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Generalized inverses in Z[x]/(vx + x2)
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Abstract. In this paper, we give a ∗-ring Z[x]/(vx + x2), where v ∈ Z and ∗ is defined as (a1 + a2x)∗ =
a1 − va2 − a2x, where a1, a2 ∈ Z. Mainly, some classical generalized inverses are considered in this ring, such
as regular inverses, group inverses, Moore-Penrose inverses and so on. Furthermore, it’s proven that this
ring is isomorphic to a special second-order matrix ring.

1. Introduction

Throughout this article,Z is the ring of integers,Z+ is the semi-ring of non-negative integers and R is a
ring with identity 1. Let ∗ be an involution on R, that is the involution ∗ satisfies (x∗)∗ = x, (xy)∗ = y∗x∗ and
(x + y)∗ = x∗ + y∗ for all x, y ∈ R. We call R a ∗-ring if there exists an involution on R. Let R be a ∗-ring. An
element a ∈ R is said to be Hermitian if a∗ = a, the set of all Hermitian elements of R is denoted by RHer [1].
An element e ∈ R satisfies e2 = e, then e is called an idempotent element, the set of all idempotent elements
of R is denoted by E(R). If e ∈ E(R) ∩ RHer, then e is a projection, the set of all projections of R is denoted by
Rproj. If each element e ∈ E(R) satisfies ea = ae for any a ∈ R, then R is called an Abel ring.

Recalling the following equations:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa,

(5) ax = xa, (6) ak = ak+1x, for some k ≥ 1, (7) xa2 = a, (8) ax2 = x.

An element a ∈ R is regular if there exists x ∈ R satisfying Eq.(1). In this case, x is called the regular inverse
(inner inverse or 1-inverse) of a, and is denoted by a(1) (or a−), the set of all regular inverses of a is denoted
by a{1}, the set of all regular elements of R is denoted by Rre1. We use the symbol U(R) to denote the set of
all invertible elements of R. Clearly, U(R) ⊆ Rre1.

The Drazin inverse of a ∈ R [2] is the element x ∈ R which satisfies Eq.(2), (5), (6). The element x above
is unique if it exists and is denoted by aD. The least such k is called the index of a, and denoted by ind(a).
In particular, when ind(a) = 1, the Drazin inverse of a is called the group inverse of a and is denoted by a#.
The set of all Drazin (resp. group) invertible elements of R is denoted by RD (resp. R#).
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For any element a in a ∗-ring R is Moore-Penrose invertible, if there is an element x which is the unique
solution to Eq.(1), (2), (3), (4). Such solution x is called the Moore-Penrose inverse of a and is denoted by
a†, the set of all Moore-Penrose invertible elements of R is denoted by R† [3]. An element a ∈ R is EP if
a ∈ R#

∩ R† and a# = a†, the set of all EP elements of R is denoted by REP [1]. An element a ∈ REP is SEP if
a∗ = a†, the set of all SEP elements of R is denoted by RSEP [4]. An element a in a ∗-ring R is core invertible,
if there exists x ∈ R satisfying Eq.(1), (2), (3), (7), (8), the set of all core invertible elements of R is denoted by
R #O [5].

In [6], Cao et al. studied the generalized inverses in the quotient ringZ[x]/(x+x2). Let R be a ring which
is free as aZ-module, aZ+-basis of R is a basis B = {bi}i∈I such that bib j = Σk∈Ick

i jbk, where ck
i j ∈ Z+. AZ+-ring

is a ring with a fixed Z+-basis and with identity 1 which is a non-negative linear combination of the basis
elements [7]. Z+-ring has important significance in the study of representation theory in Hopf Algebras.
In fact, this quotient ring Z[x]/(x + x2) is one important example of Z+-rings. In this paper, we continue to
study the problems of generalized inverses in quotient rings. In the following sections, the quotient ring
Z[x]/(vx + x2) is considered, where v ∈ Z. Specifically, in section 2, we define (a1 + a2x)∗ = a1 − va2 − a2x ,
where a1, a2 ∈ Z, hence, this quotient ring is a ∗-ring. And then inZ[x]/(vx+ x2), some classical generalized
inverses are considered in this ring, such as regular inverses, group inverses, Moore-Penrose inverses and
so on. At the end of the paper, we construct a special second-order matrix ring, and find thatZ[x]/(vx+ x2)
is isomorphic to this ring. Similarly, we get Z[x]/(x2) is isomorphic to another special second-order matrix
ring.

2. Generalized inverses in Z[x]/(vx + x2)

Firstly, We define ∗ as (a1 + a2x)∗ = a1 − va2 − a2x, where a1, a2 ∈ Z in the quotient ringZ[x]/( f (x)), where
f (x) = vx + x2, v ∈ Z. In what follows, it is proven that the quotient ring is a ∗-ring.

Proposition 2.1. The quotient ringZ[x]/(vx+ x2) is a ∗-ring with ∗ is defined as (a1 + a2x)∗ = a1 − va2 − a2x, where
v, a1, a2 ∈ Z.

Proof. Let a = a1 + a2x, b = b1 + b2x ∈ Z[x]/(vx + x2), where ai, bi, v ∈ Z, i = 1, 2. Then, by the definition of ∗,
(a1 + a2x)∗ = a1 − va2 − a2x, it follows that

(a∗)∗ = ((a1 + a2x)∗)∗ = (a1 − va2 − a2x)∗ = a1 − va2 + va2 + a2x = a.

Moreover, by a computation, we have

(a + b)∗ = ((a1 + b1) + (a2 + b2)x)∗ = (a1 + b1) − v(a2 + b2) − (a2 + b2)x
= (a1 − va2 − a2x) + (b1 − vb2 − b2x) = a∗ + b∗.

At last, by x2 = −vx, it is not difficult to check that

(ab)∗ = ((a1 + a2x)(b1 + b2x))∗ = (a1b1 + a1b2x + a2b1x + a2b2x2)∗

= (a1b1 + a1b2x + a2b1x − va2b2x)∗

= ((a1b1) + (a1b2 + a2b1 − va2b2)x)∗

= a1b1 − v(a1b2 + a2b1 − va2b2) − (a1b2 + a2b1 − va2b2)x
= (a1 − va2 − a2x)(b1 − vb2 − b2x)
= (b1 − vb2 − b2x)(a1 − va2 − a2x)
= b∗a∗.

Hence, it is proven that the quotient ring Z[x]/(vx + x2) is a ∗-ring, where v ∈ Z.

In the following, some classical generalized inverses in this quotient ring are considered, we firstly start
with the Hermitian elements.

Proposition 2.2. (Z[x]/(vx + x2))Her = Z, where v ∈ Z.
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Proof. Let a = a1 + a2x ∈ (Z[x]/(vx + x2))Her, where a1, a2, v ∈ Z. As a∗ = a, then we have a∗ = (a1 + a2x)∗ =
a1 − va2 − a2x = a1 + a2x. It follows thata1 − va2 = a1

−a2 = a2,

and thus
{

a1 = k
a2 = 0,

for any k ∈ Z . It gives that (Z[x]/(vx + x2))Her = Z, where v ∈ Z.

Next, the idempotent elements in ∗-ring Z[x]/(vx + x2) will be considered.

Proposition 2.3. E(Z[x]/(vx + x2))=


{0, 1}, v , ±1
{0, 1,−x, 1 + x, }, v = 1
{0, 1, x, 1 − x}, v = −1.

Proof. Let a = a1 + a2x ∈ E(Z[x]/(vx + x2)), where a1, a2, v ∈ Z. Then, by a2 = a, we have a2 = (a1 + a2x)2 =

a2
1 + 2a1a2x + a2

2x2 = a2
1 + 2a1a2x − va2

2x = a1 + a2x, which implies that
{

a2
1 = a1

2a1a2 − va2
2 = a2.

(1) When a1 = 0, it gives −va2
2 = a2.

If a2 = 0, we have a = 0.
If a2 , 0, we have −va2 = 1. As a2, v ∈ Z, it implies that v = 1, a2 = −1 or v = −1, a2 = 1. Thus, in this

case, when v = 1, we get a = −x. When v = −1, we get a = x.
(2) When a1 , 0, it gives that a1 = 1 and a2 = va2

2.
If a2 = 0, we get a = 1.
If a2 , 0, we get va2 = 1. As a2, v ∈ Z, it implies that v = a2 = 1 or v = a2 = −1. Thus, in this case, when

v = 1, we have a = 1 + x. When v = −1, we have a = 1 − x.

Hence, we can obtain E(Z[x]/(vx + x2))=


{0, 1}, v , ±1
{0, 1,−x, 1 + x, }, v = 1
{0, 1, x, 1 − x}, v = −1.

From the definition of projections, we know that (Z[x]/(vx+x2))proj = (Z[x]/(vx+x2))Her
∩E(Z[x]/(vx+x2)),

where v ∈ Z. Immediately, we have the following corollary.

Corollary 2.4. (Z[x]/(vx + x2))proj = {0, 1}, where v ∈ Z.

From the above results, all Hermitian elements, idempotent elements, projections are found inZ[x]/(vx+
x2). In what follows, we consider other generalized inverses in Z[x]/(vx + x2).

Lemma 2.5. (Z[x]/(vx + x2))re1=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−x, x,−1 − x, 1 + x,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1,−x, x, 1 − x,−1 + x, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

Proof. Let a = a1 + a2x ∈ (Z[x]/(vx + x2))re1, where a1, a2 ∈ Z. Then there exists b = b1 + b2x ∈ Z[x]/(vx + x2),
where b1, b2 ∈ Z, such that

aba = a2b = (a1 + a2x)2(b1 + b2x) = (a2
1 + 2a1a2x + a2

2x2)(b1 + b2x)

= (a2
1 + 2a1a2x − va2

2x)(b1 + b2x) = (a2
1 + (2a1a2 − va2

2)x)(b1 + b2x)

= a2
1b1 + a2

1b2x + 2a1a2b1x − va2
2b1x + 2a1a2b2x2

− va2
2b2x2

= a2
1b1 + a2

1b2x + 2a1a2b1x − va2
2b1x − 2va1a2b2x + v2a2

2b2x

= a2
1b1 + (a2

1b2 + 2a1a2b1 − va2
2b1 − 2va1a2b2 + v2a2

2b2)x
= a1 + a2x = a.
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This implies that
{

a2
1b1 = a1

a2
1b2 + 2a1a2b1 − va2

2b1 − 2va1a2b2 + v2a2
2b2 = a2.

Immediately, we can obtain
{

a1(1 − a1b1) = 0
va2(va2b2 − 2a1b2 − a2b1) = a2 − a2

1b2 − 2a1a2b1.
Case I: When a1 = 0, then we have va2(va2b2 − a2b1) = a2.
(1) If a2 = 0, then it implies that a = 0 and 0{1} = Z[x]/(vx + x2).
(2) If a2 , 0, then it gives va2(vb2 − b1) = 1. So we can obtain va2 = vb2 − b1 = 1 or va2 = vb2 − b1 = −1.
(i) When va2 = vb2 − b1 = 1, it follows that v = a2 = 1 or v = a2 = −1.
If v = a2 = 1, then b2 − b1 = 1, we get a = x, b = k + (1 + k)x, where k ∈ Z and x{1} = {k + (1 + k)x|k ∈ Z}.
If v = a2 = −1, then it gives −b2 − b1 = 1, we can obtain a = −x and b = k − (1 + k)x, where k ∈ Z and

−x{1} = {k − (1 + k)x|k ∈ Z}.
(ii) When va2 = vb2 − b1 = −1, we can see that v = 1, a2 = −1 or v = −1, a2 = 1.
If v = 1, a2 = −1, then b2−b1 = −1, we get a = −x, b = k+(k−1)x, where k ∈ Z and−x{1} = {k+(k−1)x|k ∈ Z}.
If v = −1, a2 = 1, then−b2−b1 = −1, we get a = x, b = k+(1−k)x, where k ∈ Z and x{1} = {k+(1−k)x|k ∈ Z}.

Case II: When a1 , 0, then 1 = a1b1. So a1 = b1 = 1 or a1 = b1 = −1.
(1) If a1 = b1 = 1, then va2(va2b2 − 2b2 − a2) = −b2 − a2. We can get b2(va2 − 1)2 = a2(va2 − 1).
(i) When va2 − 1 = 0, then v = a2 = 1 or v = a2 = −1.
If v = a2 = 1, then a = 1 + x, b = 1 + kx, where k ∈ Z, 1 + x{1} = {1 + kx|k ∈ Z}.
If v = a2 = −1, then a = 1 − x, b = 1 + kx, where k ∈ Z, 1 − x{1} = {1 + kx|k ∈ Z}.
(ii) When va2 − 1 , 0, then b2(va2 − 1) = a2.
If v = 0, then −b2 = a2. Hence, a = 1 + kx, b = 1 − kx, where k ∈ Z, 1 + kx{1} = {1 − kx|k ∈ Z}.
If v , 0, then (vb2 − 1)(va2 − 1) = 1. So vb2 = va2 = 2 or vb2 = va2 = 0.
When vb2 = va2 = 2, then v = 1, b2 = a2 = 2 or v = −1, b2 = a2 = −2 or v = 2, b2 = a2 = 1 or v = −2,

b2 = a2 = −1. If v = 1, b2 = a2 = 2, then a = 1 + 2x, b = 1 + 2x, 1 + 2x{1} = {1 + 2x}. If v = −1, b2 = a2 = −2,
then a = 1− 2x, b = 1− 2x, 1− 2x{1} = {1− 2x}. If v = 2, b2 = a2 = 1, then a = 1+ x, b = 1+ x, 1+ x{1} = {1+ x}.
If v = −2, b2 = a2 = −1, then a = 1 − x, b = 1 − x, 1 − x{1} = {1 − x}.

When vb2 = va2 = 0, according to the assumption v , 0, we can get b2 = a2 = 0, then it implies that a = 1,
b = 1, 1{1} = 1.

(2) If a1 = b1 = −1, then va2(va2b2 + 2b2 + a2) = −b2 − a2. We can get b2(va2 + 1)2 = −a2(va2 + 1).
(i) When va2 + 1 = 0, then v = 1, a2 = −1 or v = −1, a2 = 1.
If v = 1, a2 = −1, then a = −1 − x, b = −1 + kx, where k ∈ Z, −1 − x{1} = {−1 + kx|k ∈ Z}.
If v = −1, a2 = 1, then a = −1 + x, b = −1 + kx, where k ∈ Z, −1 + x{1} = {−1 + kx|k ∈ Z}.
(ii) When va2 + 1 , 0, then b2(va2 + 1) = −a2.
If v = 0, then b2 = −a2. Hence, a = −1 + kx, b = −1 − kx, where k ∈ Z, −1 + kx{1} = {−1 − kx|k ∈ Z}.
If v , 0, then (vb2 + 1)(va2 + 1) = 1. So vb2 = va2 = −2 or vb2 = va2 = 0.
When vb2 = va2 = −2, then v = 1, b2 = a2 = −2 or v = −1, b2 = a2 = 2 or v = 2, b2 = a2 = −1 or v = −2,

b2 = a2 = 1. If v = 1, b2 = a2 = −2, then a = −1− 2x, b = −1− 2x, −1− 2x{1} = {−1− 2x}. If v = −1, b2 = a2 = 2,
then a = −1 + 2x, b = −1 + 2x, −1 + 2x{1} = {−1 + 2x}. If v = 2, b2 = a2 = −1, then a = −1 − x, b = −1 − x,
−1 − x{1} = {−1 − x}. If v = −2, b2 = a2 = 1, then a = −1 + x, b = −1 + x, −1 + x{1} = {−1 + x}.

When vb2 = va2 = 0, according to the assumption v , 0, we can get b2 = a2 = 0, then a = −1, b = −1,
−1{1} = −1.

To sum up, we can get

(Z[x]/(vx + x2))re1=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−x, x,−1 − x, 1 + x,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1,−x, x, 1 − x,−1 + x, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2.

We have found all regular elements in Z[x]/(vx + x2). Obviously, U(Z[x]/(vx + x2)), (Z[x]/(vx + x2))#,
(Z[x]/(vx + x2))†, (Z[x]/(vx + x2))EP, (Z[x]/(vx + x2))SEP are all subsets of (Z[x]/(vx + x2))re1. It is natural to
consider the following theorem.
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Theorem 2.6. U(Z[x]/(vx + x2))=



{−1, 1}, v , 0,±1,±2
{−1, 1,−1 − 2x, 1 + 2x}, v = 1
{−1, 1, 1 − 2x,−1 + 2x}, v = −1
{−1 + kx, 1 + kx}, v = 0
{−1, 1,−1 − x, 1 + x}, v = 2
{−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

Proof. It is easy to know that U(Z[x]/(vx + x2)) ⊆ (Z[x]/(vx + x2))re1, where v ∈ Z. And it is clear that 0 is
not invertible, 1−1 = 1 and (−1)−1 = −1.

(1) When v , 0,±1,±2, then U(Z[x]/(vx + x2)) = {−1, 1}.
(2) When v = 1, U(Z[x]/(vx + x2)) = {−1, 1, 1 + 2x,−1 − 2x}, and (1 + 2x)−1 = 1 + 2x, (−1 − 2x)−1 = −1 − 2x

by [6, Corollary 3.5].
(3) When v = −1, we find that (1 − 2x)−1 = 1 − 2x, (−1 + 2x)−1 = −1 + 2x. Now, we need to prove

−x, x, 1 − x,−1 + x are not invertible. For any a = a1 + a2x ∈ Z[x]/(vx + x2), where a1, a2 ∈ Z. Then we have
x(a1 + a2x) = a1x+ a2x2 = (a1 + a2)x , 1 and (−1+ x)(a1 + a2x) = −a1 − a2x+ a1x+ a2x2 = −a1 + a1x , 1. Hence,
x,−1 + x are not invertible. Similarly, we can prove −x, 1 − x are not invertible. Therefore, when v = −1, we
can obtain U(Z[x]/(vx + x2)) = {−1, 1, 1 − 2x,−1 + 2x}.

(4) When v = 0, we can get (1+kx)−1 = 1−kx, (−1+kx)−1 = −1−kx. Hence, in this case, U(Z[x]/(vx+x2)) =
{−1 + kx, 1 + kx}, where k ∈ Z.

(5) When v = 2, we obtain (1 + x)−1 = 1 + x, (−1 − x)−1 = −1 − x. Hence, in this case, U(Z[x]/(vx + x2)) =
{−1, 1,−1 − x, 1 + x}.

(6) When v = −2, we find that (−1+x)−1 = −1+x, (1−x)−1 = 1−x. Hence, in this case, U(Z[x]/(vx+x2)) =
{−1, 1,−1 + x, 1 − x}.

In the following, two classical generalized inverses (group inverse and Moore-Penrose inverse), will be
considered in the ∗-ringZ[x]/(vx+x2). It should be noted here that the ∗-ringZ[x]/(vx+x2) is commutative,
then it is not difficult to see that (Z[x]/(vx + x2))# = (Z[x]/(vx + x2))re1. However, for the convenience of the
discussion concerning on EP elements, we will provide the following theorem.

Theorem 2.7. The following hold:

(1) (Z[x]/(vx + x2))#=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−x, x,−1 − x, 1 + x,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1,−x, x, 1 − x,−1 + x, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

(2) (Z[x]/(vx + x2))†=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

Proof. (1) It is clear thatZ[x]/(vx+x2) is commutative, so (Z[x]/(vx+x2))# = (Z[x]/(vx+x2))re1, where v ∈ Z.
Next, we will provide all group inverses of every group invertible element. It is easy to check 0# = 0. Also,
we have that for any a ∈ U(Z[x]/(vx + x2)) ⊆ (Z[x]/(vx + x2))# and a# = a−1.

(i) When v , 0,±1,±2, then (Z[x]/(vx + x2))# = {0,−1, 1}.
(ii) When v = 1, from [6, Proposition 3.6], we can get (Z[x]/(vx + x2))# = {0,−1, 1,−x, x,−1 − x, 1 + x, 1 +

2x,−1 − 2x}. Moreover, for every group invertible element, we have x# = x, (−x)# = −x, (1 + x)# = 1 + x,
(−1 − x)# = −1 − x, (1 + 2x)# = 1 + 2x and (−1 − 2x)# = −1 − 2x.

(iii) When v = −1, by the proof of Theorem 2.6, we know that 1 − 2x and −1 + 2x are invertible, and it
gives that (1 − 2x)# = (1 − 2x)−1 = 1 − 2x, (−1 + 2x)# = (−1 + 2x)−1 = −1 + 2x. We only need to consider
(−x)#, x#, (1 − x)# and (−1 + x)#.
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First, from Lemma 2.5, x# has the form k + (1 − k)x, where k ∈ Z. Then (k + (1 − k)x)x(k + (1 − k)x) =
(kx + x2

− kx2)(k + (1 − k)x) = x(k + (1 − k)x) = x. Hence, k = 0, x# = x. Similarly, we can get (−x)# = −x.
Next, by Lemma 2.5, (−1 + x)# has the form −1 + kx, where k ∈ Z. Then (−1 + kx)(−1 + x)(−1 + kx) =

(1 − x)(−1 + kx) = −1 + kx + x − kx2 = −1 + x. Hence, k = 1, (−1 + x)# = −1 + x. Similarly, we can get
(1 − x)# = 1 − x. Therefore, (Z[x]/(vx + x2))# = {0,−1, 1,−x, x, 1 − x,−1 + x, 1 − 2x,−1 + 2x}.

(iv) When v = 0, by the proof of Theorem 2.6, we know that 1+kx and−1+kx are invertible, where k ∈ Z,
so (1+kx)# = (1+kx)−1 = 1−kx, (−1+kx)# = (−1+kx)−1 = −1−kx. Hence, (Z[x]/(vx+x2))# = {0,−1+kx, 1+kx}.

(v) When v = 2, by Theorem 2.6, we have 1+x and−1−x are invertible, therefore (1+x)# = (1+x)−1 = 1+x,
(−1 − x)# = (−1 − x)−1 = −1 − x. Hence, (Z[x]/(vx + x2))# = {0,−1, 1,−1 − x, 1 + x}.

(vi) When v = −2, by Theorem 2.6, we get that −1 + x and 1 − x are invertible, so we get (−1 + x)# =
(−1 + x)−1 = −1 + x, (1 − x)# = (1 − x)−1 = 1 − x. Hence, (Z[x]/(vx + x2))# = {0,−1, 1,−1 + x, 1 − x}.

(2) It is easy to check 0† = 0. Also, we know that for any a ∈ U(Z[x]/(vx + x2)) ⊆ (Z[x]/(vx + x2))† ⊆
(Z[x]/(vx + x2))re1 and a† = a−1, where v ∈ Z.

(i) When v , 0,±1,±2, then (Z[x]/(vx + x2))† = {0,−1, 1}.
(ii) When v = 1, from [6, Proposition 3.6], we can get (Z[x]/(vx + x2))† = {0,−1, 1, 1 + 2x,−1 − 2x}.

(1 + 2x)† = 1 + 2x, (−1 − 2x)† = −1 − 2x.
(iii) When v = −1, it is easy to see {0,−1, 1, 1 − 2x,−1 + 2x} ⊆ (Z[x]/(vx + x2))†. In fact, Z[x]/(vx + x2) is

commutative and −x, x, 1 − x,−1 + x are group invertible, we only need to consider equation (3), however,

(x2)∗ = x∗ = 1 − x , x = x2,

((1 − x)2)∗ = (1 − x)∗ = x , 1 − x = (1 − x)2.

Therefore, (Z[x]/(vx + x2))† = {0,−1, 1, 1 − 2x,−1 + 2x}.
(iv) When v = 0, by the proof of Theorem 2.6, we know that 1+kx and−1+kx are invertible, where k ∈ Z,

so (1 + kx)† = (1 + kx)−1 = 1 − kx, (−1 + kx)† = (−1 + kx)−1 = −1 − kx. (Z[x]/(vx + x2))† = {0,−1 + kx, 1 + kx}.
(v) When v = 2, by Theorem 2.6, we get that 1+x and −1−x are invertible, therefore (1+x)† = (1+x)−1 =

1 + x, (−1 − x)† = (−1 − x)−1 = −1 − x. (Z[x]/(vx + x2))† = {0,−1, 1,−1 − x, 1 + x}.
(vi) When v = −2, by Theorem 2.6, we know that −1 + x and 1 − x are invertible, so we get (−1 + x)† =

(−1 + x)−1 = −1 + x, (1 − x)† = (1 − x)−1 = 1 − x. (Z[x]/(vx + x2))† = {0,−1, 1,−1 + x, 1 − x}.

Theorem 2.8. The following hold:

(1) (Z[x]/(vx + x2))EP=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

(2) (Z[x]/(vx + x2))SEP=

{
{0,−1, 1}, v , 0
{0,−1 + kx, 1 + kx}, v = 0, where k ∈ Z.

Proof. (1) From Theorem 2.7, we only have to check the elements whose group inverse is equal to its
Moore-Penrose inverse.

(2) (i) When v , 0,±1,±2, (Z[x]/(vx + x2))SEP = {0,−1, 1}.
(ii) When v = 1, from [6, Proposition 3.7], we can get (Z[x]/(vx + x2))SEP = {0,−1, 1}.
(iii) When v = −1, in fact, (1−2x)† = 1−2x , −1+2x = (1−2x)∗, (−1+2x)† = −1+2x , 1−2x = (−1+2x)∗.

Hence, (Z[x]/(vx + x2))SEP = {0,−1, 1}.
(iv) When v = 0, we can get (−1 + kx)† = −1 − kx = (−1 + kx)∗, (1 + kx)† = 1 − kx = (1 + kx)∗. Hence,

(Z[x]/(vx + x2))SEP = {0,−1 + kx, 1 + kx}, where k ∈ Z.
(v) When v = 2, it is easy to see (−1 − x)† = −1 − x , 1 + x = (−1 − x)∗, (1 + x)† = 1 + x , −1 − x = (1 + x)∗.

Hence, (Z[x]/(vx + x2))SEP = {0,−1, 1}.
(vi) When v = −2, in fact, (−1+ x)† = −1+ x , 1− x = (−1+ x)∗, (1− x)† = 1− x , −1+ x = (1− x)∗. Hence,

(Z[x]/(vx + x2))SEP = {0,−1, 1}.
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It is clear that Z[x]/(vx + x2) is commutative, where v ∈ Z, so (Z[x]/(vx + x2)) #O = (Z[x]/(vx + x2))EP.
Immediately, we can give the following corollary.

Corollary 2.9. (Z[x]/(vx + x2)) #O=



{0,−1, 1}, v , 0,±1,±2
{0,−1, 1,−1 − 2x, 1 + 2x}, v = 1
{0,−1, 1, 1 − 2x,−1 + 2x}, v = −1
{0,−1 + kx, 1 + kx}, v = 0
{0,−1, 1,−1 − x, 1 + x}, v = 2
{0,−1, 1,−1 + x, 1 − x}, v = −2,

where k ∈ Z.

3. Isomorphism of Z[x]/(vx + x2)

In this section, by constructing the second-order matrix ring, we find that Z[x]/(vx + x2) is isomorphic

to the special second-order matrix ring, where v ∈ Z. Let T(v)
2 (Z) =

{(
a b
0 a

)
|a, b ∈ Z

}
. For any A =(

a1 a2
0 a1

)
,B =

(
b1 b2
0 b1

)
∈ T(v)

2 (Z),we define addition and multiplication of T(v)
2 (Z) as

A + B =
(

a1 + b1 a2 + b2
0 a1 + b1

)
and AB =

(
a1b1 a1b2 + a2b1 − va2b2

0 a1b1

)
.

It is not difficult to check that T(v)
2 (Z) is a ring.

Proposition 3.1. T(v)
2 (Z) is a ∗− ring, where ∗ is defined as

(
a b
0 a

)∗
=

(
a − vb −b

0 a − vb

)
.

Proof. Assume that A =
(

a1 a2
0 a1

)
,B =

(
b1 b2
0 b1

)
∈ T(v)

2 (Z), then by a computation, we can obtain

(A∗)∗ =
(

a1 − va2 −a2
0 a1 − va2

)∗
=

(
a1 a2
0 a1

)
= A.

Moreover, we can see that

(A + B)∗ =
(

a1 + b1 a2 + b2
0 a1 + b1

)∗
=

(
a1 + b1 − v(a2 + b2) −(a2 + b2)

0 a1 + b1 − v(a2 + b2)

)
=

(
a1 − va2 −a2

0 a1 − va2

)∗
+

(
b1 − vb2 −b2

0 b1 − vb2

)∗
= A∗ + B∗.

Further, by computations, we can obtain

(AB)∗ =
(

a1b1 a1b2 + a2b1 − va2b2
0 a1b1

)∗
=

(
a1b1 − v(a1b2 + a2b1 − va2b2) −(a1b2 + a2b1 − va2b2)

0 a1b1 − v(a1b2 + a2b1 − va2b2)

)
=

(
b1 − vb2 −b2

0 b1 − vb2

) (
a1 − va2 −a2

0 a1 − va2

)
= B∗A∗.

Hence, T(v)
2 (Z) is a ∗− ring.

Definition 3.2. Let R1 and R2 be two involution rings. We say R1 and R2 are involution-isomorphic, if there exists
a ring isomorphism f such that f (a∗) = ( f (a))⋆.
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Theorem 3.3. Z[x]/(vx + x2) and T(v)
2 (Z) are involution-isomorphic.

Proof. We define the map f : Z[x]/(vx + x2)→ T(v)
2 (Z) as this form:

a1 + a2x 7→
(

a1 a2
0 a1

)
.

It is clear that f is bijective. Then for any a = a1 + a2x and b = b1 + b2x ∈ Z[x]/(vx+ x2), ai, bi ∈ Z, it is easy to
find that f (a1 + a2x + b1 + b2x) = f (a1 + a2x) + f (b1 + b2x). Moreover, we can check that

f ((a1 + a2x)(b1 + b2x)) = f (a1b1 + (a1b2 + a2b1)x + a2b2x2)
= f (a1b1 + (a1b2 + a2b1 − va2b2)x)

=

(
a1b1 a1b2 + a2b1 − va2b2

0 a1b1

)
=

(
a1 a2
0 a1

) (
b1 b2
0 b1

)
= f (a1 + a2x) f (b1 + b2x).

Further, it can be found that f ((a1 + a2x)∗) = ( f (a1 + a2x))∗. Hence, Z[x]/(vx + x2) and T(v)
2 (Z) are involution-

isomorphic.

Especially, when v = 0, the following result can be concluded.

Corollary 3.4. Z[x]/(x2) and T(0)
2 (Z) are involution-isomorphic.
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