Lemma 5.7, we have that HR is also an R-subset system. So R is
well-defined.

Claim 1: R is monotone, that is, for H1,H2 ∈ H and H1 ≤ H2, HR
1 ≤ HR

2 .
Assume that X is a T0 space. For any A ∈ HR

1 (X), by Definition 5.5, there exists K ∈ H1(PS(X)) such
that A ∈ m(K ). Since H1 ≤ H2, that is, H1(PS(X)) ⊆ H2(PS(X)), we have that K ∈ H2(PS(X)) and hence,
A ∈ HR

2 (X). So HR
1 (X) ⊆ HR

2 (X) for any T0 space X, which implies that HR
1 ≤ HR

2 .
Claim 2: R is expansive, that is, for any H ∈ H , H ≤ HR.
Follows directly from Lemma 5.6.
Claim 3: R is idempotent, that is, for any H ∈ H , (HR)R = HR.
Since R is expansive, we have that HR

≤ (HR)R. Conversely, we only need to show that (HR)R(X) ⊆ HR(X)
for any T0 space X. Suppose that A ∈ (HR)R(X). By Definition 5.5, there exists A ∈ HR(PS(X)) such that
A ∈ m(A). ForA, again by Definition 5.5, there exists K = {Ki}i∈I ∈ H(PS(PS(X))) such thatA ∈ m(K ). For
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any i ∈ I, let Ki =
⋃
↑K(X)(Ki

⋂
A) =

⋃
(Ki
⋂
A). Then by Lemma 2.3, Corollary 2.4 and property M of H,

we have {Ki}i∈I ∈ H(PS(X)) and Ki ∈ A for each i ∈ I sinceA is a lower set.
Claim 3.1: A ∈M({Ki}i∈I).
Suppose not, there exists i ∈ I such that A ∩ Ki = ∅. That is Ki ⊆ X\A. So Ki ∈ □(X\A). Since Ki ∈ A,

there exists K ∈ □(X\A)
⋂
A, which contradicts the fact that A ∈ m(A).

Claim 3.2: A ∈ m({Ki}i∈I).
Let B ⊆ A be a closed subset and B ∈ M({Ki}i∈I). Then for any i ∈ I, there exists an element N ∈ Ki

⋂
A

such that B∩N , ∅, it is ♢B
⋂
Ki
⋂
A , ∅. By the minimality ofA, we haveA = ♢B

⋂
A, and consequently,

A ⊆ A ⊆ ♢B. So B ∈M(A). By the minimality of A, we have A = B. Thus A ∈ m({Ki}i∈I).
Therefore, for A, there exists {Ki}i∈I ∈ H(PS(X)) such that A ∈ m({Ki}i∈I), which means A ∈ HR(X).

6. The finite product of hyper-sober spaces

The concept of hyper-sober spaces was introduced in [15]. And in [11], Wen and Xu gave a counterex-
ample to show that the product of a countable infinite family of hyper-sober spaces is not hyper-sober in
general. Meantime, they posed the following question:

Is the product space of two hyper-sober spaces again a hyper-sober space?
In this section, we will give a positive answer to the above question.

Definition 6.1. ([15]) A topological space X is called hyper-sober if for any irreducible set F, there is a unique x ∈ F
such that F ⊆ cl({x}).

Lemma 6.2. ([14]) Let X be a space. Then the following conditions are equivalent for a subset A ⊆ X:

(1) A is an irreducible subset of X.

(2) clX(A) is an irreducible subset of X.

Lemma 6.3. ([14]) If f : X→ Y is continuous and A ∈ Irr(X), then f (A) ∈ Irr(Y).

Corollary 6.4. ([14]) Let {Xi}i∈I be a family of T0 spaces and X =
∏
i∈I

Xi the product space. If A ∈ Irrc(X), then

A =
∏
i∈I

pi(A) and pi(A) ∈ Irrc(Xi) for each i ∈ I.

Theorem 6.5. Let X and Y be two hyper-sober spaces. Then the product space X × Y is also hyper-sober.

Proof. Let A be an irreducible subset in X×Y. Suppose PX : X×Y→ X and PY : X×Y→ Y are projections,
respectively. Note that PX and PY are continuous. By Lemma 6.3, PX(A) ∈ Irr(X) and PY(A) ∈ Irr(Y). Since X
and Y are hyper-sober, there exist x ∈ PX(A) and y ∈ PY(A) such that PX(A) ⊆ cl({x}) and PY(A) ⊆ cl({y}). This
implies that A ⊆ PX(A) × PY(A) ⊆ cl({x}) × cl({y}) = ↓(x, y), and (x, y) ∈ PX(A) × PY(A) ⊆ PX(A) × PY(A) = A
by Corollary 6.4. It is sufficient to prove that (x, y) ∈ A.

Claim: x < PX(A)\{x} and y < PY(A)\{y}.
Suppose not, x ∈ PX(A)\{x}. One can directly get PX(A)\{x} = ↓x. Then PX(A)\{x} ∈ Irr(X) by Lemma

6.2. Again since X is hyper-sober, there is an element a ∈ PX(A)\{x} such that PX(A)\{x} ⊆ ↓a. This implies
that x ∈ X \ ↓a. Thus (PX(A)\{x}) ∩ (X \ ↓a) , ∅, which contradicts PX(A)\{x} ⊆ ↓a. So x < PX(A)\{x}. For
y < PY(A)\{y}, the proof is similar to that the case x < PX(A)\{x}.

Therefore, there exist open neighborhoods U of x and V of y such that U ∩ (PX(A)\{x}) = ∅ and
V ∩ (PY(A)\{y}) = ∅, respectively. Since (x, y) ∈ U×V and (x, y) ∈ cl(A), there exists (b, c) ∈ (U×V)∩A. This
implies that b ∈ U ∩ PX(A) and c ∈ V ∩ PY(A). So b = x and c = y, and hence, (x, y) ∈ A.
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