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Abstract. Let S be a ∗-moniod and let a, b, c, v,w ∈ S. In this paper, we define the (v,w)-weighted (b, c)-core
inverse of a. The element a is called (v,w)-weighted (b, c)-core invertible if there exists x ∈ S such that
xvcawx = x, xvS = bS and Swx = Sc∗. It is shown that the core inverse, the w-core inverse and the (b, c)-core
inverse are special cases of the defined (v,w)-weighted (b, c)-core inverse. Several criteria for the (e,w)-
weighted (b, c)-core inverse are given, where e is an invertible Hermitian element. For instance, it is proved
that a is (e,w)-weighted (b, c)-core invertible if and only if there exists some x ∈ bS such that xecawb = b,
cawxec = c and (cawx)∗ = cawx if and only if aw is (b, c)-invertible and c (ca or cawb) is {e, 1, 3}-invertible.
The dual (v,w)-weighted (b, c)-core inverse of a is defined by the existence of y ∈ S satisfying yvabwy = y,
yvS = b∗S and Swy = Sc. Dual results for the dual (v,w)-weighted (b, c)-core inverse are also established.
Finally, when S is a unital ∗-ring, the (dual) weighted (b, c)-core inverse is characterized by the direct sum.

1. Introduction

In the last decade, two wider types of classical generalized inverses were introduced in a semigroup S,
i.e., the inverse along an element [8] and the (b, c)-inverse [4], which encompass the Moore–Penrose inverse
a† and the Drazin inverse aD (or the group inverse a#), see [6, 13] for details. Given any a, b, c ∈ S, the
element a is called (b, c)-invertible if there exists some y ∈ S such that y ∈ bSy ∩ ySc, yab = b and cay = c.
Such an element y is called a (b, c)-inverse of a. It is unique if it exists, and is denoted by a(b,c). We denote
by S(b,c) the set of all (b, c)-invertible elements in S. The (b, b)-inverse of a is known as the inverse of a along
b, this two inverses coincides with each other. The inverse of a along b is unique if it exists, and is denoted
by a||b. By S||b we denote the set of all invertible elements along b in S.

In the extensive aspect of generalized inverses, lots of articles have been concerned with the weighted
version of generalized inverses. As we know, the word “weighted” has been referred to an invertible
Hermitian element, see weighted Moore–Penrose inverses [2], weighted Drazin inverses [3] and weighted
core inverses [11].

Specially, the weighted Drazin inverse, makes that the definition of the Drazin inverse of a complex
square matrix is extended to a rectangular matrix. Besides, in the context of weighted generalized inverses,
the importance of the generalized weighted Moore-Penrose inverse is found from its inclusion of the
weighted Moore-Penrose inverse, the Moore-Penrose inverse, and an ordinary matrix inverse.
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It is worth mentioning that several articles introduced the “extended weighted” version of generalized
inverses in recent studies. For instance, the (v,w)-weighted (b, c)-inverse of tensors was defined in [12], the
(v,w)-weighted (b, c)-inverse in semigroups was defined in [7]. Recently, Wu and Zhu [16] introduced the
weighted w-core inverse with the weight v in the context of ∗-rings, therein, the weight v is an arbitrary ring
element.

The extensive results on the weighted inverse and its wide expansion and application in various mathe-
matical fields (see [9],[10]), which has prompted our investigation into the subject of the weighted inverse.

Let S be a ∗-monoid, that is a monoid S endowed with an involution ∗ : S → S satisfying (x∗)∗ = x and
(xy)∗ = y∗x∗ for every x, y ∈ S.

For any a, b, c ∈ S, the element a is called (b, c)-core invertible [17] if there exists an x ∈ S such that
caxc = c, xS = bS and Sx = Sc∗. Such an x is called a (b, c)-core inverse of a. It is unique if it exists, and is
denoted by a #O

(b,c). As usual, we denote by S #O

(b,c) the set of all (b, c)-core invertible elements in S. It was also
shown that a is (b, c)-core invertible if and only if a is (b, c)-invertible and c is {1,3}-invertible if and only if ca
is (b, c∗)-invertible.

For any a, b, c,w ∈ S, the (b, c)-core inverse of a extends its classical inverse a−1, core inverse a #O, w-core
inverse a #O

w and Moore–Penrose inverse a† by taking special b and c. Precisely, a is invertible if and only if
it is (1, 1)-core invertible, moreover, a−1 = a #O

(1,1); a is core invertible if and only if a is (a, a)-core invertible
if and only if 1 is (a, a)-core invertible, moreover, a #O = aa #O

(a,a) = 1 #O

(a,a); a is w-core invertible if and only if w
is (a, a)-core invertible, moreover, a #O

w = w #O

(a,a); a is Moore-Penrose invertible if and only if a is (a∗, a∗)-core
invertible if and only if a∗ is (a, a)-core invertible, moreover, a† = a #O

(a∗,a∗)a
∗ = a∗(a∗) #O

(a,a).

And it is known that the (b, c)-inverse and the w-core inverse are special cases of the (b, c)-core inverse.
So it is natural to ask whether we could define a class of generalized inverses that unifies the weighted
(b, c)-inverse and the weighted w-core inverse.

Inspired by [2, 3, 7, 16, 17], we aim to introduce the weighted version of the (b, c)-core inverse in a
∗-moniod S, i.e., the (v,w)-weighted (b, c)-core inverse, where v,w ∈ S are arbitrary elements. It extended
the notion of the (b, c)-core inverse, the weighted (b, c)-inverse and the weighted w-core inverse.

The paper is organized as follows. In Section 1, the notions of several generalized inverses and motiva-
tions are given. In Section 2, we introduce the weighted (b, c)-core inverse and establish the relation with
the weighted (b, c)-inverse in S. It is proved in Theorem 2.5 that a is (v,w)-weighted (b, c)-core invertible if
and only if ca is (v,w)-weighted (b, c∗)-invertible for any a, b, c, v,w ∈ S. In Section 3, for any a, b, c, e,w ∈ S,
several criteria for the (e,w)-weighted (b, c)-core inverse are derived, where e is an invertible Hermitian
element. For instance, we show in Theorem 3.2 that a is (e,w)-weighted (b, c)-core invertible if and only
if there is some x ∈ bS such that xecawb = b, cawxec = c and (cawx)∗ = cawx. Dual results for the dual
(v,w)-weighted (b, c)-core inverse are derived. In Section 4, when S is a unital ∗-ring (usually denoted by
R), the criterion for the (dual) (v,w)-weighted (b, c)-core inverse is given by the direct sum.

Throughout this paper, we suppose that S is a ∗-moniod, i.e., a monoid with an involution ∗. Let us now
recall some notions of generalized inverses.

Following [7, Definition 2.2], given any a, b, c, v,w ∈ S, the element a is called (v,w)-weighted (b, c)-
invertible if there exists some y ∈ S such that yvawy = y, yvS = bS and Swy = Sc. The (v,w)-weighted
(b, c)-inverse of a is unique if it exists, and is denoted by a(b,c)

(v,w). As is known to all, the (1, 1)-weighted
(b, c)-inverse is the (b, c)-inverse.

The present author Zhu, Wu and Chen [19] introduced the w-core inverse by making use of three
equations in S. For any a,w ∈ S, the element a is called w-core invertible if there exists some x ∈ S such that
awx2 = x, xawa = a and (awx)∗ = awx. Such an x is called a w-core inverse of a. It is unique if it exists, and is
denoted by a #O

w. We denote by S #O
w the set of all w-core invertible elements in S. It was shown in [19, Theorem

2.6] that a ∈ S #O
w if and only if w is invertible along a and a is {1,3}-invertible. Moreover, a #O

w = w∥aa(1,3).
An element a ∈ S is called core invertible if it is 1-core invertible or a-core invertible. The standard

notion of the core inverse of complex matrices and ring elements can be found in [1, 15]. By S #O we denote
the sets of all core invertible element in S. More results on the w-core inverse can be seen in [19, 20].
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2. Definitions and basic properties

We begin this section with the notion of (v,w)-weighted (b, c)-core inverses in a ∗-monoid S.

Definition 2.1. Let a, b, c, v,w ∈ S. We say that a is (v,w)-weighted (b, c)-core invertible if there exists an x ∈ S
such that (i) xvcawx = x, (ii) xvS = bS and (iii) Swx = Sc∗. Such an x is called a (v,w)-weighted (b, c)-core inverse
of a.

It is clear that a is called (1, 1)-weighted (b, c)-core invertible if (1) xcax = x, (2) xS = bS and (3) Sx = Sc∗

for some x ∈ S. From [17], one has that a is (b, c)-core invertible if there exists an x ∈ S such that (1)’ caxc = c,
(2) xS = bS and (3) Sx = Sc∗.

The following result establishes the equivalence between the equation (1) xcax = x and (1)’ caxc = c,
under the conditions of (2) and (3).

Proposition 2.2. Let a, b, c, x ∈ S. The following conditions are equivalent:
(i) xcax = x, xS = bS and Sx = Sc∗.
(ii) caxc = c, xS = bS and Sx = Sc∗.
(iii) xcab = b, xS = bS and Sx = Sc∗.

Proof. (i)⇒ (ii) Given (i), then c∗ = tx = t(xcax) = (tx)cax = c∗cax for some t ∈ S, and so that c = (cax)∗c. This
gives cax = (cax)∗cax = (cax)∗. Therefore, c = caxc, as required.

(ii)⇒ (i) was proved in [17, Theorem 2.3] (vi)⇒ (ii).
(i)⇒ (iii) Since xS = bS, one has b = xs for some x ∈ S, and hence xcab = xcaxs = xs = b.
(iii)⇒ (i) As xS = bS, then there exists some y ∈ S such that x = by = xcaby = xcax. □

We herein say that (1, 1)-weighted (b, c)-core invertible element is (b, c)-core invertible, and the (b, c)-core
inverse of a is its (1, 1)-weighted (b, c)-core inverse. It can be concluded that every (b, c)-core invertible
element is a special case of (v,w)-weighted (b, c)-core invertible elements. However, the converse may not
be true. See the following example.

Example 2.3. Let S = M2(C) be the semigroup of all 2 by 2 complex matrices and let the involution ∗ be

the transpose. Suppose a =
[

1 0
1 0

]
, b = c =

[
i 0
1 0

]
, v =

[
0 1
1 1

]
and w =

[
1 0
1 1

]
∈ S. Then a

is (v,w)-weighted (b, c)-core invertible and x =
[

(i + 2)/5 (1 − 2i)/5
(1 − 2i)/5 −(i + 2)/5

]
is the (v,w)-weighted (b, c)-core

inverse of a. However, c < Sc∗c, i.e., c < S(1,3), and hence a < S #O

(b,c).

As stated in Sect. 1, a is (b, c)-core invertible if and only if ca is (b, c∗)-invertible for any a, b, c ∈ S. A
similar characterization between the (v,w)-weighted (b, c)-core inverse and the (v,w)-weighted (b, c)-inverse
is given, in virtue of the following lemma.

Lemma 2.4. [7, Proposition 2.3] Let a, b, c, v,w ∈ S. Then a is (v,w)-weighted (b, c)-invertible if and only if vaw is
the (b, c)-invertible.

Theorem 2.5. Let a, b, c, v,w ∈ S. Then the following statements are equivalent:
(i) a is (v,w)-weighted (b, c)-core invertible.
(ii) ca is (v,w)-weighted (b, c∗)-invertible.
(iii) vcaw is (b, c∗)-invertible.
In this case, (vcaw)(b,c∗) is the (v,w)-weighted (b, c)-core inverse of a.

Proof. (i)⇔ (ii) Suppose a is (v,w)-weighted (b, c)-core invertible. Then xvcawx = x, xvS = bS and Swx = Sc∗

for some x ∈ S, so that ca is (v,w)-weighted (b, c∗)-invertible. Conversely, as ca is (v,w)-weighted (b, c∗)-
invertible, then there is some y ∈ S such that yvcawy = y, yvS = bS and Swy = Sc∗ and consequently a is
(v,w)-weighted (b, c)-core invertible.

(ii)⇔ (iii) follows from Lemma 2.4.
One can directly check that (vcaw)(b,c∗) is the (v,w)-weighted (b, c)-core inverse of a. □
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Taking v = w = 1, we have the following corollary.

Corollary 2.6. [17, Theorem 2.9] Let a, b, c ∈ S. Then a is (b, c)-core invertible if and only if ca is (b, c∗)-invertible.
In this case, a #O

(b,c) = (ca)(b,c∗).

Applying Theorem 2.5, we could get the following result, about the uniqueness of the (v,w)-weighted
(b, c)-core inverse of a.

Theorem 2.7. Let a, b, c, v,w ∈ S. If a is (v,w)-weighted (b, c)-core invertible, then it has a unique (v,w)-weighted
(b, c)-core inverse.

The (v,w)-weighted (b, c)-core inverse of a is denoted by a #O

(v,w)(b,c). We denote by S #O

(v,w)(b,c) the set of all
(v,w)-weighted (b, c)-core invertible elements in S.

Again, applying Lemma 2.4 and Theorem 2.5 (i)⇔ (ii), the criterion for the a ∈ S #O

(v,w)(b,c) is given in the
following result.

Lemma 2.8. [4, Theorem 2.2] Let a, b, c ∈ S. Then a ∈ S(b,c) if and only if b ∈ Scab and c ∈ cabS. In particular, if
b = vcab and c = cabw for some v,w ∈ S, then a(b,c) = bw = vc.

Corollary 2.9. Let a, b, c, v,w ∈ S. Then a ∈ S #O

(v,w)(b,c) if and only if b ∈ Sc∗vcawb and c∗ ∈ c∗vcawbS.

We next give the concept of the dual (v,w)-weighted (b, c)-core inverse of a and its properties in S.

Definition 2.10. Let a, b, c, v,w ∈ S. We say that a is dual (v,w)-weighted (b, c)-core invertible if there exists some
y ∈ S satisfying (i) yvabwy = y, (ii) yvS = b∗S and (iii) Swy = Sc. Such a y is called a dual (v,w)-weighted
(b, c)-core inverse of a.

For any a, b, c, v,w ∈ S, it could be proved that the dual (v,w)-weighted (b, c)-core inverse of a is unique
if it exists, and is denoted by a(v,w)(b,c) #O. We denote by S(v,w)(b,c) #O the set of all dual (v,w)-weighted (b, c)-core
invertible elements in S.

One observes that the dual (1, 1)-weighted (b, c)-core invertibility of a is equivalent to its dual (b, c)-core
invertibility. The proof is dual to that of Proposition 2.2.

Theorem 2.11. Let a, b, c, v,w ∈ S. Then the following statements are equivalent:
(i) a is dual (v,w)-weighted (b, c)-core invertible.
(ii) ab is (v,w)-weighted (b∗, c)-invertible.
(iii) vabw is (b∗, c)-invertible.
In this case, a(v,w)(b,c) #O=(vabw)(b∗,c).

3. Characterizations for weighted (b, c)-core inverses in a ∗-monoid

In this section, we assume that e and f are both invertible Hermitian elements. In what follows,
we mainly investigate (e,w)-weighted (b, c)-core inverses and dual (v, f )-weighted (b, c)-core inverses in a
∗-monoid S.

Following [14], an element a ∈ S is called weighted Moore–Penrose invertible with weights e, f (abbr.
weighted Moore–Penrose invertible) if there exists an element x ∈ S such that (1) axa = a, (2) xax = x, (3)
(eax)∗ = eax and (4) ( f xa)∗ = f xa. Such an x is called a weighted Moore–Penrose inverse of a. It is unique
if it exists, and is denoted by a†e, f . More broadly, any x ∈ S satisfying (1) and (3) is called an {e, 1, 3}-inverse

of a, and is denoted by a(1,3)
e , and any x ∈ S satisfying (1) and (4) is called an { f , 1, 4}-inverse of a, and is

denoted by a(1,4)
f . The sets of all weighted Moore–Penrose invertible with weights e, f , {e, 1, 3}-invertible and

{ f , 1, 4}-invertible elements in S are denoted by S†e, f , S(1,3)
e , S(1,4)

f , respectively.
We now present an auxiliary lemma, which plays an important role in the sequel.
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Lemma 3.1. [18, Propositions 2.1 and 2.2] Let a, e, f ∈ S. Then
(i) a is {e, 1, 3}-invertible if and only if a ∈ Sa∗ea. Moreover, if a = xa∗ea for some x ∈ S, then x∗e is an

{e, 1, 3}-inverse of a.
(ii) a is { f , 1, 4}-invertible if and only if a ∈ a f−1a∗S. Moreover, if a = a f−1a∗y for some y ∈ S, then f−1y∗ is an

{ f , 1, 4}-inverse of a.

Several criteria for the (e,w)-weighted (b, c)-core inverse are established in Theorem 3.2, which shows
that the (e,w)-weighted (b, c)-core inverse of a is characterized by the solution of the system of equations.

For any a ∈ S, following Drazin [5], the left annihilator of a is defined by 0a = {(p, q) ∈ S × S : pa = qa},
and the right annihilator of a is defined by a0 = {(r, s) ∈ S × S : ar = as}. It was proved in [19] that aS ⊆ bS
implies 0b ⊆ 0a, and that Sa ⊆ Sb implies b0

⊆ a0.

Theorem 3.2. Let a, b, c, e,w ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O

(e,w)(b,c).
(ii) There exists some x ∈ bS such that xecawb = b, cawxec = c and (cawx)∗ = cawx.
(iii) There exists some x ∈ bS such that xecawx = x, 0(xe) = 0b and (wx)0 = (c∗)0.
(iv) There exists some x ∈ bS such that xecawx = x, 0(xe) ⊆ 0b and (wx)0

⊆ (c∗)0.
(v) There exists some x ∈ S such that xecawx = x, xS = bS and Sc∗ ⊆ Swx.
(vi) There exists some x ∈ S such that xecawx = x, xS = bS and (wx)0 = (c∗)0.

Proof. (i)⇒ (ii) Suppose that x ∈ S is the (e,w)-weighted (b, c)-core inverse of a. Then xecawx = x, xeS = bS
and Swx = Sc∗. Consequently, x = xee−1

∈ xeS = bS. Since Swx = Sc∗, there exists y ∈ S such that c∗ = ywx =
yw(xecawx) = c∗ecawx, so that (cawx)∗ = (awx)∗c∗ = (awx)∗c∗ecawx = (cawx)∗ecawx and cawx = (cawx)∗, hence
c = cawxec. Similarly, we get b = xet = xecawxet = xecawb by xeS = bS.

(ii) ⇒ (iii) Since x ∈ bS and xecawb = b, we have xecawx = x and xeS ⊆ xS ⊆ bS implies 0b ⊆ 0(xe).
Also, xecawb = b implies bS ⊆ (xe)S, so that 0(xe) ⊆ 0b. We next show (wx)0 = (c∗)0. From wx = wxecawx =
wxe(cawx)∗ = wxe(awx)∗c∗, it follows that Swx ⊆ Sc∗ and (c∗)0

⊆ (wx)0. On the other hand, Sc∗ = S(cawxec)∗ =
S(ec)∗cawx ⊆ Swx implies (wx)0

⊆ (c∗)0, as required.
(iii)⇒ (iv) is clear.
(iv) ⇒ (v) As xecawx = x, then wxecawx = wx and hence (1, ecawx) ∈ (wx)0

⊆ (c∗)0. We hence have
c∗ = c∗ecawx and Sc∗ ⊆ Swx. It next suffices to show that xS = bS. Since x ∈ bS, i.e., xS ⊆ bS, we only need to
prove bS ⊆ xS. Note that xecawxe = xe, and hence (1, xecaw) ∈ 0(xe) ⊆ 0b. Then bS = xecawbS ⊆ xS.

(v)⇒ (vi) It follows from Sc∗ ⊆ Swx that (wx)0
⊆ (c∗)0. Note that x = xecawx and Sc∗ ⊆ Swx. Then we

have c∗ = c∗ecawx. We have at once (cawx)∗ = (cawx)∗ecawx, so that cawx = (cawx)∗ and Swx = Swxecawx =
Swxe(cawx)∗ = Swxe(awx)∗c∗ ⊆ Sc∗. Thus, (c∗)0

⊆ (wx)0 and (c∗)0 = (wx)0.
(vi) ⇒ (i) Note that xS = xee−1S ∈ xeS ⊆ xS. Then xeS = xS = bS. It follows from wx = wxecawx

that (ecawx, 1) ∈ (wx)0 = (c∗)0, so that c∗ = c∗ecawx, and one has Sc∗ ⊆ Swx. Once again, c∗ = c∗ecawx
implies cawx = (cawx)∗. So, Swx = Swxecawx = Swxe(cawx)∗ ⊆ Sc∗. Therefore, a is (e,w)-weighted (b, c)-core
invertible. □

An element a ∈ S is regular if there exists x ∈ S such that axa = a. Such an x is called an inner inverse or
a {1}-inverse of a, is denoted by a−. For any a, b ∈ S and aS = bS (resp., Sa = Sb), if a is regular, then so is b.

An element q ∈ S is called an idempotent if q = q2. By Theorem 3.2, it follows that cawxe and xecaw are
both idempotents.

We next consider to derive the criterion for the (v,w)-weighted (b, c)-core inverse by using the ideal
generated by idempotents.

Theorem 3.3. Let a, b, c, e,w ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O

(e,w)(b,c).
(ii) There exist idempotents p, q ∈ S such that (ep)∗ = ep, pS = cS = cawS, qS = bS and Sq = Scaw.
In this case, a #O

(e,w)(b,c) = q(caw)−pe−1 for any (caw)− ∈ (caw){1}.
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Proof. (i)⇒ (ii) Suppose that x ∈ S is the (e,w)-weighted (b, c)-core inverse of a. Then x ∈ bS, cawx = (cawx)∗,
cawxec = c and xecawb = b. Let p = cawxe and q = xecaw. Then p2 = p, q2 = q and (ep)∗ = (ecawxe)∗ =
e∗(cawx)∗e∗ = ecawxe = ep. Also, we have p = cawxe ∈ cS, c = cawxec = pc ∈ pS and c = cawxec ∈ cawS, so that
pS = cS = cawS. From q = xecaw, it follows that qS = xecawS ⊆ bS = xecawbS ⊆ qS, i.e., qS = bS. Similarly,
we have Sq = Sxecaw ⊆ Scaw = Scawxecaw ⊆ Sxecaw = Sq, as required.

(ii) ⇒ (i) Given pS = cS = cawS, we have caw is regular since p is idempotent (hence regular). Also,
Sq = Scaw implies caw = cawq. Let x = q(caw)−pe−1, where (caw)− ∈ (caw){1}. Then x ∈ qS = bS, cawx =
cawq(caw)−pe−1 = caw(caw)−pe−1 = (caw(caw)−p)e−1 = pe−1 = e−1epe−1 = (cawx)∗ and xecawb = q(caw)−pcawb =
q(caw)−(pcaw)b = q(caw)−(caw)b = qb = b. We can similarly prove cawxec = c, and hence a ∈ S #O

(e,w)(b,c) by
Theorem 3.2 (ii)⇒ (i). □

In the following result, we establish criteria for the (e,w)-weighted (b, c)-core inverse, extending the
statement in [17, Theorem 2.7] for the case e = w = 1.

Theorem 3.4. Let a, b, c, e,w ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O

(e,w)(b,c).

(ii) aw ∈ S(b,c) and c ∈ S(1,3)
e .

(iii) aw ∈ S(b,c) and ca ∈ S(1,3)
e .

(iv) aw ∈ S(b,c) and cawb ∈ S(1,3)
e .

In this case, a #O

(e,w)(b,c) = (aw)(b,c)c(1,3)
e e−1 = (aw)(b,c)aw(ca)(1,3)

e e−1 = b(cawb)(1,3)
e e−1.

Proof. (i)⇒ (ii) Suppose that x ∈ S is the (e,w)-weighted (b, c)-core inverse of a. By Theorem 3.2 (i)⇒ (ii),
we have x ∈ bS, cawx = (cawx)∗, cawxec = c and xecawb = b. One has at once b ∈ Scawb and c ∈ cawbS, so that
aw ∈ S(b,c) from Lemma 2.8. Since c = cawxec = (cawx)∗ec = (awx)∗c∗ec ∈ Sc∗ec, we have c ∈ S(1,3)

e by Lemma
3.1.

(ii)⇒ (iii) It next suffices to prove ca ∈ S(1,3)
e . Since aw ∈ S(b,c), c ∈ S(1,3)

e , we have c ∈ cawbS and c ∈ Sc∗ec,
and consequently ca ∈ Sc∗eca ⊆ S(cawbS)∗eca ⊆ S(ca)∗eca, i.e., ca ∈ S(1,3)

e .
(iii)⇒ (iv) Given aw ∈ S(b,c) and ca ∈ S(1,3)

e , then c ∈ cawbS and ca ∈ S(ca)∗eca. So, cawb ∈ S(ca)∗ecawb ⊆
Sa∗(cawbS)∗ecawb ⊆ S(cawb)∗ecawb, i.e., cawb ∈ S(1,3)

e .
(iv)⇒ (i) Let x = b(cawb)(1,3)

e e−1
∈ bS. Then we have

(1) cawx = cawb(cawb)(1,3)
e e−1 = e−1e(cawb)(cawb)(1,3)

e e−1 =(cawx)∗.
(2) As aw ∈ S(b,c), then b ∈ Scawb and hence b = tcawb for some t ∈ S. Thus, xecawb = b(cawb)(1,3)

e e−1ecawb =
tcawb(cawb)(1,3)

e e−1ecawb = tcawb = b.
(3) cawxec = c. Indeed, cawxec = cawb(cawb)(1,3)

e c = c since c ∈ cawbS.
We next give the other formula of a #O

(e,w)(b,c). Let x = (aw)(b,c)c(1,3)
e e−1. Then x ∈ bS since (aw)(b,c)

∈ bS.

Hence, cawx = caw(aw)(b,c)c(1,3)
e e−1 = cc(1,3)

e e−1 = e−1ecc(1,3)
e e−1 = (cawx)∗. Similarly, we can get cawxec = c and

xecawb = b.
Also, one could check that (aw)(b,c)aw(ca)(1,3)

e e−1 is the (e,w)-weighted (b, c)-core inverse of a. □

Suppose e = w = 1 in Theorem 3.4. We have the following criteria for the (b, c)-core inverse.

Corollary 3.5. [17, Theorem 2.7] Let a, b, c ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O

(b,c).
(ii) a ∈ S(b,c) and c ∈ S(1,3).
(iii) a ∈ S(b,c) and ca ∈ S(1,3).
(iv) a ∈ S(b,c) and cab ∈ S(1,3).
In this case, a #O

(b,c) = a(b,c)c(1,3) = a(b,c)a(ca)(1,3) = b(cab)(1,3).

It follows from [19] that a ∈ S #O if and only if a ∈ S#
∩ S(1,3) if and only if a is (1, 1)-core invertible if and

only if a is (a, a)-core invertible, where S# denotes the set of all group invertible elements in S.
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Corollary 3.6. Let a ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O.
(ii) a ∈ S #O

(a,a).
(iii) a ∈ S# and a ∈ S(1,3).
(iv) a ∈ S# and a2

∈ S(1,3).
(v) a ∈ S# and a3

∈ S(1,3).
In this case, a #O

(a,a) = a#a(1,3) = a#a(a2)(1,3) = a(a3)(1,3) and a #O = aa #O

(a,a).

By comparing [17, Theorem 2.3] and Theorem 3.2. We easily obtain the following result.

Proposition 3.7. Let a, b, c, e,w ∈ S. Then a ∈ S #O

(e,w)(b,c) if and only if aw ∈ S #O

(b,ec).

Besides, if aw is (b, c)-core invertible rather than (b, ec)-core invertible, it is obvious that Proposition 3.7
may not be true. Next, we consider relationship between the (e,w)-weighted (b, c)-core invertibility of a and
the (b, c)-core invertibility of aw.

Proposition 3.8. Let a, b, c, e,w ∈ S. If aw ∈ S #O

(b,c) and cS ⊆ ecS, then a ∈ S #O

(e,w)(b,c).

Proof. Given aw ∈ S #O

(b,c), by Corollary 3.5, we can have aw ∈ S(b,c) and c ∈ S(1,3). As cS ⊆ ecS, there exists

some t ∈ S such that c = ect. So, c ∈ Sc∗c ⊆ S(ect)∗c ⊆ Sc∗ec. Therefore, c ∈ S(1,3)
e . By Theorem 3.4, we have

a ∈ S #O

(e,w)(b,c). □

In the following result, several criteria for the dual (v, f )-weighted (b, c)-core inverse are given.

Theorem 3.9. Let a, b, c, v, f ∈ S. Then the following statements are equivalent:
(i) a ∈ S(v, f )(b,c) #O.
(ii) There exists some y ∈ Sc such that b f yvab = b, cvab f y = c and (yvab)∗ = yvab.
(iii) There exists some y ∈ Sc such that yvab f y = y, 0(yv) = 0(b∗) and ( f y)0 = c0.
(iv) There exists some y ∈ Sc such that yvab f y = y, 0(yv) ⊆ 0(b∗) and ( f y)0

⊆ c0.
(v) There exists some y ∈ S such that yvab f y = y, S f y = Sc and yvS ⊆ b∗S.
(vi) There exists some y ∈ S such that yvab f y = y, S f y = Sc and 0(yv) = 0(b∗).

Theorem 3.10. Let a, b, c, v, f ∈ S. Then the following statements are equivalent:
(i) a ∈ S(v, f )(b,c) #O.
(ii) There exist idempotents p, q ∈ S such that (q f )∗ = q f , Sq = Sb = Svab, Sp = Sc and pS = vabS.
In this case, a(v, f )(b,c) #O = f−1q(vab)−p for any (vab)− ∈ (vab){1}.

Theorem 3.11. Let a, b, c, v, f ∈ S. Then the following statements are equivalent:
(i) a ∈ S(v, f )(b,c) #O.
(ii) va ∈ S(b,c), b ∈ S(1,4)

f−1 .

(iii) va ∈ S(b,c), ab ∈ S(1,4)
f−1 .

(iv) va ∈ S(b,c), ca f b ∈ S(1,4)
f−1 .

In this case, a(v, f )(b,c) #O = f−1(va)(b,c)b(1,4)
f−1 = f−1(va)(b,c)va(ab)(1,4)

f−1 = f−1b(ca f b)(1,4)
f−1 .

For any a, b, c, e, f ∈ S, as shown in Theorem 3.4, we know that a is (e, f )-weighted (b, c)-core invertible if
and only if a f is (b, c)-invertible and c (ca or ca f b) is {e, 1, 3}-invertible.

Combining with Theorems 3.4 with 3.11, we obtain the following result.

Theorem 3.12. Let a, b, c, e, f ∈ S. Then the following statements are equivalent:
(i) a ∈ S #O

(e, f )(b,c) ∩ S(e, f )(b,c) #O.

(ii) a f , ea ∈ S(b,c) and ca f b ∈ S†(e, f−1).
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In Theorem 3.12, take e = f = 1, one has the equivalence that a is both (b, c)-core and dual (b, c)-core
invertible if and only if a is (b, c)-invertible and cab is {1, 3}-invertible in S, this equivalence was given in the
context of ∗-ring in [17, Theorem 3.5].

The weighted w-core inverse [16] was introduced in a unital ∗-ring R. Given any a, v,w ∈ R, the element
a is called weighted w-core invertible with the weight v if there exists some x ∈ R such that awxvx = x,
xvawa = a and (awx)∗ = awx. Such an x is called the weighted w-core inverse of a. The weighted w-core
inverse of a with the weight v is unique if it exists, and is denoted by a #O

v,w. There is only multiplication in
the notion of weighted w-core inverses, and hence it is valid in a ∗-monoid S. The set of all weighted w-core
invertible elements with the weight v in S is denoted by S #O

v,w.
It was shown in a ∗-ring [16, Theorem 3.2] that a is w-weighted core invertible with the weight e if and

only if w is invertible along a and a is {e, 1, 3}-invertible. Moreover, a #O
e,w = w∥aa(1,3)

e e−1. This result indeed
holds in a ∗-monoid.

In [17, Theorem 2.18], the present author Zhu proved that a ∈ S #O
w if and only if w ∈ S #O

(a,a). The following
result presents the weighted version of the aforementioned result.

Proposition 3.13. Let a,w, e, f ∈ S. Then we have:
(i) a ∈ S #O

e,w if and only if w ∈ S #O

(e,1)(a,a).
(ii) a ∈ S #O

e,a∗ f if and only if a∗ ∈ S #O

(e, f )(a,a).

Proof. (i) It follows from [16, Theorem 3.2] (i)⇔ (vi) and Theorem 3.4 that a ∈ S #O
e,w if and only if w ∈ S∥a and

a ∈ S(1,3)
e if and only if w ∈ S(a,a) and a ∈ S(1,3)

e if and only if w ∈ S #O

(e,1)(a,a).
(ii) can be proved by a similar proof of (i). □

4. (Dual) weighted (b, c)-core inverses in ∗-rings

Throughout this section, we assume that R is a unital ∗-ring, that is a ring with the unity 1 and an
involution ∗ : R→ R satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗ for every a, b ∈ R. In what follows,
we mainly investigate (dual) weighted (b, c)-core inverses in R.

Let a ∈ R. The right annihilator of a is denoted by a0 = {x ∈ R : ax = 0} and the left annihilator of a is
denoted by 0a = {y ∈ R : ya = 0}.

A proposition is given, which extends the corresponding result in [17, Lemma 3.1].

Proposition 4.1. Let a, b, c, e,w ∈ R. Then the following statements are equivalent:
(i) c ∈ cawbR ∩ Rc∗ec.
(ii) c ∈ R(cawb)∗ec.
(iii) R = R(cawb)∗ ⊕ 0(ec).
(iv) R = R(cawb)∗ + 0(ec).
(v) R = R(ecawb)∗ ⊕ 0c.
(vi) R = R(ecawb)∗ + 0c.

Proof. (i)⇒ (ii) Given c ∈ cawbR ∩ Rc∗ec, we have c ∈ R(cawbR)∗ec ⊆ R(cawb)∗ec.
(ii) ⇒ (iii) As c ∈ R(cawb)∗ec, then there exists t ∈ R such that c = t(cawb)∗ec = t(awb)∗c∗ec ∈ Rc∗ec, so

that awbt∗e is an {e, 1, 3}-inverse of c by Lemma 3.1. Note that ec = et(awb)∗c∗ec. Then 1 − et(cawb)∗ ∈ 0(ec).
For any r ∈ R, we have r = r(1 − et(cawb)∗) + ret(cawb)∗ ∈ 0(ec) + R(cawb)∗ ∈ R(cawb)∗ + 0(ec). Hence,
R = R(cawb)∗ + 0(ec). For any d ∈ R(cawb)∗ ∩ 0(ec), there exists an element x ∈ R such that d = x(cawb)∗ =
x(cce

(1,3)cawb)∗ = d(cce
(1,3))∗ = decce

(1,3)e−1 = 0 since dec = 0. So, R = R(cawb)∗ ⊕ 0(ec).
(iii)⇒ (iv) is trivial.
(iv)⇒ (i) Given R = R(cawb)∗ + 0(ec), then ec ∈ Rec ⊆ R(cawb)∗ec ⊆ Rc∗ec and thus c ∈ Rc∗ec. Once again,

ec ∈ Rec ⊆ R(cawb)∗ec implies that ec = s(cawb)∗ec = s(awb)∗c∗ec for some s ∈ R, i.e., awbs∗e is an {e, 1, 3} of c.
We have at once c = cce

(1,3)c = cawbs∗ec ∈ cawbR. So, c ∈ cawbR ∩ Rc∗ec.
(i)⇒ (v)⇒ (vi)⇒ (i) can be proved similarly. □
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Dually, we get following result.

Proposition 4.2. Let a, b, c, v, f ∈ R. Then the following statements are equivalent:
(i) b ∈ Rcvab ∩ b f−1b∗R.
(ii) b ∈ b f−1(cvab)∗R.
(iii) R = (vcab)∗R ⊕ (b f−1)0.
(iv) R = (vcab)∗R + (b f−1)0.
(v) R = (vcab f−1)∗R ⊕ b0.
(vi) R = (vcab f−1)∗R + b0.

Based on the proposition above, a list of criteria for the (e,w)-weighted (b, c)-core inverse are given by
the direct sum.

Theorem 4.3. Let a, b, c, e,w ∈ R. Then the following statements are equivalent:
(i) a ∈ R #O

(e,w)(b,c).
(ii) b ∈ Rcawb, c ∈ R(cawb)∗ec.
(iii) R = R(cawb)∗ ⊕ 0(ec) = Rcaw ⊕ 0b.
(iv) R = R(cawb)∗ + 0(ec) = Rcaw + 0b.
(v) R = R(ecawb)∗ ⊕ 0c = Rcaw ⊕ 0b.
(vi) R = R(ecawb)∗ + 0c = Rcaw + 0b.
(vii) R = R(cawb)∗ ⊕ 0(ec) = Rca ⊕ 0(wb).
(viii) R = R(cawb)∗ + 0(ec) = Rca + 0(wb).
(ix) R = R(ecawb)∗ ⊕ 0c = Rca ⊕ 0(wb).
(x) R = R(ecawb)∗ + 0c = Rca + 0(wb).

Proof. (i)⇒ (ii) It follows from Theorem 3.4 that a ∈ R #O

(e,w)(b,c) implies that aw ∈ R(b,c) and c ∈ Re
(1,3). So, we

have b ∈ Rcawb, c ∈ cawbR and c ∈ Rc∗ec. Hence, c ∈ R(cawbR)∗ec ⊆ R(cawb)∗ec, as required.
(ii) ⇒ (iii) By Proposition 4.1, we have the equivalence c ∈ R(cawb)∗ec ⇔ R = R(cawb)∗ ⊕ 0(ec). As

b ∈ Rcawb, then there exists an element y ∈ R such that b = ycawb, consequently 1 − ycaw ∈ 0b. Since
1 = (1 − ycaw) + ycaw, we have R = Rcaw + 0b. From c ∈ R(cawb)∗ec ⊆ Rc∗ec, it follows that c ∈ R(1,3)

e and
awbs∗e is an {e, 1, 3, }-inverse of c. For any z ∈ Rcaw ∩ 0b, then zb=0, and there is some 1 ∈ R such that
z = 1caw = 1(cawbs∗ec)aw = zbs∗ecaw = 0, so that R = Rcaw ⊕ 0b.

(iii)⇒ (iv) is clear.
(iv)⇒ (i) Given R = R(cawb)∗ + 0(ec), then c ∈ Re

(1,3) and c ∈ cawbR by Proposition 4.1 (iv)⇒ (i). Also,
R = Rcaw + 0b implies b ∈ Rcawb, so that aw ∈ R(b,c). It follows from Theorem 3.4 (ii)⇒ (i) that a ∈ R #O

(e,w)(b,c).
(i)⇒ (v)⇒ (vi)⇒ (i) and (i)⇒ (vii)⇒ (viii)⇒ (ix)⇒ (x)⇒ (i) can be proved similarly. □

For any a, b, c, v, f ∈ R, several criteria for the dual (v, f )-weighted (b, c)-core inverse of a are given in the
following result.

Theorem 4.4. Let a, b, c, v, f ∈ R. Then the following statements are equivalent:
(i) a ∈ R(v, f )(b,c) #O.
(ii) c ∈ cvabR, b ∈ b f−1(cvab)∗R.
(iii) R = (vcab)∗R ⊕ (b f−1)0 = vabR ⊕ c0.
(iv) R = (vcab)∗R + (b f−1)0 = vabR + c0.
(v) R = (vcab f−1)∗R ⊕ b0 = vabR ⊕ c0.
(vi) R = (vcab f−1)∗R + b0 = vabR + c0.
(vii) R = (vcab)∗R ⊕ (b f−1)0 = abR ⊕ (cv)0.
(viii) R = (vcab)∗R + (b f−1)0 = abR + (cv)0.
(ix) R = (vcab f−1)∗R ⊕ b0 = abR ⊕ (cv)0.
(x) R = (vcab f−1)∗R + b0 = abR + (cv)0.
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