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Abstract. In this paper, the multi-point nonlocal second order linear Sturm-Liouville problem is considered
consisting of the equation −u′′(t) + q(t)u(t) = λu(t) on [0, 1] and multi-point boundary value conditions.
The geometric multiplicity of eigenvalues, the asymptotic formulas for eigenvalues and eigenfunctions
are expressed explicitly under certain mild conditions, these results can be used to investigate the inverse
spectral problems of certain Sturm-Liouville operators.

1. Introduction

Sturm-Liouville theory is well known in qualitative analysis of eigenvalues and eigenfunctions of
second-order linear boundary value problems ([6, 19]), and many researches are involved such as self-
adjointness of operator, distribution of eigenvalues, asymptotic properties of eigenvalues, oscillation of
eigenfunctions, completeness of system of eigenfunctions. Among these researches, nonlocal boundary
value problems have been of growing interest in recent years since they can describe states and properties
that related to past moments ([8, 12, 15, 24, 34]), such processes arise in mathematical physics, biology and
biotechnology and other fields. The multi-point nonlocal boundary value problem for the second-order
ordinary differential equation was first proposed by Ilyin and Moisseev in [16], later, some scholars devoted
themselves to the study of such problems (see [1–3, 14]). The authors in [7, 11, 29] studied eigenvalues for
such problems with nonlocal boundary conditions of Ionkin-Samarskii or integral type. More complicated
cases of Sturm-Liouville problem with one classical boundary condition and another Bitsadze-Samarskii
type or integral type nonlocal boundary condition were considered in [25, 26]. In particular, Sturm-
Liouville problem in three cases of Bitsadze-Samarskii type nonlocal two-point boundary conditions were
investigated by Peciulyte and Stikonas in [25]. They obtained the general properties of eigenvalues and
eigenfunctions, the qualitative behavior of eigenvalues dependent on boundary condition parameters was
also described.
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In 2007, the following Sturm-Liouville problem with one classical boundary condition and another
Bitsadze-Samarskii type nonlocal boundary condition

−u′′(t) = λu(t), t ∈ (0, 1)

u(0) = 0

u(1) = γu(ξ)

was considered in [31], whereγ ∈ C andξ ∈ [0, 1]. The author proved general properties of the eigenfunction
and spectrum for such a problem in the complex case and analyzed the case of real eigenvalues. Then the
characteristic function method has been used in [32] for the purpose of presenting some new results of the
spectrum of the above problem.

Recently, Sen and Stikonas in [33] obtained the asymptotic formulas of eigenvalues and eigenfunc-
tions for the following second order nonlocal boundary value problem with potential function q(t) in the
differential equation

−u′′(t) + q(t)u(t) = λu(t), t ∈ [0, 1]

u(0) = 0,

u(1) = γu(ξ),

where γ ∈ R and ξ ∈ (0, 1).
Meanwhile, the multi-point boundary value problems of ordinary differential equations have become

an important area of research in recent years, the authors in [17] considered the second order linear Sturm-
Liouville problem which involve one or two multi-point boundary conditions. They got certain interlacing
relations between the eigenvalues of Sturm-Liouville problems with multi-point boundary conditions and
those with two-point separated boundary conditions. Algebraic multiplicity of eigenvalues was also
involved. Furthermore, the studies of multi-point Sturm-Liouville problems will set up a foundation for
the further investigations of nonlinear boundary value problems with multi-point boundary conditions.
There were some literatures on such problems ( see [4, 5, 9, 10, 17, 20–23, 27, 28] for more details).

In [9], the authors investigated the structure of eigenvalues for the multi-point boundary value problem
in the following form:

−y′′(x) + q(x)y = λy, x ∈ [0, 1]

y(0) = 0,

y(1) −
m∑

k=1

αky(ηk) = 0,

where q ∈ L1([0, 1],R), α = (α1, . . . , αm) ∈ Rm, and 0 < η1 < · · · < ηm < 1. They gave a sufficient condition for
real eigenvalues, but did not give the asymptotic formulas of eigenvalues and eigenfunctions.

Inspired by the above literatures, in this paper, we discuss a class of boundary value problems consisting
the equation

−u′′(t) + q(t)u(t) = λu(t), t ∈ [0, 1] (1)

together with the (m + 2)-point boundary conditions of the form

u(0) = 0, (2)

u(1) =
m∑

j=1

α ju(η j), (3)
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where the potential q(t) is a real-valued function which is continuous in [0, 1], λ = s2 is a complex spectral
parameter and s = x + iy, x, y ∈ R. α j ∈ R and α j > 0 (or α j < 0), j = 1, 2, · · · ,m, simultaneously. 0 < η1 <
· · · < η j < 1.

The rest of the paper is organized as follows. In Section 2, we will give the asymptotic formulas of
solutions satisfying the initial conditions, and prove that the geometric multiplicity of the eigenvalue is 1.
In Section 3, by comparing the characteristic equation with the case q = 0, we analyze the characteristic
equation of problem (1)-(3). Finally, the asymptotic formulas of eigenvalues and eigenfunctions for the
multi-point nonlocal boundary value problem are expressed explicitly under certain mild conditions.

In the sequel, we will use the following symbols:

R−s = {s = x + iy ∈ C : x = 0, y > 0}, R+s = {s = x + iy ∈ C : x > 0, y = 0},
C+s = {s = x + iy ∈ C : x > 0, y > 0}, C−s = {s = x + iy ∈ C : x > 0, y < 0},

R0
s = {s = 0},

where Rs = R−s ∪R
+
s ∪R

0
s , Cs = Rs ∪ C+s ∪ C

−
s .

2. Preliminaries

In this section, we will give estimations of solutions satisfying the initial conditions and analyze the
geometric multiplicity of eigenvalues.

Let φλ(t) = φ(t, λ) be the solution of equation (1) satisfying the initial conditions

φλ(0) = 0, φ′λ(0) = −1. (4)

Then we know that φλ(t) is uniquely determined by the existence and uniqueness theorem of the solution,
and φλ(t) is an analytic function with respect to λ on the complex plane by the differentiability theorem of
the solution to the parameters.

Lemma 2.1. [19] The solution φλ(t) of equation (1) satisfying initial condition (4) has the following expression for
λ , 0:

φλ(t) = −
1
s

sin(st) +
1
s

∫ t

0
sin(s(t − τ))q(τ)φλ(τ)dτ. (5)

Lemma 2.2. [33] Let s ∈ Cs, then there exists q0 > 0 such that for |s| > q0 one has the estimate

φλ(t) = O(s−1e|y|t), |s| → ∞, (6)

and more precisely,

φλ(t) = −s−1 sin(st) +O(s−2e|y|t), |s| → ∞. (7)

These estimates hold uniformly for 0 ≤ t ≤ 1 .

Lemma 2.3. [33] Let s ∈ Cs, then there exists q0 > 0 such that for |s| > 2q0 one has the estimate

φ′λ(t) = O(e|y|t), |s| → ∞, (8)

and more precisely,

φ′λ(t) = − cos(st) +O(s−1e|y|t), |s| → ∞. (9)

These estimates hold uniformly for 0 ≤ t ≤ 1 .

Theorem 2.4. The geometric multiplicity of eigenvalues of problem (1)-(3) is 1.

Proof. We suppose that λ is the eigenvalue of (1)-(3) and ψλ(t) is the corresponding eigenfunction. The
statement is obvious since all solutions with ψλ(0) = 0 are multiples of φλ by the uniqueness property of
the initial value problem.
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3. Main results

In this section, we will get the main results of the paper.

Substituting φλ(t) into u(1) =
m∑

j=1

α ju(η j), we get the characteristic equation of problem (1)-(3)

φλ(1) −
m∑

j=1

α jφλ(η j) = 0. (10)

For s =
√
λ, we define a function

F(s) := −s

φλ(1) −
m∑

j=1

α jφλ(η j)

 . (11)

We see that F(s) is an analytic function of s. The set of eigenvalues for problem (1)-(3) is equal to the
set

{
λ : λ = s2,−F(s)/s = φλ(1) −

∑m
j=1 α jφλ(η j) = 0

}
.

Substituting (5) into (11), we obtain

F(s) = sin s −
∫ 1

0
sin(s(1 − τ))q(τ)φλ(τ)dτ

−

m∑
j=1

α j

(
sin(η js) −

∫ η j

0
sin(s(η j − τ))q(τ)φλ(τ)dτ

)
,

F′(s) = cos s −
m∑

j=1

α jη j cos(η js)

−

∫ 1

0
(1 − τ) cos(s(1 − τ))q(τ)φλ(τ)dτ +

m∑
j=1

α j

∫ η j

0
(η j − τ) cos(s(η j − τ))q(τ)φλ(τ)dτ.

Next, we estimate F(s) and F′(s). Since∣∣∣∣∣∣−
∫ 1

0
sin(s(1 − τ))q(τ)φλ(τ)dτ

∣∣∣∣∣∣ ≤
∫ 1

0
| sin(s(1 − τ)||q(τ)||φλ(τ)|dτ

≤

∫ 1

0
e|y|(1−τ)

|q(τ)|C(s−1e|y|τ)dτ

= C
∫ 1

0
|q(τ)|dτ · s−1e|y| = O(s−1e|y|),

and for 0 < η j < 1 ( j = 1, · · · ,m ),∣∣∣∣∣α j

∫ η j

0
sin(s(η j − τ))q(τ)φλ(τ)dτ

∣∣∣∣∣ ≤ |α j|

∫ η j

0
e|y|(η j−τ)

|q(τ)|C(s−1e|y|τ)dτ

≤ C|α j|

∫ 1

0
|q(τ)|dτ · s−1e|y|

= O(s−1e|y|),

where C > 0 is a constant determined by the solution. We can write F(s) and F′(s) as

F(s) = f (s) + f0(s) = sin s −
m∑

j=1

α j sin(η js) +O(s−1e|y|), (12)



Y. Gan et al. / Filomat 38:30 (2024), 10555–10566 10559

F′(s) = cos s −
m∑

j=1

α jη j cos(η js) +O(s−1e|y|). (13)

Theorem 3.1. Ifα j > 0 ( j = 1, 2, · · · ,m ) and
m∑

j=1

α j < 1, then there exists a countable number of positive eigenvalues

for problem (1)-(3) and the equation F(x) = 0 has at least one positive root in each interval (−π2 +kπ, π2 +kπ) for k large
enough.

Proof. Suppose s = x, 0 < x ∈ R, according to (12), we get

F(x) = sin x −
m∑

j=1

α j sin(η jx) +O(x−1).

For x large enough,∣∣∣∣∣∣∣∣
m∑

j=1

α j sin(η jx) +O(x−1)

∣∣∣∣∣∣∣∣
≤ α1| sin(η1x)| + α2| sin(η2x)| + · · · + αm| sin(ηmx)| + |O(x−1)|

<
m∑

j=1

α j < 1.

Since sin x takes the local maximum value 1 at − 3π
2 + 2kπ, k ∈ N, and the local minimum value -1 at

−
π
2 + 2kπ, k ∈N. Using the intermediate value theorem, the equation F(x) = 0 has at least one root in each

interval (−π2 + kπ, π2 + kπ), K < k ∈ N for K large enough. So the equation F(x) = 0 has countable numbers
of roots.

Remark 3.2. Similarly, equation f (x) = sin x −
m∑

j=1

α j sin(η jx) = 0 has at least one positive root in the interval

(−π2 + kπ, π2 + kπ) for k large enough. And it is obtained that the root of equation f (x) = 0 is unique in each interval
(−π2 +kπ, π2 +kπ) by using the implicit function theorem as in [27], so we represent the root as xk = kπ+1k(α1, · · · , αm),
where |1k(α1, · · · , αm)| ≤ π

2 .

If q(t) = 0, we note that the characteristic equation of problem (1)-(3) is exact the equation f (s) =

sin s −
m∑

j=1

α j sin(η js) = 0. Remark 3.2 shows that for
m∑

j=1

α j < 1, equation f (s) = 0 has countable numbers

of positive simple roots xk, which can be obtained by solving equation f (x) = 0. According to Rouche’s
theorem, there exists x̃k between two roots xk and xk+1 of the above equation such that f ′(x̃k) = 0, that is,

x̃k is the root of cos x −
m∑

j=1

α jη j cos(η jx) = 0.

Remark 3.3. Supposeα j > 0 ( j = 1, 2, · · · ,m) with
m∑

j=1

α j < 1 and 0 < η j. If xk is a root of sin x−
m∑

j=1

α j sin(η jx) = 0,

due to the simplicity of the roots of the equation ([27]), there exists κ > 0 such that

∣∣∣∣∣∣∣∣cos xk −

m∑
j=1

α jη j cos(η jxk)

∣∣∣∣∣∣∣∣ ≥
κ > 0, where κ depends on x.
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Remark 3.4. Suppose α j > 0 ( j = 1, 2, · · · ,m) with
m∑

j=1

α j < 1 and 0 < η j < 1. If cos x −
m∑

j=1

α j cos(η jx) = 0,

let x = ak := (k+ 1
2 )π, k ∈N. At this time, by cos ak = 0, we haveα1 cos(η1ak)+α2 cos(η2ak)+· · ·+αm cos(ηmak) = 0,

then there exists κ̃ > 0 such that | sin ak| −

m∑
j=1

α j| sin(η jak)| ≥ κ̃ =: 1 −
m∑

j=1

α j > 0.

Let Dk = {s : |x| ≤ ak = (k+ 1
2 )π, |y| ≤ ak}, Ds

k = Dk∩Cs. Define a contour Γs
k = ∂Dk∩Cs, it can be seen from

[32] that the corresponding contour Γλk is the boundary of the domain Dλ
k in the plane Cλ, where λ = s2 is

the bijection from Cs to Cλ.

Lemma 3.5. Suppose
m∑

j=1

α j < 1, then there exists l > 0 such that all eigenvalues of problem (1)-(3) are positive in

the domain {s ∈ Cs : |s| > l}.

Proof. On the vertical part of the contour Γs
k, i.e. s = ak + iy, y ∈ [−ak, ak],

f (s) = sin s −
m∑

j=1

α j sin(η js).

Taking the real part of f (s), we get

Re f (s) = sin ak cosh y −
m∑

j=1

α j sin(η jak) cosh(η jy),

| f (s)| ≥ |Re f (s)| ≥| sin ak| cosh y −
m∑

j=1

α j| sin(η jak)| cosh(η jy)

≥

| sin ak| −

m∑
j=1

α j| sin(η jak)|

 cosh y.

According to Remark 3.4, we get | f (s)| ≥ k̃ cosh y ≥M1e|y|, where M1 > 0.
On the rest part of the contour Γs

k, i.e. y = ±ak, 0 ≤ x ≤ ak. Since

sin(x + iy) = sin x cosh y + i cos x sinh y,

we get

| sin s| =
√

sin2 x cosh2 y + cos2 x sinh2 y

=

√
cosh2 y − cos2 x.

Then
| sin s| ≥ | sinh y|, | sin(η js)| ≤ cosh(η jy).

So we have

| f (s)| =

∣∣∣∣∣∣∣∣sin s −
m∑

j=1

α j sin(η js)

∣∣∣∣∣∣∣∣
≥| sin s| −

m∑
j=1

α j| sin(η js)|

≥| sinh y| −
m∑

j=1

α j cosh(η jy) = h(y)e|y|,
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where h(y) is defined by

h(y) =

| sinh y| −
m∑

j=1

α j cosh(η jy)

 e−|y|

=
1
2
−

e−2|y|

2
−

m∑
j=1

α j
e(η j−1)|y|

2
−

m∑
j=1

α j
e−(η j+1)|y|

2
.

We know that there exists ỹ > 0 such that h(y) ≥ 1
5 for |y| > ỹ by analyzing the function h(y), so | f (s)| ≥ e|y|

5 .
Taking M = min{M1, 1

5 }, Thus we get | f (s)| ≥Me|y| on Γs
k for k large enough. By (12) and |s| > l, we obtain

| f0(s)| ≤ c1|s|−1e|y| < Me|y| ≤ | f (s)|,

where c1 is a constant determined by the solution. According to Rouche’s theorem, it is obvious that f (s) =
0 and F(s) = f (s) + f0(s) = 0 have the same number of zeros inside Γs

k. Since f (s) = 0 has only one root
in the area between contours Γs

k−1 and Γs
k, equation F(s) = 0 also has one root in this area. Combined with

Theorem 3.1, we obtain that the roots of F(s) = 0 in the domain {s ∈ Cs : |s| > l} are positive.

Let sk be a root of F(s) = 0, we know that sk is positive by Lemma 3.5 for k large enough. Next we will
study the distribution of positive eigenvalues of problem (1)-(3), and we only consider the case of s = x > 0,
since eigenvalues are real, as |s| → ∞, we have

F(s) = f (s) +O(s−1), where f (s) = sin s −
m∑

j=1

α j sin(η js).

F′(s) = f ′(s) +O(s−1), and f ′(s) = cos s −
m∑

j=1

α jη j cos(η js).

It follows from xk, sk ∈ ((k − 1/2)π, (k + 1/2)π) that

sk ∼ xk ∼ kπ as k→∞.

Let ωk = sk − xk, we get
lim
k→∞

wk = 0 i.e., wk = o(1), k→∞.

By (7), we obtain

φs(t) = −
sin(st)

s
+O(s−2), |s| → ∞. (14)

Theorem 3.6. Let q ∈ C[0, 1], suppose α j > 0 ( j = 1, 2, · · · ,m) and
m∑

j=1

α j < 1. Then as k → ∞, the asymptotic

formulas of eigenvalues λk and eigenfunctions uk of problem (1)-(3) have the forms

sk = xk +O(k−1), uk(t) = −
sin(xkt)

xk
+O(k−2). (15)

Proof. Substituting sk = xk + ωk into F(s) = sin s −
m∑

j=1

α j sin(η js) +O(s−1) = 0, as k→∞, we get

sin xk −

m∑
j=1

α j sin(η jxk) + ωk

cos xk −

m∑
j=1

α jη j cos(η jxk)

 +O(ω2
k) = O(k−1).
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Since xk is the root of f (s) = 0, i.e. sin xk −

m∑
j=1

α j sin(η jxk) = 0, we have

cos xk −

m∑
j=1

α jη j cos(η jxk) +O(ωk)

ωk = O(k−1), k→∞.

Then it is obtained from Remark 3.3 that ωk = O(k−1). Similarly, substituting sk = xk + ωk into (14), we get

uk(t) = φλk (t) = −
sin((xk + ωk)t)

xk + ωk
+O(k−2)

= −
sin(xkt)

xk
−

[
sin((xk + ωk)t)

xk + ωk
−

sin(xkt)
xk

]
+O(k−2)

= −
sin(xkt)

xk
−

xk sin(xkt)O(ω2
k) + xkωkt cos(xkt) − sin(xkt)ωk

x2
k

+O(k−2)

= −
sin(xkt)

xk
−

xkt cos(xkt) − sin(xkt)
x2

k

ωk −
sin(xkt)

xk
O(ω2

k) +O(k−2)

= −
sin(xkt)

xk
+O(k−2), k→∞.

As k→∞, we normalize uk(t) as

α2
k =

∫ 1

0
u2

kdt =
∫ 1

0

sin2(xkt)
x2

k

+O(k−3)

 dt

=
1
x2

k

[1
2
−

1
4xk

sin(2xk)
]
+O(k−3)

=
1

2x2
k

(1 +O(k−1)),

−
1
αk
= −
√

2xk +O(1).

Therefore, as k→∞, the normalized eigenfunctions have asymptotic formulas

vk(t) = (−
√

2xk +O(1))
[
−

sin(xkt)
xk

+O(k−2)
]
=
√

2 sin(xkt) +O(k−1).

In order to obtain more exact asymptotic formulas of eigenvalues and eigenfunctions, we assume
that q ∈ C1[0, 1], then as |s| → ∞, the following formulas hold:∫ t

0
q(τ) cos(2sτ)dτ = O(s−1),

∫ t

0
q(τ) sin(2sτ)dτ = O(s−1).

Let Q(t) = 1
2

∫ t

0 q(τ)dτ, it is obvious that Q(t) is bounded. Substituting (14) into (5), we obtain

φλ(t) = −
1
s

sin(st) +
1
s

∫ t

0
sin(st − sτ)q(τ)

[
−

sin(sτ)
s
+O(s−2)

]
dτ, |s| → ∞.
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Since

−
1
s2

∫ t

0
sin(sτ) sin(st − sτ)q(τ)dτ

= −
sin(st)

2s2

∫ t

0
sin(2sτ)q(τ)dτ

+
Q(t) cos(st)

s2 −
cos(st)

2s2

∫ t

0
cos(2sτ)q(τ)dτ,

as |s| → ∞, we have ∣∣∣∣∣∣−sin(st)
2s2

∫ t

0
sin(2sτ)q(τ)dτ

∣∣∣∣∣∣ = | sin(st)|
2s2 O(s−1) = O(s−3),

∣∣∣∣∣∣−cos(st)
2s2

∫ t

0
cos(2sτ)q(τ)dτ

∣∣∣∣∣∣ = O(s−3),

1
s

∫ t

0
sin(st − sτ)q(τ)O(s−2)dτ = O(s−3).

So we get

φs(t) = −
1
s

sin(st) +
Q(t) cos(st)

s2 +O(s−3), |s| → ∞. (16)

Then by (11), we obtain

F(s) = sin s −
m∑

j=1

α j sin(η js) −

Q(1) cos s −
m∑

j=1

α jQ(η j) cos(η js)

s
+O(s−2), |s| → ∞. (17)

Define

W(α1, · · · , αm; η1, · · · , ηm; s) :=

Q(1) cos s −
m∑

j=1

α jQ(η j) cos(η js)

cos s −
m∑

j=1

α jη j cos(η js)

.

For convenience, we abbreviate W(α1, · · · , αm; η1, · · · , ηm; s) to W(α j, η j, s) in the following assertions.

Theorem 3.7. If q ∈ C1[0, 1], α j > 0 ( j = 1, 2, · · · ,m) and
m∑

j=1

α j < 1. Then as k→∞, the asymptotic formulas of

eigenvalues and eigenfunctions of problem (1)-(3) have forms

sk = xk +W(α j, η j, xk)x−1
k +O(k−2), (18)

uk(t) = −
sin(xkt)

xk
+ (Q(t) − tW(α j, η j, xk))

cos(xkt)
x2

k

+O(k−3). (19)
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Proof. Substituting sk = xk + ωk into (17), as k→∞, we get

sin(xk + ωk) −
m∑

j=1

α j sin((xk + ωk)η j) −
Q(1) cos(xk + ωk)

xk + ωk

+

m∑
j=1

α jQ(η j) cos((xk + ωk)η j)

xk + ωk
= O(k−2).

The four parts on the left side of the above formula will be discussed below. As k→∞, we have

sin(xk + ωk) = sin xk + ωk cos xk +O(ω2
k),

−

m∑
j=1

α j sin(xkη j + ωkη j) = −
m∑

j=1

α j sin(xkη j) −
m∑

j=1

α jωkη j cos(xkη j) +O(ω2
k),

−
Q(1) cos(xk + ωk)

xk + ωk
= −

Q(1) cos xk

xk
+

Q(1) sin xk

xk
ωk +O(ω2

k),

m∑
j=1

α jQ(η j) cos(η j(xk + ωk))

xk + ωk
=

m∑
j=1

α jQ(η j)

xk
cos(xkη j) −

m∑
j=1

α jη jQ(η j)ωk sin(xkη j)

xk
+O(ω2

k).

Then we can obtain that

sin xk −

m∑
j=1

α j sin(xkη j) −

Q(1) cos xk −

m∑
j=1

α jQ(η j) cos(xkη j)

xk

+

cos xk −

m∑
j=1

α jη j cos(xkη j) + (Q(1) sin xk − ωk

m∑
j=1

α jη jQ(η j) sin(xkη j))x−1
k

ωk

+O(ω2
k) = O(k−2), k→∞.

Since sin xk −

m∑
j=1

α j sin(xkη j) = 0, the above formula can be written as

cos xk −

m∑
j=1

α jη j cos(xkη j) +O(k−1)

ωk =

Q(1) cos xk −

m∑
j=1

α jQ(η j) cos(xkη j)

xk
+O(k−2), k→∞,

or

ωk =

Q(1) cos xk −

m∑
j=1

α jQ(η j) cos(xkη j)

xk

cos xk −

m∑
j=1

α jη j cos(xkη j)


+O(k−2)

=
W(α j, η j, xk)

xk
+O(k−2), k→∞.
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Substituting sk = xk + ωk into (16), we get

uk(t) = −
sin(xkt)

xk
+

Q(t) cos(xkt)
x2

k

−
t cos(xkt)

xk
ωk +O(k−3), k→∞.

Finally, it follows by ωk =W(α j, η j, xk)x−1
k +O(k−2) that

uk(t) = −
sin(xkt)

xk
+ (Q(t) − tW(α j, η j, xk))

cos(xkt)
x2

k

+O(k−3), k→∞.

Next, we give the normalized eigenfunctions as follows. By (19), as k→∞, we conclude

u2
k =

sin2(xkt)
x2

k

− 2
(Q(t) − tW(α j, η j, xk)) sin(xkt) cos(xkt)

x3
k

+ (Q(t) − tW(α j, η j, xk))2 cos2(xkt)
x4

k

+ 2

−sin(xkt)
xk

+ (Q(t) − tW(α j, η j, xk))
cos(xkt)

x2
k

 O(k−3) +O(k−6)

=
sin2(xkt)

x2
k

+
tW(α j, η j, xk) sin(2xkt)

x3
k

+
W2(α j, η j, xk)t2 cos2(xkt)

x4
k

−
Q(t) sin(2xkt)

x3
k

+
Q2(t) cos2(xkt)

x4
k

− 2
Q(t)tW(α j, η j, xk) cos2(xkt)

x4
k

+O(k−4)

=
sin2(xkt)

x2
k

+
tW(α j, η j, xk) sin(2xkt)

x3
k

−
Q(t) sin(2xkt)

x3
k

+O(k−4),

which implies that

α2
k =

∫ 1

0
u2

k(t)dt

=
1
x2

k

∫ 1

0
sin2(xkt)dt −

1
x3

k

∫ 1

0
Q(t) sin(2xkt)dt +

1
x3

k

∫ 1

0
tW(α j, η j, xk) sin(2xkt)dt +O(k−4)

=
1
x2

k

(1
2
−

1
4xk

sin(2xk) +O(k−4)
)

=
1

2x2
k

(
1 −

1
2xk

sin(2xk) +O(k−2)
)
, k→∞.

Further, we calculate that
1
αk
=
√

2xk
1√

1 − 1
2xk

sin(2xk) +O(k−2)

=
√

2xk

 1
1 + 1

4xk
sin(2xk) +O(k−2)


=
√

2xk

(
1 +

1
4xk

sin(2xk) +O(k−2)
)
, k→∞.

Thus we have

vk(t) = −
√

2xk

(
1 +

1
4xk

sin(2xk) +O(k−2)
) −sin(xkt)

xk
+ (Q(t) − tW(α j, η j, xk))

cos(xkt)
x2

k

+O(k−3)


=
√

2 sin(xkt) +
√

2
0.25 sin(2xk) sin(xkt) − (Q(t) − tW(α j, η j, xk)) cos(xkt)

xk
+O(k−2), k→∞.
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