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Abstract. In this paper, we introduce a new class of operators related to a conjugation operator on a Hilbert
space, we which called the class of n-quasi complex Helton class of operators with order m. We discuss the
most interesting results concerning these classes of operators obtained form the idea of extant results for a
number of classes of operators, amongst them Helton class of order m and quasi-Helton class of order m,
n-quasi (m,C)-symmetric operators for some conjugation C ofH .

1. Introduction and Preliminaries

Throughout this paper,H stands for an infinite dimension complex Hilbert space. By B(H) we denote
the Banach algebra of all bounded linear operators onH . Let A ∈ B(H), and define

βm(A) :=
∑

0≤k≤m

(−1)m−k
(
m
k

)
A∗kAk. (1)

An obvious consequence of (1) is that

βm+1(A) = A∗βm(A)A − βm(A). (2)

A Hilbert space operator A ∈ B(H) is said to be an m-isometry if A satisfies the following operator equation∑
0≤k≤m

(−1)m−k
(
m
k

)
A∗kAk = 0, (3)

and it is said to be an n-quasi-m-isometry if

A∗nβm(A)An = A∗n
( ∑

0≤k≤m

(−1)m−k
(
m
k

)
A∗kAk

)
An = 0, (4)

for some integers m,n ≥ 1. A detailed study on these classes of Hilbert spaces operators has been done in
[3–5, 7, 23, 28, 29] and other references. In [18], J.W. Helton introduced m-symmetric operators for the study
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of Jordan operators. An operator A ∈ B(H) is said to be n-symmetric or equivalently, an n-symmetry for
some positive integer n if and only if A satisfies

αn(A) :=
∑

0≤k≤n

(−1)n−k
(
n
k

)
A∗kAn−k = 0. (5)

Then αn+1(A) = A∗αn(A) − αn(A)A holds. Using this, if A is n-symmetric, then A is (n + k)-symmetric for
each integer k ≥ 1 (see [33, Proposition 28]). The sum and product of n-symmetric operators was studied in
[17] and [33].

Recall from [15] that a conjugation on H is a map C : H −→ H which is antilinear, involutive (C2 = IH ).
Moreover C satisfies the following properties

〈
Cx | Cy

〉
=

〈
y | x

〉
for all x, y ∈ H ,

CAC ∈ B(H) for every A ∈ B(H),(
CAC

)r
= CArC for all r ∈N,(
CAC

)∗
= CA∗C.

.

See [6] for properties of conjugation operators.

As extensions of the concepts of m-isometric operators on Hilbert spaces, some authors has introduced and
study in different papers the following classes of operators.

(1) (m,C)-isometric operator that is an operator A ∈ B(H) satisfies∑
0≤k≤m

(−1)k
(
m
k

)
A∗m−kCAm−kC = 0, (6)

for some m ∈N and some conjugation C ( [8–10, 27]).

(2) n-quasi-(m,C)-isometric operator that is an operator A ∈ B(Y) satisfies

A∗n
( ∑

0≤k≤m

(−1)k
(
m
k

)
A∗m−kCAm−kC

)
An = 0, (7)

for some conjugation C and some n ∈N and m ∈N ([22, 26, 27, 32]).

Let A and B be in B(H). In [19], the authors studied the operator Θ(A,B) : B(H) −→ B(H) defined by
Θ(A,B)(X) = AX − XB. Then

Θ(A,B)k(I) =
∑

0≤ j≤k

(−1)k− j
(
k
j

)
A jBk− j. (8)

In [19], the authors introduced the class of Helton operators as follows: an operator A ∈ B(H) is said to be
in the mth Helton class of B and write A ∈ HELm(B) if Θ(B,A)m(I) = 0. (See [20, 21]).

Recently, the author in [1] has introduced the class n-quasi-Helton class of order m as follows. An B ∈ B(H)
for which there exists an operator A and there are some integers n and m such that

A∗nΘ(B; A)m(I)An = A∗n
( ∑

0≤ j≤m

(−1) j
(
m
j

)
B jAm− j

)
An = 0,
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they say that A belongs to n-quasi- Helton class of B with order m. This is symbolized by: A ∈ [nQ ∩
HELm

(
B
)
. Our aim in this paper is to consider a generalization of the concepts of Helton class of order m

and quasi-Helton class of order m to the concepts of complex Helton class of order m and quasi- complex
Helton class of order m. We discuss the most interesting results concerning these classes of operators
obtained form the idea of extant results for a number of classes of operators, amongst them Helton class
of order m, quasi-Helton class of order m, n-quasi (m,C)-symmetric operators (for some conjugation C of
H ([2]). We invite the reader to refer to the references [11–14, 16, 24, 30, 32] for more details about other
interesting classes of operators in this context.

2. Main results

In this section, we present the most important definitions for the classes of operators which we will
study and moreover the most important properties

Definition 2.1. Let A,B ∈ B(H), we say that A belongs complex Helton class of B with order m if there exists a
conjugation C such that∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC = 0 (9)

for some positive integer m.

For B ∈ B(H), we denote by HELm

(
B,C

)
the set of complex Helton class of B of order m related to a

conjugation operator C onH .

Remark 2.2. We make the following observations

(1) A ∈ HELm

(
B,C

)
⇐⇒ CAC ∈ HELm

(
B
)
.

(2) If CA = AC then A ∈ HELm

(
B,C

)
⇐⇒ A ∈ HELm

(
B
)
.

For A,B ∈ B(H) and a conjugation C onH , we set

Φ(B; A,C)m(I) =
∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC. (10)

Lemma 2.3. Let A and B be in B(H), C be conjugation and k be a positive integer, then

Φ(B; A,C)k+1(I) = BΦ(B; A,C)k(I) −Φ(B; A,C)k(I)
(
CAC

)
. (11)

Proof. We use an induction argument to show the statement. For k = 1 we have

Φ
(
B,A,C

)2
(I) = B2

− 2BCAC + CA2C

and

BΦ
(
B,A,C

)
(I) −Φ

(
A,B,C

)
(I)(CAC)

= B
(
B − CAC

)
−

(
B − CAC

)
CAC

= B2
− 2B(CAC) + CA2C.

– Hence equation (11) is true for k = 1. Assume that equation (11) is true for k. Then we prove that equation
(11) holds for k + 1.
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In fact, by equation (11) we obtain

Φ
(
A,B,C

)k+2
(I)

= Φ
(
A,B,C

)(
Φ
(
A,B,C)k+1(I)

)
= B

(
Φ
(
A,B,C

)k+1
(I)

)
−

(
Φ
(
A,B,C

)k+1
(I)

)
(CAC).

Remark 2.4. The inclusionHELk(B,C) ⊂ HELk+1(B,C) follows from equation (11).

Remark 2.5. In [20, Corollary 4.4] it was observed that if A ∈ HELm(B) then A−µ ∈ HELm(B−µ) for all µ ∈ C.
In the following proposition we extend this result toHELm(B,C).

Proposition 2.6. Let A,B ∈ B(H) and C be a conjugation operator on H . If A ∈ HELm(B,C) then A − µ ∈
HELm(B − µ,C) for all µ ∈ C.

Proof. According to the statement (1) of Remark 2.2 and [20, Corollary 4.4] we have the following implica-
tions.

A ∈ HELm(B,C) =⇒ CAC ∈ HELm(B)
=⇒ CAC − µ ∈ HELm(B − µ)

=⇒ C
(
A − µ

)
C ∈ HELm(B − µ)

=⇒ A − µ ∈ HELm(B − µ,C).

Definition 2.7. For a positive integers n,m and A,B ∈ B(H), we say that A belongs to n-quasi complex Helton
class of B with order m if there exists a conjugation C such that

A∗nΦ(B; A,C)m(I)An = A∗n
( ∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An = 0

We denote this by A ∈ [nQ ∩HELm(B,C)].

Remark 2.8. If A ∈ HELm(B,C) then A ∈ [nQ ∩HELm(B,C)].

Remark 2.9. The following example shows that there exist two operators A and B and a conjugation C such that
A ∈ [nQ ∩HELm(B,C)] but A < HELm(B,C) for some integers n and m. Thus, the set HELm(B,C) is a proper
subset of [nQ ∩HELm(B,C)] i.e,.

[HELm(B,C)] ⫋ [nQ ∩HELm(B,C)].

Example 2.10. Let H = C3 and A and B the operators A =

 0 0 0
1 0 0
1 0 0

 and B =

 0 1 1
0 0 0
0 0 0

 . Define the

conjugation operator C(u, v,w) = (w, v,u) that is C =

 0 0 1
0 1 0
1 0 0

 . A computation shows that

B2
− 2BCAC + CA2C , 0, A∗2

(
B2
− 2BCAC + CA2C

)
A2 = 0.

Which implies thatA ∈ [2Q ∩HEL2(B,C)] but A < [HEL2(B,C)].
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Remark 2.11. Let A,B ∈ B(H) and C be a conjugation onH .
(1) Note that

A∗n
( ∑

0≤k≤m

(−1)k
(
m
k

)
BkCAm−kC

)
An

= C
(
CAC

)∗n( ∑
0≤k≤m

(−1)k
(
m
k

)(
CBC

)k
C
(
CAC

)m−k
C
)(

CAC)nC.

It is clear that A ∈ [nQ ∩HELm(B,C)] if and only if CAC ∈ A ∈ [nQ ∩HELm(CBC,C)].

(2) If CA = AC, then A ∈ [nQ ∩HELm(B,C)] if and only if A ∈ [nQ ∩HELm(B)].

Proposition 2.12. Let A and B be in B(H) and C be a conjugation onH . Then the following statements holds.

(1) A ∈ [nQ ∩HELm(B,C)] if and only if U∗AU ∈ [nQ ∩HELm

(
U∗BU,U∗CU

)
], for each unitary operator U.

(2) If A ∈ [nQ ∩HELm(B,C)] then λA ∈ [nQ ∩HELm(λB,C)], for all λ ∈ C

(3) If Ai ∈ [nQ∩HELm(Bi,C)] for i = 1, 2, then A1 ⊕ A2 ∈ [nQ ∩HELm(B1 ⊕ B2,C ⊕ C)].

Proof. (1) We observe that if C is a conjugation operator,then U∗CU is also a conjugation operator. Moreover,
a direct calculation gives

(
U∗AU

)∗n( ∑
0≤k≤m

(−)m− j
(
m
j

)(
U∗BU

) j(
U∗CU

)(
U∗AU

)m− j(
U∗CU

))(
U∗AU

)n

= U∗A∗n
( ∑

0≤k≤m

(−)m− j
(
m
j

)
B jCAm− jC

)
AnUn.

Therefore
A ∈ [nQ ∩HILm(B,C)]⇐⇒ U∗AU ∈ [nQ ∩HELm(U∗BU),U∗CU].

(2) Similarly, the statement (2) follows from the identity(
λA∗

)n
Φ(λB;λA,C)m(I)

(
λA

)n
= λ

n
|λ|2mA∗nΦ(B; A,C)m(I)An.

(3) (
A1 ⊕ A2

)∗n
Φ
(
B1 ⊕ B2; A1 ⊕ A2,C ⊕ C

)m
(I)

(
A1 ⊕ A2

)n

= A∗1
nΦ(B1; A1,C)m(I)An

1 ⊕ A∗2
nΦ(B2; A2,C)m(I)An

2

= 0.

Lemma 2.13. Let A and B be in B(H) and C be a conjugation on H such that A ∈ [nQ ∩HELm(B,C)] for some
integers n,m ⩾ 1. If R(An) is dense, then A ∈ HELm(B,C)].

Proof. As A ∈ [nQ ∩HELm(B,C)], we have

A∗n
( ∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An = 0
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and therefore〈
A∗n

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
Anω | ω

〉
= 0

=⇒
〈 ∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
Anω | Anω

〉
= 0

=⇒
∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC = 0 on R(An) = H .

Therefore A ∈ HELm(B,C)].

Proposition 2.14. Let A ∈ [nQ ∩HELm(B,C)]. If ker(A∗) = ker(A∗2) then A ∈ [Q ∩HELm(B,C)].

Proof. According to the assumption ker(A∗) = ker(A∗2) we deduce that ker(A∗) = ker(A∗p) for all positive
integer p and may write

A ∈ [nQ ∩HELm(B,C)] =⇒ A∗nΦ(B,A,C)m(I)An = 0
=⇒ A∗Φ(B; A,C)m(I)An = 0 (since ker(A∗) = ker(A∗n))
=⇒ A∗nΦ(B; A,C)∗m(I)A = 0
=⇒ A∗Φ(B; A,C)∗m(I)A = 0 (since ker(A∗) = ker(A∗n))
=⇒ A∗Φ(B; A,C)m(I)A = 0
=⇒ A ∈ [Q ∩HELm(B,C)].

Remark 2.15. The inclusion [nQ ∩HELm(B)] ⊂ [nQ ∩HELm+1(B)] does not holds in general with conjugation
C as shown in the following example.

Proposition 2.16. Let A ∈ [nQ ∩ HELm(B,C)] for some positive integers n,m and conjugation C. If [A∗,B] =
[A,CAC] = 0, then A ∈ [nQ ∩HELm+1(B,C)].

Proof. Since A ∈ [nQ ∩ HELm(B,C)] for some conjugation C we have A∗nΦ(B; A,C)m(I)An = 0. Moreover
according to Lemma 2.3

Φ(B : A,C)m+1(I) = BΦ(B; A,C)m(I) −Φ(B; A,C)m(I)
(
CAC

)
and the conditions [A∗,B] = [A,CAC] = 0 it follows that

A∗nΦ(B; A,C)m+1(I)An = A∗n
(
BΦ(B; A,C)m(I) −Φ(B; A,C)m(I)

(
CAC

))
An

= BA∗nΦ(B; A,C)m(I)An
− A∗nΦ(B; A,C)m(I)An

(
CAC

)
= 0.

Hence, A∗nΦ(B; A,C)m+1(I)An = 0 and therefore, A ∈ [nQ ∩HELm+1(B,C)].

Lemma 2.17. If A ∈ [nQ ∩HEL2(B,C)] such that [A,CAC] = [A.B∗] = 0. Then

A∗nΦ(Bm+2,Am+2,C)2(I)An

= BA∗nΦ(Bm+1,Am+1,C)2(I)An(CAC) − B2A∗nΦ(Bm,Am,C)2(I)An(CA2C).
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Proof. Since A ∈ [nQ ∩HEL2(B,C)] it follows that

A∗n
(
B2
− 2BCAC + CA2C

)
An = 0

and therefore 
A∗nB2An = A∗n

(
2BCAC − CA2C

)
An

A∗nCA2CAn = A∗n
(
2BCAC − B2

)
An.

Now for m = 1,we get

A∗nΦ(B3,A3,C)2(I)An = A∗n
(
B6
− 2B3CA3C + CA6C

)
An

= A∗nB6An
− 2A∗nB3CA3C + A∗nCA6CAn

= B4A∗n
(
2BCAC − CA2C

)
An
− 2B3CA3C

+A∗n
(
2BCAC − B2

)
AnCA4C

= 2BA∗nΦ(B2,A2,C)2(I)AnCAC − B2A∗nΦ(B,A,C)2(I)An(CA2C).

Assume that

A∗nΦ(Bm+2,Am+2,C)2(I)An

= BA∗nΦ(Bm+1,Am+1,C)2(I)An(CAC) − B2A∗nΦ(Bm,Am,C)2(I)An(CA2C)

holds for m. We want to show that

A∗nΦ(Bm+3,Am+3,C)2(I)An

= BA∗nΦ(Bm+2,Am+2,C)2(I)An(CAC) − B2A∗nΦ(Bm+1,Am+1,C)2(I)An(CA2C).

Indeed,

A∗nΦ(Bm+3,Am+3,C)2(I)An

= A∗n
(
B2m+6

− 2Bm+3CAm+3C + CA2m+6
)
An

= A∗nB2m+6An
− 2A∗nBm+3CAm+3CAn + A∗nCA2m+6CAn

= B2m+4 A∗nB2An︸   ︷︷   ︸−2A∗nBm+3CAm+3CAn + A∗nCA2CAn︸        ︷︷        ︸ CA2m+4C

= B2m+4A∗n
(
2BCAC − CA2C

)
An
− 2A∗nBm+3CAm+3CAn

+A∗n
(
2BCAC − B2

)
AnCA2m+4C

= A∗n
(
2B2m+5CAC − B2m+4CA2C

)
An
− 2A∗nBm+3CAm+3CAn

+A∗n
(
2BCA2m+5C − B2CA2m+4C

)
An

= BA∗nΦ(Bm+2,Am+2,C)2(I)AnCAC − B2Φ(Bm+1,Am+1,C)2(I)An(CA2C).

Proposition 2.18. If A ∈ [nQ∩HEL2(B,C)] such that [A,CAC] = [A,B∗] = 0. Then A2
∈ [nQ∩HEL2(B2,C)].
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Proof. Since A ∈ [nQ ∩HEL2(B,C)] it follows that

A∗n
(
B2
− 2BCAC + CA2C

)
An = 0

and therefore 
A∗nB2An = A∗n

(
2BCAC − CA2C

)
An

A∗nCA2CAn = A∗n
(
2BCAC − B2

)
An.

.

On the other hand

A∗nΦ(B2,A2,C)2(I)An

= A∗n
(
B4
− 2B2CA2C + CA4C

)
An

= A∗nB4An
− 2A∗nB2CA2CAn + A∗nCA4CAn

= B2A∗nB2An
− 2A∗nB2CA2CAn + A∗nCA2CAn(CA2C)

= B2A∗n
(
2BCAC − CA2C

)
An
− 2A∗nB2CA2CAn + A∗n

(
2BCAC − B2

)
AnCA2C

= A∗n
(
2B3CAC − B2CA2C − 2B2CA2C + 2BCA3C − B2CA2C

)
An

= BA∗n
(
2B2
− BCAC − 2BCAC + CA2C − BCAC

)
AnCAC

= 2BA∗nΦ(B; A,C)2(I)AnCAC
= 0.

Thus shows that A2
∈ [nQ ∩HEL2(B2,C)].

Lemma 2.19. Let A ∈ [nQ∩HEL2(B,C)] for some positive integer n and conjugation C. If [A∗,B] = [A,CAC] = 0
then A2

∈ [nQ ∩HELm(B2,C)].

Proof. According to A ∈ [nQ ∩HELm(B,C)], we get A∗nΦ(B; A,C)2(I)An = 0 and therefore,

Bq
(
A∗nΦ(B; A,C)2(I)An

)(
CAm−qC

)
= 0 f or q = 0, 1, · · · ,m.

From the assumption that [A∗,B] = [A,CAC] = 0 and Proposition 2.16 we obtain

A∗nBqΦ(B; A,C)m(I)CAm−qCAn = 0 f or any q = 0, 1, 2, · · · ,m.

Hence

A∗2n
( ∑

0≤q≤m

(−1)q
(
m
q

)
BqΦ(B; A,C)m(I)CAm−qC

)
A2n = 0

which means that

A∗2n
( ∑

0≤q≤m

(
m
q

)
Bq

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
CAm−qC

)
A2n = 0

or

A∗2n
( ∑

0≤q≤m

∑
0≤ j≤m

(−1) j
(
m
q

)(
m
j

)
Bq+ jCA2m−(q+ j)C

)
A2n = 0
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that is

A∗2n
( ∑

0≤q≤2m

∑
0≤ j≤q

(−1) j
(

m
q − j

)(
m
j

)
BqCA2m−qC

)
A2n = 0.

According to the identity ∑
0≤ j≤q

(−1) j
(

m
q − j

)(
m
j

)
=


0, i f q is odd

(−1)r(m
r
)
, i f q = 2r

,

we get

A∗2n
( ∑

0≤q≤m

(−1)q
(
m
r

)
B2qCA2m−2qC

)
A2n = 0

which implies that A2
∈ [nQ ∩HELm(B2,C)].

Theorem 2.20. Let A ∈ [nQ ∩ HELm(B,C)] for some positive integers n and m ⩾ 2. If [A∗,B] = [A,CAC] =
0 then Aq

∈ [nQ ∩HELm(Bq,C)] for positive integer q.

Proof. First case: assume that A ∈ [nQ∩HEL2(B,C)]. We prove by induction that Aq
∈ [nQ∩HEL2(Bq,C)]

for q = 2, by using Proposition 2.18 we can deduce that A2
∈ [nQ ∩HIL2(B2,C)].

Second case: assume that Aq
∈ [nQ ∩ HEL2(Bq,C)] for q and we need to prove that Aq+1

∈ [nQ ∩
HEL2(Bq+1,C)]. In view of Lemma 2.17 we get

A∗nΦ(Bq+1; Aq+1,C)2(I)An

= A∗n
(
2BΦ(Bq; Aq,C)2(I)A − B2Φ(Bq−1; Aq−1,C)2(I)CA2C

)
An

= 2BA∗nΦ(Bq; Aq,C)2(I)AnA︸                           ︷︷                           ︸
=0

−B2A∗nΦ(Bq−1; Aq−1,C)2(I)AnCA2C︸                                     ︷︷                                     ︸
=0

= 0.

Therefore, Aq+1
∈ [nQ ∩ HEL2(Bq+1,C)] and consequently, Aq

∈ [nQ ∩ HEL2(Bq,C)]. Now assume that
A ∈ [nQ ∩ HELm(B,C)]. We have that Aq

∈ [nQ ∩ HELm(Bq,C)] and the result is true for k = 2. Assume
that Aq

∈ [nQ ∩ HELm(Bq,C)]. By taking into account Proposition 2.16, we have [nQ ∩ HELm(B,C)] ⊂
[nQ ∩HELm+1(B,C)] and we get Aq

∈ [nQ ∩HELm(Bq,C)].

The following theorem shows that the n-quasi complex Helton class of an operators is closed in norm.

Theorem 2.21. If B ∈ B(H) and C be a conjugation on H, then [nQ ∩HELm(B,C)] is closed in norm.

Proof. Suppose that (Ak)k is a sequence of [nQ ∩HELm(B,C)] such that

lim
n→∞
∥Ak − A∥ = 0.

Since for every positive integer k, Ak is in [nQ ∩HELm(B,C)], we have

A∗nk Φ(B,Ak,C)An
k = 0.
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From which it follow that

∥A∗nk Φ(B,Ak,C)An
m∥ = ∥A

∗n
k Φ(B,Ak,C)An

m − A∗nk Φ(B,A,C)An
∥

= ∥A∗nk

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− j

k C
)
An

m − A∗n
( ∑

0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An
∥

⩽ ∥A∗nk

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− j

k C
)
An

k − A∗nk

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An
∥

+ ∥A∗nk

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An
− A∗n

( ∑
0≤ j≤m

(−1) j
(
m
j

)
B jCAm− jC

)
An
∥

⩽ ∥A∗nk ∥∥
∑

0≤ j≤m

(−1) j
(
m
j

)
B j

(
CAm− j

k CAn
k − CAm− jCAn

)
∥

+ ∥(
∑

0≤ j≤m

(−1) j
(
m
j

)(
A∗nk B jCAm− jC − A∗nB jCAm− jC

)
An
∥

⩽ ∥A∗nk − An
∥∥

∑
0≤ j≤m

(−1) j
(
m
j

)
B j

(
CAm− j

k CAn
k − CAm− jCAn

)
∥

+ ∥An
∥∥

∑
0≤ j≤m

(−1) j
(
m
j

)
B j

(
CAm− j

k CAn
k − CAm− jCAn

)
∥

+ ∥

( ∑
0≤ j≤m

(−1) j
(
m
j

)(
A∗nk B jCAm− jC − A∗nB jCAm− jC

)
An
∥.

Since A∗nk Φ(B,Ak,C)An
k = 0 we get by taking k → ∞ that A∗nΦ(B,A,C)An = 0 and therefore,A ∈ [nQ ∩

HELm(B,C)].

Theorem 2.22. If Ai ∈ [nQ ∩HELm(Bi,Ci)] for i = 1, 2, then(
A1 W
0 A2

)
∈

[
nQ ∩HELm

( ( B1 W
0 B2

)
,

(
C1 0
0 C2

) )]
if and only if

A∗n1 Φ(B1,A1,C1)m(I)Fn + A∗n1 GmAn
2 = 0

F∗nΦ(B1,A1,C1)m(I)An
1 = 0

F∗nΦ(B1,A1,C1)m(I)F + F∗GmAn
2 = 0

,

for some operator W ∈ B(H), where Fn =
∑

0≤i≤n−1

Ai
1WAn−1−i

2 and

Gk =

m∑
j=0

(−1) j
(
m
j

) B j
1

( m− j−1∑
i=0

Ai
1WAm− j−1−i

2

)
+

( j−1∑
i=0

Bi
1WB j−1−i

2

)
Am− j

2

 .
Proof. (

A1 W
0 A2

)
∈

[
nQ ∩HELm

( ( B1 W
0 B2

) )]
if and only if(

A1 W
0 A2

)∗n  ∑
0≤ j≤m

(−1) j
(
m
j

) (
B1 W
0 B2

) j (
C1 0
0 C2

) (
A1 W
0 A2

)m− j (
C1 0
0 C2

)
(

A1 W
0 A2

)n

= 0.
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By observing that (
A1 W
0 A2

)p

=

 Ap
1

∑
0≤ j≤p−1

A j
1WAp−1− j

2

0 Ap
2


and (

B1 W
0 B2

)
=

 Bp
1

∑
0≤ j≤p−1

B j
1WBp−1− j

2

0 Bp
2

 ,
it follows that(

A1 W
0 A2

)∗n {  ∑
0≤ j≤m

(−1) j
(
m
j

) (
B1 W
0 B2

) j (
C1 0
0 C2

) (
A1 W
0 A2

)m− j (
C1 0
0 C2

)} (
A1 W
0 A2

)n

=


An

1

∑
0≤i≤n−1

Ai
1WAn−1−i

2

0 An
2


∗  ∑

0≤ j≤m

(−1) j
(
m
j

) 
B j

1

∑
0≤i≤ j−1 Bi

1WB j−1−i
2

0 B j
2


(

C1 0
0 C2

)


Am− j
1

∑
0≤i≤m− j−1−i

Ai
1WAk− j−1−i

2

0 Am− j
2


m− j (

C1 0
0 C2

) 
An

1

∑
0≤i≤n−1

Ai
1WAn−1−i

2

0 An
2


=


A∗n1 0 ∑

0≤i≤n−1

Ai
1WBn−1−i

2


∗

A∗n2


{

∑
0≤ j≤m

(−1) j
(
m
j

) 
B j

1C1Am− j
1 C1 B j

1

 ∑
0≤i≤m− j−1

Ai
1WAm− j−1−i

2

 +
 ∑

0≤i≤ j−1

Bi
1WB j−1−i

2

 Am− j
2

0 B j
2C2Am− j

2 C1


}

 An
1

∑
0≤i≤n−1 Ai

1WAn−1−i
2

0 An
2



=


A∗n1 0 ∑

0≤i≤n−1

Ai
1WBn−1−i

2


∗

A∗n2



Φ(B1; A1,C1)m(I)

∑m
j=0(−1) j(m

j
) B j

1

 ∑
0≤i≤m− j−1

Ai
1WAm− j−1−i

2

 +
 ∑

0≤i≤ j−1

Bi
1WB j−1−i

2

 Am− j
2


0 Φ(B2; A2,C2)m(I)





An
1

n−1∑
i=0

Ai
1WAn−1−i

2

0 An
2


=

 0 A∗n1 Φ(B1; A1,C1)m(I)Fn + A∗n1 GmAn
2

F∗nΦ(B1; A1,C1)m(I)An
1 F∗nΦ(B1; A1,C1)m(I)Fn + F∗nGmAn

2

 .
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Theorem 2.23. Let A ∈ [nQ ∩HELm(B,C)] where C = C1 ⊕ C2 : R(An)
⊕

ker(A∗n) −→ R(An)
⊕

ker(A∗n) be a
conjugation operator If [A,B∗] = 0 then A,B∗ have upper triangular representations

A =
(

A1 A2
0 A3

)
B∗ =

(
B∗1 B∗2
0 B∗3

)
. onH = R(An) ⊕ ker(A∗n).

where A1 ∈ HELm(B1,C1), An
3 = 0 and [A1,C1B∗1C1] = 0.

Proof. According to the decompositionH = R(An
1)

⊕
ker(A∗n1 ) and AB∗ = B∗A we get that A and B has the

upper triangular representations

A =
(

A1 A2
0 A3

)
B∗ =

(
B∗1 B∗2
0 B∗3

)
.

[A,B∗] = 0 =⇒ [A1,B∗1] = 0 On the other hand

A ∈ [nQ ∩HELm(B,C)] = 0

=⇒

(
A1 A2
0 A3

)∗n  ∑
0≤ j≤m

(−1) j
(
m
j

) (
B1 0
B2 B3

) j (
C1 0
0 C2

) (
A1 A2
0 A3

)m− j (
C1 0
0 C2

)(
A∗1 A∗2
0 A∗3

)m− j

= 0

=⇒


A∗n1

 ∑
0≤ j≤m

(−1) j
(
m
j

)
(B1) jC(A1)m− jC

 An
1 X

Y Z

 = 0

for some operators X,Y andZ. Therefore

(A1)∗n
 ∑

0≤ j≤m

(−1) j
(
m
j

)
(B1) jC1(A1)m− jC1

 (A1)n = 0

or equivalently ∑
0≤ j≤m

(−1) j
(
m
j

)
B j

1C1Am− j
1 C1 = 0.

This means that A1 ∈ [nQ ∩HELm(B1,C1)] which completed the proof.

Theorem 2.24. Let Ak ∈ [nQ ∩HELmk (Bk,C)] for k = 1, 2, and
C = C1 ⊕ C2 : R(An

k )
⊕

ker(A∗nk ) −→ R(An
k )

⊕
ker(A∗nk ) is a conjugation operator. If

[A1,A2] = [B1,B2] = [A1,B∗1] = [A2,B∗2] = 0.

Then A1A2 ∈ [nQ ∩HELm1+m2−1

(
B1B2,C1

)
].
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Proof. From the assumptions we have the following upper triangular representations

Ak =

(
Ak1 Ak2
0 Ak3

)
B∗k =

(
B∗k1 B∗k2
0 B∗k3

)
. k = 1, 2

with the decompositionH = R(An
k )

⊕
ker(A∗nk ), k = 1, 2.. Since A1 ∈ [nQ ∩HELm1 (B1,C1)] and [A1,B∗1] = 0,

it follows by Theorem 2.23 that A11 ∈ [HELm1 (B11,C1)]. Similarly, since A2 ∈ [nQ ∩ HELm2 (B2,C1)] and
[A1,B∗1] = 0, it follows by Theorem 2.23 that A21 ∈ [HELm2 (B21,C1)] . According to the statement (1)
of Remark 2.2 we have C1A11C1 ∈ [HELm1 (B11] and C1A21C1 ∈ [HELm2 (B21)] and by the assumption
[A1,A2] = 0we have [C1A1C1,C1A2C1] = 0. Now, taking into account [11, Theorem 3.1] we deduce that
C1A11A21C1 ∈ [HELm1+m2−1(B11B21)] or equivalently A11A21 ∈ [HELm1+m2−1(B11B21,C1)] that is

Φ(B11B21; A11A21,C1)m1+m2−1(I) = 0.

A simple computation shows that

(A1A2)∗n
 ∑

0≤ j≤m1+m2−1

(−1) j
(
m1 +m2 − 1

j

)
(B1B2) jC1(A1A2)m1+m2−1− j(C1)

 (A1A2)n

=

 A∗n11A∗n21 Z

0 A∗n13A∗n23


 Φ(B11B21; A11A21,C11C21)m1+m2−1(I) Q

0 W


 An

11An
21 Y

0 0


= 0.

Therefore, A1A2 ∈ [nQ ∩HELm1+m2−1(B1B2,C1)] and the proof is complete.

Lemma 2.25. Let A,B ∈ B(H) and if C is conjugation onH . The following statements are true.

(1) A ∈ [nQ ∩HELm(B,C)] if and only if AotimesI ∈ [nQ ∩HELm(B ⊗ I,C ⊗ C)].

(2) A ∈ [nQ ∩HELm(B,C)] if and only if I ⊗ A ∈ [nQ ∩HELm(I
⊗

B,C ⊗ C)].

Proof. According to [10, Lemma 4.5] it follows that C ⊗ C is a conjugation operator on H⊗H . A direct
calculation shows that

(A ⊗ I)∗nΦ(B ⊗ I; A ⊗ I,C ⊗ C)m(I ⊗ I)(A ⊗ I)n

= (A ⊗ I)∗n
 ∑

0≤ j≤m

(−1) j
(
m
j

)
(B ⊗ I) j(C ⊗ C)(A ⊗ I)m− j(C ⊗ C)

 (A ⊗ I)n

= A∗n
 ∑

0≤ j≤m

(−1) j
(
m
j

)
(B) jC(A)m− jC

 An
⊗ I

= A∗nΦ(B; A,C)m(I)An
⊗ I.

Theorem 2.26. Let Ak ∈ [nQ ∩HELmk (Bk,C)] for k = 1, 2, and
C = C1 ⊕ C2 : R(An

k )
⊕

ker(A∗nk ) −→ R(An
k )

⊕
ker(A∗nk ) is a conjugation operator.

If [Ak,B∗k] = 0∀k = 1, 2 then A1 ⊗ A2 ∈ [nQ ∩HELm1+m2−1(B1 ⊗ B2,C1 ⊗ C1)].
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Proof. Let T1 = A1 ⊗ I, T2 = I ⊗ A2 and S1 = B1 ⊗ I, S2 = I ⊗ B2. Since

A1 ⊗ A2 = (A1 ⊗ I)(I ⊗ A2) and B1 ⊗ B2 = (B1 ⊗ I)(I ⊗ B2).

[A1 ⊗ I I ⊗ A2] = [B1 ⊗ I I ⊗ B2] = [A1 ⊗ I B∗1 ⊗ I] = [I1 ⊗ A2 I ⊗ B∗2] = 0.

Then it follows from an application of Lemma 2.25 and Theorem 2.24 that A1⊗A2 ∈ [nQ∩HELm1+m2−1(B1⊗

B2,C1 ⊗ C1)].

Definition 2.27. Let A,B ∈ B(H) and C is conjugation onH . We say that A belongs to quasi strict Helton class of
B with order m and conjugation C if A,B and C satisfy

A∗nΦ(B,A,C)m(I)An = 0

A∗nΦ(B,A,C)m−1(I)An , 0
,

that is A ∈ [nQ ∩HELm(B,C)] but A < [nQ ∩HELm−1(B,C)].

Below we present an example that fulfills the above definition.

Example 2.28. Let H = C2 and A and B the operators A =
(

1 0
−1 1

)
B =

(
0 −1
1 2

)
. Let C be a conjugation

C(u, v) = (v,u) that is ; C =
(

0 1
1 0

)
.

Then, a straightforward calculation shows that
A∗Φ(B,A,C)3(I)A = 0

A∗Φ(B,A,C)2(I)A , 0
.

Hence, A ∈ [Q ∩HEL3(B,C)] and A < [Q ∩HEL2(B,C)]. Therefore, A belongs to quasi strict Helton class of B
with order 3 and conjugation C.

Theorem 2.29. Let A,B ∈ B(H) and C be a conjugation operator on H . Assume that A belongs to quasi strict
Helton class of B with order m and conjugation C. If [A∗, B] = [A, CAC] = 0 then the family of linear operators{

A∗nΦ(B,A,C) j(I)An, j = 0, 1, 2, ...m − 1
}

is linearly independent.

Proof. According to Lemma 2.3 we have for all j ≥ 1,

Φ(B,A,C) j = BΦ(B,A,C) j−1(I) −Φ(B,A,C) j−1(I)(CAC).

We my write

A∗nΦ(B,A,C)m(I)An = A∗n
(
BΦ(B,A,C)m−1(I) −Φ(B,A,C)m−1(I)(CAC)

)
)An

= BA∗nΦ(B,A,C)m−1(I)An
− A∗nΦ(B,A,C)m−1(I)An(CAC).

Let γ j ∈ C for j = 1, · · · ,m − 1 such that∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j(I)An = 0. (12)
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Multiplying the equation (12) on the left by B and from right by CAC to gather with the condition [A∗,B] =
[A CAC] = 0 we get∑

0≤ j≤m−1

γ jA∗nBΦ(B,A,C) j(I)An = 0 (13)

and ∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j(I)An(CAC) = 0. (14)

Subtracting two equations (13) and (14), we obtain∑
0≤ j≤m−1

γ jA∗n
(
BΦ(B,AC) j(I) −Φ(B,A,C) j(I)CAC

)
An =

∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j+1(I)An = 0. (15)

The same procedure applied to equation ( 15) gives∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j+2(I)An = 0

By continuing this process we obtain∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j+r(I)An = 0 f or all r ∈N.

From Proposition 2.16, it is well known that if A ∈ [nQ ∩HELm(B,C)] then A ∈ [nQ ∩HELp(B,C)] for all
p ⩾ m and this means that the following implications hold.

For r = m − 1,
∑

0≤ j≤m−1

γ jA∗nΦ(B,A,C) j+m−1(I)An = 0 =⇒ γ0A∗nΦ(B,A,C)m−1(I)An = 0.

So, γ0 = 0 by the fact that A∗nΦ(B,A,C)m−1(I)An , 0.
For r = m − 2,

∑
0≤ j≤m−1

γ jA∗nΦ(B,A,C) j+m−2(I)An = 0 =⇒ γ1A∗nΦ(B,A,C)m−1(I)An = 0.

So, γ1 = 0.
Respiting this process for r = m − 3, ..., r = 1 and r = 0 we can found that all γ j = 0 for j = 2, ...,m − 1.
Hence, ∑

0≤ j≤m−1

γ jA∗nΦ(B,A,C) j(I)An = 0 =⇒ γ0 = γ1 = ... = γm−1 = 0.
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[10] M. Chō, J. Lee and H. Motoyoshi, On [m,C]-isometric operators, Filomat 31:7 (2017), 2073-2080.



A. Al Rwaily / Filomat 38:31 (2024), 10819–10834 10834

[11] B.P. Duggal, I.H. Kim, Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators, Journal
of Mathematical Analysis and Applications. Volume 495, Issue 1, 1 March (2021), 124718.

[12] B. P. Duggal and I. H. Kim, Structure of n-quasi left-m-invertible and related classes of operators, Demonstratio Mathematica 2020; 53:
249–268.

[13] B. P. Duggal and V. Muller, Tensor product of left n-invertible operators, Studia Math. 215(2013), no. 2, 113–125.
[14] H. Ezzahraoui, On m-generalized invertible operators on Banach spaces. Ann. Funct. Anal. Volume 7, Number 4 (2016), 609–621.
[15] SR. Garcia, Prodan E, Putinar M. Mathematical and physical aspects of complex symmetric operators. J Phys A. 2014;47:353001.

(54pp).
[16] C. Gu, Structures of left n-invertible operators and their applications, Stud Math. (2015);226(3): 189–211.
[17] C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums with a nilpotent operator, Linear

Algebra and its Applications, 469 (2015), 500-509
[18] J.W. Helton, Infinite dimensional Jordan operators and Strum-Liouville conjugate point theory, Trans. Amer. Math. Soc., 170 (1972),

305-331.
[19] Y. Kim, E. Ko and J.E. Lee, On the Helton class of p-hyponormal operators, Proc. Amer. Math. Soc., 135 (2007), 2113-2120.
[20] I. Kim, Y. Kim, E. Ko, and J. E. Lee, Inherited proprieties through the Hilton class of an operator, Bull. Korean Math. Soc. 48 (2011), No.

1, pp. 183–195.
[21] Ji Eun Lee, The Helton class of operators and rank one perturbations of the unilateral shift, Ph. D. Thesis, Ewha Womans

University, 2008.
[22] H. Lia, Y. Wanga, Some Properties of (m,C)-Isometric Operators, Filomat 33:3 (2019), 971–980 https://doi.org/10.2298/FIL1903971L
[23] O. A. Mahmoud Sid Ahmed, A. Saddi and K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat. Volume

49 (4) (2020), 1315 – 1333. DOI : 10.15672/hujms.532964
[24] O. A. Mahmoud Sid Ahmed, Some Properties of m-invertible operators in Banach Spaces, Acta Mathematica Scientia (2012),32 B (2),

520–530.
[25] O. A. Mahmoud Sid Ahmed, m-Isometric Operators on Banach Spaces, Asian-European Journal of Mathematics Vol. 3, No.1 (2010)

1-19.
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