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Impact of concircular curvature tensor in f (R∗)-gravity
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Abstract. This paper concerns with the characterization of a spacetime and f (R∗)-gravity endowed with
concircular curvature tensor. We prove that a concircularly flat perfect fluid spacetime is either a de-
Sitter spacetime or locally isometric to Minkowski spacetime . Moreover, it is established that a perfect
fluid spacetime admitting harmonic concircular curvature tensor represents a Robertson-Walker spacetime.
Finally, we examine the impact of concircularly flat perfect fluid spacetime solutions in two forms of
f (R∗)-gravity.

1. Introduction

A spacetime is a Lorentzian manifold M4 that allows for a globally time-oriented vector and has a
Lorentzian metric 1 with signature (−,+,+,+). Numerous scholars have examined spacetimes in various
contexts (see; [14], [15], [20], [30]).

A n dimensional (n > 2) Lorentzian manifold having the local structure

ds2 = − (dζ)2 + ϕ2 (ζ) 1∗v1v2
dxv1 dxv2 (1)

is called generalized Robertson-Walker (GRW) spacetime ([3], [12]), ϕ indicates a function dependent on
ζ and 1∗v1v2

= 1∗v1v2
(xv3 ) are only functions of xv3 (v1, v2, v3 = 2, 3, . . . ,n) . The last equation (1) can also be

presented as −I × ϕ2M̃, where I ⊂ R and M̃ denotes (n − 1)-dimensional Riemannian manifold. If M̃ is 3-
dimensional and of constant sectional curvature, then the GRW spacetime represents a Robertson-Walker
(RW) spacetime.

M4 is described as a perfect fluid spacetime (PFS) if the Ricci tensor R jk having the form

R jk = c1 jk + du juk, (2)

in which c, d denote scalars and uk indicates a unit timelike vector. The energy-momentum tensor (EMT)
T , which is used to describe the matter content of spacetimes in general relativity (GR) theory. In a PFS,
the EMT [26] is given by

T jk = p1 jk +
(
p + µ

)
u juk, (3)
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where p and µ denote isotropic pressure and energy density, respectively. Also, the equation of state (EoS)
p = p

(
µ
)

interconnects p and µ, and the PFS is named isentropic. Moreover, if p = µ, p + µ = 0, p = 0 and

p =
µ

3
, the PFS is called stiff matter, the dark matter era, the dust matter fluid and the radiation era [11],

respectively. From Einstein’s field equations (EFE), we infer

R jk −
1
2
1 jkR = κT jk, (4)

in which R is the Ricci scalar and κ indicates the gravitational constant.
Concircular transformation was introduced by Yano [28]. It preserves geodesic circles (A curve called

a geodesic circle has a first curvature that is constant and a second curvature of zero). The conformal
transformation

1̄lk = φ
21lk

of the Riemannian tensor 1lk fulfilling the partial differential equation

∇kφl = ψ1lk,

ψ being a scalar changes a geodesic circle to a geodesic circle. The circular transformation is a term used to
describe such a transition [28].

In a Riemannian or a semi-Riemannian space, tensorH l
i jk of type (1, 3) defined by Yano and Kon [29]

H
l
i jk = R

l
i jk −

R

n (n − 1)

{
δl

k1i j − δ
l
j1ik

}
(5)

is called a concircular curvature tensor, Rl
i jk stands for the Riemannian curvature tensor. Under such a

transformation the expression

R
l
i jk −

R

n (n − 1)

{
δl

k1i j − δ
l
j1ik

}
remains invariant.

It is widely circulated in GR theory, the energy conditions (ECs) are important tools for examining
wormholes and black holes in many modified gravity, like f (R), f (T ), f (G), f (R,T ), f (R,G) and f (R,Lm)-
gravity ([4], [5], [6], [7], [8], [16], [13], [21], [22], [23]). The Raychaudhuri equations [27] provides the
fascinating feature of gravity through the criterion R jkv jvk

≥ 0 (positivity condition), where v j is the null
vector. In GR theory, the last criterion on geometry is identical to the null EC (NEC) T jkv jvk

≥ 0 on matter.
Particularly, the weak EC (WEC) states that T jku juk

≥ 0, for every time-like vector u j and allows a positive
local energy density. Various changes to EFE have been established and extensively studied [9]. In ([10],
[18]), the authors assert a specific model in which the adjustment to GR is a polynomial function of R2,
R jkR

jk and Rli jkR
li jk quadratic curvature invariants (Rli jk stands for the Riemannian curvature tensor).In this

article, we study “ f (R∗)-gravity theory”, where R∗ = RlkR
lk, which was developed by Li et al. [24]. A

few f (R∗)-models, for example, f (R∗) = β (R∗)γ (β and γ are constants) introduced by Li et al. [24] and we

choose a novel model f (R∗) = ln (δR∗) − λe
−

R
∗

λ (λ and δ are constants), to discuss different ECs.
After preliminaries the properties of PFS allowing concircular curvature tensor are provided in Section

3. Lastly, we explore concircularly flat PFS solutions in f (R∗)-gravity.

2. Preliminaries

We choose a 4-dimensional spacetime throughout the paper. A spacetime is named concircularly flat if
the concircular curvature tensor vanishes at each point of the spacetime. Let us choose a concircularly flat
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spacetime. Hence, equation (5) yields

R
l
i jk =

R

12
[δl

k1i j − δ
l
j1ik], (6)

which entails that the spacetime is of constant sectional curvature.
Contraction of (6) provides

Ri j =
R

4
1i j. (7)

Thus we state:

Proposition 2.1. A concircularly flat spacetime is an Einstein spacetime.

Covariant derivative of equation (5) gives (for n = 4)

∇lH
l
i jk = ∇lR

l
i jk −

∇lR

12

{
δl

k1i j − δ
l
j1ik

}
. (8)

we know that

∇lR
l
i jk = ∇kRi j − ∇ jRik. (9)

Making use of equation (9) in (8), we infer

∇lH
l
i jk = ∇kRi j − ∇ jRik −

1
12

{
1i j∇kR − 1ik∇ jR

}
. (10)

SupposeH l
i jk is harmonic, that is, ∇lH

l
i jk = 0, then equation (10) provides

∇kRi j − ∇ jRik =
1
12

{
1i j∇kR − 1ik∇ jR

}
. (11)

Multiplying (11) with 1i j infers

∇kR − ∇ jR
j
k =

1
4
∇kR. (12)

Since ∇ jR
j
k =

1
2
∇kR, thus from the equation (12), we acquire

R = constant. (13)

Therefore, equation (11) yields

∇kRi j − ∇ jRik = 0, (14)

which entails R jk is of Codazzi type.

Conversely, for a Codazzi type of Ricci tensor Rlk, we get

∇ jRik − ∇kRi j = 0. (15)

Multiplying (15) with 1i j, we find

∇kR = 0. (16)

The equations (10), (15) and (16) turns into

∇lH
l
i jk = 0. (17)

Thus, we write

Proposition 2.2. In a Riemannian or a semi-Riemannian space the concircular curvature tensor is harmonic iff the
Ricci tensor is of Codazzi type.

Remark 2.3. Theorem 6 and Theorem 7 of the paper [2] are wrongly stated.
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3. PFS admitting concircular curvature tensor

Here, we choose a concircularly flat PFS obeying EFE.
From equations (3), (4) and (7), we get

κ(p + µ)u juk + (κp +
R

4
)1 jk = 0. (18)

Now multiplying equation (18) with 1 jk yields

R + κ(3p − µ) = 0. (19)

Again, multiplying (18) with u j provides

R = 4κµ. (20)

From the last two equations, we obtain

p = −µ, (21)

which means that a dark matter era [11]. Therefore, we provide:

Theorem 3.1. A concircularly flat PFS satisfying EFE represents a dark matter era.

Equations (3) and (4) jointly yield

R jk = κ(p + µ)u juk + (κp +
R

2
)1 jk. (22)

Now, multiplying equation (22) by u juk, we acquire

R jku juk = κµ −
R

2
. (23)

Therefore, from (20) and (23), we find

R jku juk = −κµ. (24)

A spacetime satisfies the strong EC (SEC) [17] if for every time-like vector v, Rhjvhv j
≥ 0 holds. Let the

spacetime under consideration obeys the SEC. Thus

κµ ≤ 0. (25)

As µ is non-negative and κ > 0, then (20) and (25) infer

R = 0. (26)

Then equation (6) provides Rl
i jk = 0, which entails that the spacetime has vanishing sectional curvature.

Hence, a concircularly flat PFS and Minkowski spacetime are locally isometric ([17], p. 67).
Thus, we write:

Theorem 3.2. A concircularly flat PFS satisfying the SEC is locally isometric to Minkowski spacetime.

Since µ is non-negative, equation (20) states that

R ≥ 0, (27)

which entails R > 0, or R = 0.

Case 1. If R > 0, then equation (6) implies that the space is of positive constant curvature. Thus, it is a
de-Sitter spacetime [17].

Case 2. For R = 0, equation (6) reveals Rl
i jk = 0. Therefore, the spacetime is locally isometric to Minkowski

spacetime.
Hence, we state:
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Theorem 3.3. A concircularly flat PFS is either locally isometric to Minkowski spacetime or a de-Sitter spacetime.

Since the de-Sitter spacetime is conformally flat and therefore belongs to Petrov classification O.Hence, we
provide:

Corollary 3.4. A concircularly flat PFS belongs to Petrov classification O or locally isometric to Minkowski spacetime.

Let the concircular curvature tensor be harmonic, that is, ∇lH
l
i jk = 0.

We know that a Yang pure space [19] is a Lorentzian manifold obeying the Yang’s equation:

∇hRlk − ∇kRlh = 0. (28)

Hence, by Proposition 2, we infer that a spacetime allowing harmonic concircular curvature tensor is a Yang
pure space.
From [19], we write the subsequent:

Theorem A. A 4-dimensional PFS obeying µ + p ̸= 0 represents a Yang pure space iff it is a RW spacetime.

Therefore, using Theorem A, we provide:

Theorem 3.5. A PFS obeying p + µ ̸= 0 and harmonic concircular curvature tensor is a RW spacetime.

4. Concircularly flat PFS solutions fulfilling f (R∗)-gravity

The modified Einstein-Hilbert action term is given by

S =
∫ {

Lm +
R + f (R∗)

2κ

}
d4x
√
−1, (29)

where Lm indicates the matter Lagrangian density depends on the metric 1lk and Ricci-tensor-squared
gravity R∗ is presented as

R
∗ = RlkR

lk. (30)

The variation of action term (29) provides the modified EFE of f (R∗)-gravity as [24]

Rlk + 2 fR∗Rh
lRkh −

1
2
{
R + f (R∗)

}
1lk = κT

f
lk (31)

in which fR∗ =
∂ f
∂R∗

and T f
lk is the EMT of the fluid.

In f (R∗) modified gravity, the ECs are given by

NEC⇐⇒ µ + p ≥ 0,
WEC⇐⇒ µ ≥ 0 and µ + p ≥ 0,
DEC⇐⇒ µ ≥ 0 and µ ± p ≥ 0,
SEC⇐⇒ µ + 3p ≥ 0 and µ + p ≥ 0,

in which DEC indicates the dominant EC.

Here, we choose PFS solutions in f (R∗)-gravity equation allowing the EMT equation (3). Thus, (3), (7)
and (31) together imply

R
2

8
1lk fR∗ −

R

4
1lk −

1
2
1lk f (R∗) = κp1lk + κ

(
p + µ

)
uluk. (32)
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Multiplying (32) with ul, we obtain

µ =
R

4κ
+

1
2κ

f (R∗) −
R

2

8κ
fR∗ . (33)

Again, multiplying equations (32) with 1lk infers

3κp − κµ =
R

2

2
fR∗ − R − 2 f (R∗) . (34)

From (33) and (34), it follows that

p = −
R

4κ
−

1
2κ

f (R∗) +
R

2

8κ
fR∗ . (35)

Hence, we provide:

Theorem 4.1. In a concircularly flat PFS solutions in f (R∗)-gravity the energy density µ and the isotropic pressure
p are described by (33) and (35), respectively.

Equations (33) and (35) together imply

p + µ = 0,

which tells that NEC is verified.
From (7), it follows that

R
lk =
R

4
1lk. (36)

Equations (7) and (36) together imply

RlkR
lk =
R

2

4
. (37)

Therefore the Ricci-tensor-squared gravity is

R
∗ =
R

2

4
. (38)

We now investigate the ECs for two distinct f (R∗)-gravity models in the subsequent subsections.

A. f (R∗) = β (R∗)γ

Using equations (33), (35) and (38), the energy density and pressure are described as

µ =
R

4κ
+
β
(
1 − γ

)
R

2γ

2κ × 4γ
, (39)

p = −
R

4κ
−
β
(
1 − γ

)
R

2γ

2κ × 4γ
. (40)



U. C. De, F. Mofarreh / Filomat 38:30 (2024), 10529–10537 10535

The ECs are now discussed using equations (39) and (40).

Fig. 1: Advancement of µ Fig. 2: Advancement of DEC

Fig. 3: Advancement of SEC

Figs. 1, 2 and 3, gave the profiles of µ, DEC and SEC. In this set up, µ + p is zero. As NEC belongs to
WEC, consequently NEC and WEC are verified. Fig. 2 gives the DEC profile.SEC is violated, and this result

provides the Universe’s late-time acceleration [25]. Moreover, for this set up, the EoS is
p
µ
= −1.

B. f (R∗) = ln (δR∗) − λe
−

R∗

λ

Here, using (33), (35) and (38), the energy density and pressure are represented as

µ =
1
κ


(
R − 2

4

)
−

(
R

2 + 4λ
8

)
e
−

R
2

4λ +
1
2

ln
(
δR2

4

) , (41)

p =
1
κ

−
(
R − 2

4

)
+

(
R

2 + 4λ
8

)
e
−

R
2

4λ −
1
2

ln
(
δR2

4

) . (42)
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Using (41) and (42), we can discuss about the ECs for this model.

Fig. 4: Advancement of µ Fig. 5: Advancement of DEC

Fig. 6: Advancement of SEC

Figs. 4, 5, and 6 shows the profiles of µ, DEC, and SEC. Also, we see that µ and DEC are obeyed for
R > 2 and R2 + 4λ < 0 with δ = 4 but the SEC is not satisfied. Moreover, as µ + p = 0 for this set up, NEC
and WEC are also verified.

5. Conclusion

The prime focus of this paper is to explore the concircularly flat PFS solutions in f (R∗)-gravity.
Our outcomes have been examined analytically and graphically. To create our formulation, we used here
the analytic technique and discuss the stability of two cosmological models, like f (R∗) = β (R∗)γ and

f (R∗) = ln (δR∗) − λe
−

R
∗

λ . For the 1st model, Figs. 1, 2 and 3 gave the profiles of ECs. For parameters R > 0
and β > 0, the evolution of µ is seen to be positive. Although WEC, NEC and DEC are verified, SEC violated

the agreement. Moreover, the EoS is
p
µ
= −1, which indicates the dark matter era. Besides, all conclusion is

consistent with the ΛCDM model [1]. Likewise to the 1st model, Figs. 4, 5 and 6 depict all ECs for the 2nd
model. The findings we discovered for the 2nd model are identical with those of the 1st model.
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[30] Zengin, F.Ö. and Taşci, A.Y., Spacetimes admitting the Z-symmetric tensor, Quaestiones Mathematicae, 44(2021), 1613–1623.


	Introduction
	Preliminaries
	PFS admitting concircular curvature tensor
	Concircularly flat PFS solutions fulfilling f(R^)-gravity
	Conclusion
	Acknowledgement

