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On some 3-dimensional almost η-Ricci solitons with diagonal metrics
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Abstract. We study some properties of a 3-dimensional manifold with a diagonal Riemannian metric as
an almost η-Ricci soliton from the following points of view: under certain assumptions, we determine the
potential vector field if η is given; we get constraints on the metric when the potential vector field has a
particular expression; we compute the defining functions of the soliton when both the potential vector field
and the 1-form are prescribed. Moreover, we find conditions for the manifold to be flat. Based on the
theoretical results, we provide examples.

1. Introduction

The solitons’ theory has been lately intensively investigated. The stationary solutions of the Ricci flow,
namely, the Ricci solitons, still represent a very actual topic to be studied from various points of view.
Problems like linear stability of compact Ricci solitons, curvature estimates, rigidity results for gradient
Ricci solitons, etc. have been recently treated by Huai-Dong Cao et. al. in [7–9]. As a generalization of the
notion of Ricci soliton given by Hamilton in [12], an almost η-Ricci soliton [4, 5, 10] is a Riemannian manifold
(M, 1̃) with a smooth vector field V which satisfies the following equation

1
2

£V1̃ + Ric+λ1̃ + µη ⊗ η = 0, (1)

where λ and µ are two smooth functions on M with µ , 0, Ric is the Ricci curvature tensor field, £V1̃ is the
Lie derivative of the metric 1̃ in the direction of V, and η is a 1-form on M. If V is a Killing vector field, i.e.,
£V1̃ = 0, then the soliton is called trivial, and in this case, (M, 1̃) is just a quasi-Einstein manifold. On the
other hand, if η = 0, then (M, 1̃,V, λ) is called an almost Ricci soliton [13]. In this case, the soliton is said to
be shrinking, steady or expanding according as λ is negative, zero or positive, respectively [11]. In the above
cases, if λ and µ are real numbers, then we drop ”almost”.

The aim of the present paper is to describe a 3-dimensional manifold endowed with a diagonal Rie-
mannian metric as an almost η-Ricci soliton. More precisely, under certain assumptions, we determine the
potential vector field V when η is given, we find the conditions that must be satisfied by the Riemannian
metric when the potential vector field has a particular expression, and we compute the defining functions
λ and µwhen both the potential vector field and the 1-form are prescribed. Based on the theoretical results,
we construct examples, among which the 3-dimensional Sol3 andH2

×R Lie groups. An analogous study
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for the canonical metric has been previously done by the present author in [6]. More recently, some partic-
ular Riemannian manifolds, namely, the 3-dimensional Sol3 and H2

× R Lie groups, have been described
as Ricci solitons by Belarbi, Atashpeykara and Haji-Badali in [1–3] from a similar point of view.

2. The flatness condition

We consider I = I1 × I2 × I3 ⊆ R3, where Ii ⊆ R, i ∈ {1, 2, 3}, are open intervals, endowed with a diagonal
Riemannian metric 1̃ given by

1̃ =
1
f 2
1

dx1
⊗ dx1 +

1
f 2
2

dx2
⊗ dx2 + dx3

⊗ dx3,

where f1 and f2 are two smooth functions nowhere zero on I, and x1, x2, x3 are the standard coordinates in
R3. Let {

E1 := f1
∂

∂x1 , E2 := f2
∂

∂x2 , E3 :=
∂

∂x3

}
be a local orthonormal frame, and, for the sake of simplicity, we will make the following notations:

f2
f1
·
∂ f1
∂x2 =: a,

1
f1
·
∂ f1
∂x3 =: b,

f1
f2
·
∂ f2
∂x1 =: c,

1
f2
·
∂ f2
∂x3 =: d.

Computing the Lie brackets [X,Y] := X ◦ Y − Y ◦ X, we get

[E1,E2] = −aE1 + cE2, [E1,E3] = −bE1, [E2,E3] = −dE2.

The Levi-Civita connection ∇ of 1̃, deduced from the Koszul’s formula

21̃(∇XY,Z) = X(1̃(Y,Z)) + Y(1̃(Z,X)) − Z(1̃(X,Y)) − 1̃(X, [Y,Z]) + 1̃(Y, [Z,X]) + 1̃(Z, [X,Y]),

is given by
∇E1 E1 = aE2 + bE3, ∇E1 E2 = −aE1, ∇E1 E3 = −bE1, ∇E2 E1 = −cE2,

∇E2 E2 = cE1 + dE3, ∇E2 E3 = −dE2, ∇E3 E1 = 0, ∇E3 E2 = 0, ∇E3 E3 = 0,

and the Riemann and Ricci curvature tensor fields

R(X,Y)Z := ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, Ric(Y,Z) :=
3∑

k=1

1̃(R(Ek,Y)Z,Ek)

are the following

R(E1,E2)E2 = [E1(c) + E2(a) − a2
− c2
− bd]E1 + [E3(c) − cd]E3,

R(E2,E1)E1 = [E1(c) + E2(a) − a2
− c2
− bd]E2 + [E3(a) − ab]E3,

R(E1,E3)E3 = [E3(b) − b2]E1,

R(E2,E3)E3 = [E3(d) − d2]E2,

R(E3,E1)E1 = [E3(a) − ab]E2 + [E3(b) − b2]E3,

R(E3,E2)E2 = [E3(c) − cd]E1 + [E3(d) − d2]E3,

R(E1,E2)E3 = 1̃(R(E2,E1)E1,E3)E1 − 1̃(R(E1,E2)E2,E3)E2 = [E3(a) − ab]E1 − [E3(c) − cd]E2,

R(E2,E3)E1 = 1̃(R(E3,E2)E2,E1)E2 − 1̃(R(E2,E3)E3,E1)E3 = [E3(c) − cd]E2,

R(E3,E1)E2 = −1̃(R(E3,E1)E1,E2)E1 + 1̃(R(E1,E3)E3,E2)E3 = −[E3(a) − ab]E1,

Ric(E1,E1) = E1(c) + E2(a) + E3(b) − a2
− b2
− c2
− bd,

Ric(E2,E2) = E1(c) + E2(a) + E3(d) − a2
− c2
− d2

− bd,

Ric(E3,E3) = E3(b) + E3(d) − b2
− d2,

Ric(E1,E2) = 0, Ric(E1,E3) = E3(c) − cd, Ric(E2,E3) = E3(a) − ab.
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We shall determine the conditions that the two functions f1 and f2 must satisfy for the manifold to be
flat, exploring the cases when each of the two functions depends on a single variable. In this paper, if
a function h on R3 depends only on some of its variables, then we will write in its argument only that
variables in order to emphasize this fact, for example, h(xi), h(xi, x j).

Proposition 2.1. If fi = fi(xi) for i ∈ {1, 2}, then (I, 1̃) is a flat Riemannian manifold.

Proof. In this case, a = b = c = d = 0, and R(Ei,E j)Ek = 0 for any i, j, k ∈ {1, 2, 3}.

Proposition 2.2. If fi = fi(x3) for i ∈ {1, 2}, then the following assertions are equivalent:
(1) (I, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 are constant, or fi = ki ∈ R \ {0} and f j(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3, and i , j.

Proof. In this case, a = 0, b =
f ′1
f1

, c = 0, d =
f ′2
f2

, and

R(E1,E2)E2 = −bdE1, R(E2,E1)E1 = −bdE2,

R(E1,E3)E3 = (b′ − b2)E1, R(E3,E1)E1 = (b′ − b2)E3,

R(E2,E3)E3 = (d′ − d2)E2, R(E3,E2)E2 = (d′ − d2)E3.

Then, R = 0 if and only if
bd = 0

b′ = b2

d′ = d2

,

that is,

f ′1 f ′2 = 0(
f ′1
f1

)′
=

(
f ′1
f1

)2

(
f ′2
f2

)′
=

(
f ′2
f2

)2

.

Therefore,
• f ′1 = 0 and f ′2 = 0, or

• f ′1 = 0 and − 1
f ′2(x3)
f2(x3)

= x3 + c0

(
i.e., f2(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3

)
, or, similarly

• f1(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3 and f ′2 = 0.

Corollary 2.3. For I = R3, if fi = fi(x3) for i ∈ {1, 2}, then the following assertions are equivalent:
(1) (R3, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 are constant.

Proof. It follows immediately from Proposition 2.2.

Proposition 2.4. If f1 = f1(x1), f2 = f2(x3), then the following assertions are equivalent:
(1) (I, 1̃) is a flat Riemannian manifold;
(2) f2 is constant, or f2(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3.
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Proof. In this case, a = b = c = 0, d =
f ′2
f2

, and

R(E2,E3)E3 = (d′ − d2)E2, R(E3,E2)E2 = (d′ − d2)E3,

R(E1,E2)E2 = R(E1,E3)E3 = R(E2,E1)E1 = R(E3,E1)E1 = 0.

Then, R = 0 if and only if
d′ = d2,

that is, (
f ′2
f2

)′
=

(
f ′2
f2

)2

.

Therefore,
• f ′2 = 0, or

• −
1

f ′2(x3)
f2(x3)

= x3 + c0

(
i.e., f2(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3

)
.

Corollary 2.5. For I = R3, if f1 = f1(x1), f2 = f2(x3), then the following assertions are equivalent:
(1) (R3, 1̃) is a flat Riemannian manifold;
(2) f2 is constant.

Proof. It follows immediately from Proposition 2.4.

Proposition 2.6. If fi = fi(x2) for i ∈ {1, 2}, then the following assertions are equivalent:
(1) (I, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 satisfy the equation

f ′1
f1

f ′2
f2
+

f ′′1
f1
= 2

(
f ′1
f1

)2

;

(3) f1 is constant, or f ′1 is nowhere zero and f2 = c0
f 2
1
f ′1

, where c0 ∈ R \ {0}.

Proof. In this case, a = f2
f ′1
f1

, b = c = d = 0, and

R(E1,E2)E2 = [E2(a) − a2]E1, R(E2,E1)E1 = [E2(a) − a2]E2,

R(E1,E3)E3 = R(E3,E1)E1 = R(E2,E3)E3 = R(E3,E2)E2 = 0.

Then, R = 0 if and only if
f2a′ = a2,

that is,

f2 f ′2
f ′1
f1
+ f 2

2

f ′′1 f1 − ( f ′1)2

f 2
1

= f 2
2

(
f ′1
f1

)2

,

which is equivalent to
f ′1
f1

f ′2
f2
+

f ′′1
f1
= 2

(
f ′1
f1

)2

.
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If f ′1 = 0, then f1 is a constant function. If f ′1 , 0 (hence, if it is nowhere zero), then the previous relation can
be written as

f ′2
f2
=

2
(

f ′1
f1

)2

−
f ′′1
f1

f ′1
f1

.

Let us notice that

f ′2
f2
=

(
f ′1
f1

)2

−

(
f ′1
f1

)′
f ′1
f1

=
f ′1
f1
−

(
f ′1
f1

)′
f ′1
f1

,

which, by integration, gives

ln | f2| = ln | f1| − ln

∣∣∣∣∣∣ f ′1
f1

∣∣∣∣∣∣ + k = ln

ek
f 2
1

| f ′1 |

 ,
where k ∈ R; therefore, f2 = c0

f 2
1
f ′1

, where c0 ∈ R \ {0}.

Corollary 2.7. For I = R3, if f1 = f2 =: f (x2), then the following assertions are equivalent:
(1) (R3, 1̃) is a flat Riemannian manifold;
(2) f (x2) = c1ec2x2 , where c1 ∈ R \ {0}, c2 ∈ R.

Proof. (1) is equivalent to f f ′′−( f ′)2 = 0, that is,
( f ′

f

)′
= 0, with the solution f (x2) = c1ec2x2

, where c1 ∈ R\{0},

c2 ∈ R, hence we get the conclusion.

Proposition 2.8. If f1 = f1(x2), f2 = f2(x1), then the following assertions are equivalent:
(1) (I, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 satisfy the equation

f ′′1 f1 − 2( f ′1)2

f 4
1

= −
f ′′2 f2 − 2( f ′2)2

f 4
2

= constant.

Proof. In this case, a = f2
f ′1
f1

, b = 0, c = f1
f ′2
f2

, d = 0, and

R(E1,E2)E2 = [E1(c) + E2(a) − a2
− c2]E1, R(E2,E1)E1 = [E1(c) + E2(a) − a2

− c2]E2,

R(E1,E3)E3 = R(E3,E1)E1 = R(E2,E3)E3 = R(E3,E2)E2 = 0.

Then, R = 0 if and only if

f1
∂c
∂x1 + f2

∂a
∂x2 = a2 + c2,

that is,

f 2
1

f ′′2 f2 − ( f ′2)2

f 2
2

+ f 2
2

f ′′1 f1 − ( f ′1)2

f 2
1

= f 2
2

(
f ′1
f1

)2

+ f 2
1

(
f ′2
f2

)2

,

which is equivalent to
f ′′1 f1 − 2( f ′1)2

f 4
1

= −
f ′′2 f2 − 2( f ′2)2

f 4
2

.

Since f1 depends only on x2 and f2 depends only on x1, we deduce that the above ratio must be a constant.
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Remark 2.9. We shall now look on the condition (2) from Proposition 2.8 satisfied by the two functions, namely

f ′′ f − 2( f ′)2

f 4 = k ∈ R,

when f is a real function defined on a real interval. Let us notice that

f ′′ f − 2( f ′)2

f 4 = −

(
1
f

)′′ 1
f
.

Denoting by h := 1
f , we have

h′′h = −k.

Let r ∈ R and let J ⊆ R be an open interval such that 0 < J and −2k ln |y| + r > 0 for any y ∈ J. Let F be an
antiderivative on J of the function

y 7→
1√

−2k ln |y| + r
.

Then, F′(y) > 0 for any y ∈ J; therefore, F is strictly increasing on J, hence, it is invertible onto its image. Let ε ∈ {±1}
and let IJ := ε (F(J) − c0), where c0 ∈ R. Then,

h : IJ → R, h(x) := F−1(εx + c0)

satisfies h′′(x)h(x) = −k for any x ∈ IJ, and we get

f : IJ → R, f (x) =
1

F−1(εx + c0)
.

Proposition 2.10. If f1 = f1(x2), f2 = f2(x3), then the following assertions are equivalent:
(1) (I, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 are constant, or f1 = k1 ∈ R \ {0} and f2(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3, or

f2 = k2 ∈ R \ {0} and f1(x2) = c1

x2
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I2.

Proof. In this case, a = f2
f ′1
f1

, b = c = 0, d =
f ′2
f2

, and

R(E1,E2)E2 = [E2(a) − a2]E1, R(E2,E1)E1 = [E2(a) − a2]E2 + E3(a)E3,

R(E2,E3)E3 = [E3(d) − d2]E2, R(E3,E2)E2 = [E3(d) − d2]E3,

R(E3,E1)E1 = E3(a)E2, R(E1,E2)E3 = E3(a)E1, R(E3,E1)E2 = −E3(a)E1,

R(E1,E3)E3 = R(E2,E3)E1 = 0.

Then, R = 0 if and only if

f ′1 f ′2 = 0(
f ′1
f1

)′
=

(
f ′1
f1

)2

(
f ′2
f2

)′
=

(
f ′2
f2

)2

.

Therefore,
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• f ′1 = 0 and f ′2 = 0, or

• f ′1 = 0 and − 1
f ′2(x3)
f2(x3)

= x3 + c0

(
i.e., f2(x3) = c1

x3
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I3

)
, or, similarly

• f1(x2) = c1

x2
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I2 and f ′2 = 0.

Corollary 2.11. For I = R3, if f1 = f1(x2), f2 = f2(x3), then the following assertions are equivalent:
(1) (R3, 1̃) is a flat Riemannian manifold;
(2) f1 and f2 are constant.

Proof. It follows immediately from Proposition 2.10.

3. I as an almost η-Ricci soliton

Let V =
∑3

k=1 VkEk and η =
∑3

k=1 η
kek, where ek is the dual 1-form of Ek for k ∈ {1, 2, 3}. From (1) we get

the equations that define an almost η-Ricci soliton (I, 1̃,V, λ, µ):

1
2

{
Ei(V j) + E j(Vi) +

3∑
k=1

Vk[1̃(∇Ei Ek,E j) + 1̃(Ei,∇E j Ek)]
}
+ Ric(Ei,E j) + λδi j + µηiη j = 0

for any (i, j) ∈ {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}, which is equivalent to the following system

E1(V1) − aV2
− bV3 + Ric(E1,E1) + λ + µ(η1)2 = 0

E2(V2) − cV1
− dV3 + Ric(E2,E2) + λ + µ(η2)2 = 0

E3(V3) + Ric(E3,E3) + λ + µ(η3)2 = 0
1
2

[E1(V2) + E2(V1) + aV1 + cV2] + µη1η2 = 0

1
2

[E1(V3) + E3(V1) + bV1] + Ric(E1,E3) + µη1η3 = 0

1
2

[E2(V3) + E3(V2) + dV2] + Ric(E2,E3) + µη2η3 = 0

. (2)

We shall further consider the cases when the potential vector field of the almost η-Ricci soliton (I, 1̃, λ, µ)
is V = ∂

∂x3 , or when η = dx3.

3.1. Almost η-Ricci solitons with V = ∂
∂x3

If V1 = V2 = 0 and V3 = 1, then the system (2) becomes

− b + Ric(E1,E1) + λ + µ(η1)2 = 0

− d + Ric(E2,E2) + λ + µ(η2)2 = 0

Ric(E3,E3) + λ + µ(η3)2 = 0

µη1η2 = 0

Ric(E1,E3) + µη1η3 = 0

Ric(E2,E3) + µη2η3 = 0

. (3)

Proposition 3.1. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If fi = fi(xi) for i ∈ {1, 2} and µ is

nowhere zero on I, then η = 0 and V is a Killing vector field.
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Proof. In this case, we have a = b = c = d = 0, and Ric(Ei,E j) = 0 for any i, j ∈ {1, 2, 3}, and (3) becomes
λ + µ(η1)2 = 0

λ + µ(η2)2 = 0

λ + µ(η3)2 = 0

µη1η2 = µη1η3 = µη2η3 = 0

. (4)

Since µ is nowhere zero, we get (η1)2 = (η2)2 = (η3)2, hence, ηi = 0 for i ∈ {1, 2, 3}, and λ = 0 from (4);
therefore, £V1̃ = 0 by means of (1).

Proposition 3.2. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If fi = fi(x3) for i ∈ {1, 2}, ηi =: f for

i ∈ {1, 2, 3}, and µ is nowhere zero on I, then η = 0. Moreover,
(i) if one of the functions f1 and f2 is constant, then the other one is constant, too; in this case, (I, 1̃) is a flat

Riemannian manifold, λ = 0, and V is a Killing vector field;

(ii) if
f1
f2

is constant, then fi(x3) = ciec0e−x3

for i ∈ {1, 2}, where c0 ∈ R, c1, c2 ∈ R \ {0}.

Proof. In this case, we have a = 0, b =
f ′1
f1

, c = 0, d =
f ′2
f2

, and

Ric(E1,E1) = b′ − b2
− bd, Ric(E2,E2) = d′ − d2

− bd, Ric(E3,E3) = b′ + d′ − b2
− d2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = 0,

and (3) becomes
− b + b′ − b2

− bd + λ + µ(η1)2 = 0

− d + d′ − d2
− bd + λ + µ(η2)2 = 0

b′ + d′ − b2
− d2 + λ + µ(η3)2 = 0

µη1η2 = µη1η3 = µη2η3 = 0

. (5)

Since µ is nowhere zero, (5) is equivalent to
b(d + 1) = d2

− d′

d(b + 1) = b2
− b′

λ = b2
− b′ + d2

− d′

f 2 = 0

, (6)

which implies η = 0.
(i) f1 is constant if and only if b = 0, and from (6), we deduce that b = 0 if and only if d = 0, i.e., if and

only if f2 is constant. In this case, R = 0, λ = 0, and £V1̃ = 0.

(ii) If
f1
f2

is constant, then b = d, and from (6), we getb′ = −b

λ = 2(b2
− b′)

. (7)

If b = d = 0, then f1 and f2 are constant and λ = 0. If b = d , 0 (hence, if they are nowhere zero), then
b′

b
= −1

λ = 2(b2
− b′)

, (8)
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from where we get
f ′i (x3)

fi(x3)
= b(x3) = c0e−x3

, c0 ∈ R \ {0}, i ∈ {1, 2},

which, by integration, gives fi(x3) = cie−c0e−x3

for i ∈ {1, 2}, where c1, c2 ∈ R \ {0}.

Corollary 3.3. Under the hypotheses of Proposition 3.2, if f1 = f2 =: f (x3), then f (x3) = c1ec2e−x3

, where c1 ∈ R\{0},
c2 ∈ R.

Proof. It follows from Proposition 3.2 (ii).

Proposition 3.4. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If f1 = f1(x1), f2 = f2(x3), ηi =: f for

i ∈ {1, 2, 3}, and µ is nowhere zero on I, then η = 0 and λ = 0. Moreover, f2 is constant and V is a Killing vector field.

Proof. In this case, we have a = b = c = 0, d =
f ′2
f2

, and

Ric(E2,E2) = Ric(E3,E3) = d′ − d2,

Ric(E1,E1) = Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = 0,

and (3) becomes
λ + µ(η1)2 = 0

− d + d′ − d2 + λ + µ(η2)2 = 0

d′ − d2 + λ + µ(η3)2 = 0

µη1η2 = µη1η3 = µη2η3 = 0

. (9)

Since µ is nowhere zero, (9) is equivalent to
d = d′ − d2 = 0

λ = −µ f 2

f 2 = 0

.

It follows that η = 0, λ = 0, and £V1̃ = 0.

Proposition 3.5. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If fi = fi(x2) for i ∈ {1, 2}, ηi =: f for

i ∈ {1, 2, 3}, and µ is nowhere zero on I, then η = 0 and λ = 0. Moreover, f1 is constant, or f ′1 is nowhere zero and

f2 = c0
f 2
1
f ′1

, where c0 ∈ R \ {0}.

Proof. In this case, we have a = f2
f ′1
f1

, b = c = d = 0, and

Ric(E1,E1) = Ric(E2,E2) = E2(a) − a2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = Ric(E3,E3) = 0,

and (3) becomes

f2 f ′2
f ′1
f1
+

f 2
2

f 2
1

[ f ′′1 f1 − 2( f ′1)2] + λ + µ(η1)2 = 0

f2 f ′2
f ′1
f1
+

f 2
2

f 2
1

[ f ′′1 f1 − 2( f ′1)2] + λ + µ(η2)2 = 0

λ + µ(η3)2 = 0

µη1η2 = µη1η3 = µη2η3 = 0

. (10)
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Since µ is nowhere zero, (10) is equivalent to
f2 f ′2

f ′1
f1
+

f 2
2

f 2
1

[ f ′′1 f1 − 2( f ′1)2] + λ + µ f 2 = 0

λ = −µ f 2

f 2 = 0

.

It follows that η = 0, λ = 0, and, from the first equation of the previous system, we get

f ′1
f1

f ′2
f2
+

f ′′1
f1
= 2

(
f ′1
f1

)2

.

From Proposition 2.6, we deduce that f1 is constant, or f ′1 is nowhere zero and f2 = c0
f 2
1
f ′1

, where c0 ∈ R\{0}.

Corollary 3.6. Under the hypotheses of Proposition 3.5, if f1 = f2 =: f (x2), then f (x2) = c1ec2x2 , where c1 ∈ R \ {0},
c2 ∈ R.

Proof. It follows from Proposition 3.5 that f f ′′ − ( f ′)2 = 0, that is,
( f ′

f

)′
= 0, with the solution f (x2) = c1ec2x2

,

where c1 ∈ R \ {0}, c2 ∈ R.

Proposition 3.7. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If f1 = f1(x2), f2 = f2(x1), ηi =: f for

i ∈ {1, 2, 3}, and µ is nowhere zero on I, then η = 0 and λ = 0. Moreover,

f ′′1 f1 − 2( f ′1)2

f 4
1

= −
f ′′2 f2 − 2( f ′2)2

f 4
2

= constant.

Proof. In this case, we have a = f2
f ′1
f1

, b = 0, c = f1
f ′2
f2

, d = 0, and

Ric(E1,E1) = Ric(E2,E2) = E1(c) + E2(a) − a2
− c2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = Ric(E3,E3) = 0,

and (3) becomes

f1
∂c
∂x1 + f2

∂a
∂x2 − a2

− c2 + λ + µ(η1)2 = 0

f1
∂c
∂x1 + f2

∂a
∂x2 − a2

− c2 + λ + µ(η2)2 = 0

λ + µ(η3)2 = 0

µη1η2 = µη1η3 = µη2η3 = 0

. (11)

Since µ is nowhere zero and ηi = f , (11) is equivalent to
f1
∂c
∂x1 + f2

∂a
∂x2 − a2

− c2 + λ + µ f 2 = 0

λ = −µ f 2

f 2 = 0

.

It follows that η = 0, λ = 0, and, from the first equation of the previous system, we get the relation between
f1 and f2. Since f1 depends only on x2 and f2 depends only on x1, we deduce that the obtained ratio must
be a constant.
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Proposition 3.8. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with V = ∂
∂x3 . If f1 = f1(x2), f2 = f2(x3), ηi =: f for

i ∈ {1, 2, 3}, and µ is nowhere zero on I, then η = 0 and λ = 0. Moreover, V is a Killing vector field, f2 is constant,
and either f1 is constant or f1(x2) =

c1

x2 − c2
, where c1 ∈ R \ {0}, c2 ∈ R \ I2.

Proof. In this case, we have a = f2
f ′1
f1

, b = c = 0, d =
f ′2
f2

, and

Ric(E1,E1) = E2(a) − a2, Ric(E2,E2) = E2(a) − a2 + E3(d) − d2, Ric(E3,E3) = E3(d) − d2,

Ric(E1,E2) = Ric(E1,E3) = 0, Ric(E2,E3) = E3(a),

and (3) becomes



f2
∂a
∂x2 − a2 + λ + µ(η1)2 = 0

− d + f2
∂a
∂x2 − a2 + d′ − d2 + λ + µ(η2)2 = 0

d′ − d2 + λ + µ(η3)2 = 0

µη1η2 = µη1η3 = 0
∂a
∂x3 + µη

2η3 = 0

. (12)

Since µ is nowhere zero and ηi = f , (12) is equivalent to



f2
∂a
∂x2 − a2

− d = 0

d = d′ − d2

λ = −d

f 2 = 0
∂a
∂x3 = 0

.

It follows that η = 0 and f ′1 f ′2 = 0, which, together with the second equation of the system, implies that one
of the functions f1 and f2 must be constant. If f1 = k1 ∈ R \ {0}, then a = 0, d = 0 (hence, f2 is constant), and
λ = 0. If f2 = k2 ∈ R \ {0}, then d = 0, λ = 0, and

(
f ′1
f1

)′
=

(
f ′1
f1

)2

.

Then, either f1 is a constant, too, or f ′1 , 0, in which case, by integration, we obtain − 1

f ′1(x2)
f1(x2)

= x2 + c0, i.e.,

f1(x2) = c1

x2
− c2

, where c1 ∈ R \ {0}, c2 ∈ R \ I2. Since b = d = 0, we deduce that £V1̃ = 0.
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3.2. Almost η-Ricci solitons with η = dx3

If η1 = η2 = 0 and η3 = 1, then the system (2) becomes

E1(V1) − aV2
− bV3 + Ric(E1,E1) + λ = 0

E2(V2) − cV1
− dV3 + Ric(E2,E2) + λ = 0

E3(V3) + Ric(E3,E3) + λ + µ = 0

E1(V2) + E2(V1) + aV1 + cV2 = 0
1
2

[E1(V3) + E3(V1) + bV1] + Ric(E1,E3) = 0

1
2

[E2(V3) + E3(V2) + dV2] + Ric(E2,E3) = 0

. (13)

Theorem 3.9. Let (I, 1̃,V, λ, µ) be an η-Ricci soliton with η = dx3. If fi = fi(xi) for i ∈ {1, 2}, then
V1(x1, x2, x3) = −λF1(x1) + c1F2(x2) + c2x3 + c3

V2(x1, x2, x3) = −c1F1(x1) − λF2(x2) + c4x3 + c5

V3(x1, x2, x3) = −c2F1(x1) − c4F2(x2) − (λ + µ)x3 + c6

, (14)

where Fi is an antiderivative of 1
fi

for i ∈ {1, 2} and ci ∈ R for i ∈ {1, 2, 3, 4, 5, 6}.

Proof. In this case, we have a = b = c = d = 0, and Ric(Ei,E j) = 0 for any i, j ∈ {1, 2, 3}, and (13) becomes

∂V1

∂x1 = −
λ
f1

∂V2

∂x2 = −
λ
f2

∂V3

∂x3 = −(λ + µ)

f1
∂V2

∂x1 = − f2
∂V1

∂x2

f1
∂V3

∂x1 = −
∂V1

∂x3

f2
∂V3

∂x2 = −
∂V2

∂x3

. (15)

Since fi depends only on xi, from the first three equations of (15), we find that
V1(x1, x2, x3) = −λF1(x1) + h1(x2, x3)

V2(x1, x2, x3) = −λF2(x2) + h2(x1, x3)

V3(x1, x2, x3) = −(λ + µ)x3 + h3(x1, x2)

,

where F′i =
1
fi

for i ∈ {1, 2}. From the last three equations of (15), we infer:

f1(x1)
∂h2

∂x1 (x1, x3) = − f2(x2)
∂h1

∂x2 (x2, x3), (16)

f1(x1)
∂h3

∂x1 (x1, x2) = −
∂h1

∂x3 (x2, x3), (17)

f2(x2)
∂h3

∂x2 (x1, x2) = −
∂h2

∂x3 (x1, x3). (18)
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Denoting f2(x2)∂h1

∂x2 (x2, x3) =: h̄1(x3), we have

∂h1

∂x2 (x2, x3) =
h̄1(x3)
f2(x2)

,

which, by integration, implies
h1(x2, x3) = h̄1(x3)F2(x2) + ĥ1(x3),

and, by replacing it in (17), it gives

−h̄′1(x3)F2(x2) − f1(x1)
∂h3

∂x1 (x1, x2) = ĥ′1(x3).

Differentiating the previous relation with respect to x2, it implies

h̄′1(x3) = − f1(x1) f2(x2)
∂2h3

∂x2∂x1 (x1, x2),

which must be a constant, let’s say c1. Therefore,

h̄1(x3) = c1x3 + c2

and
∂2h3

∂x2∂x1 (x1, x2) = −
c1

f1(x1) f2(x2)
,

which, by double integration, implies

h3(x1, x2) = −c1F1(x1)F2(x2) + l1(x1) + l2(x2).

Also, from (16), we have ∂h2

∂x1 (x1, x3) = − h̄1(x3)
f1(x1)

, which gives

h2(x1, x3) = −h̄1(x3)F1(x1) + ĥ2(x3).

From (17), we find
ĥ′1(x3) = − f1(x1)l′1(x1),

which must be a constant, let’s say, c3, which gives

ĥ1(x3) = c3x3 + c4.

Since f1(x1)l′1(x1) = −c3, we get
l1(x1) = −c3F1(x1) + c5.

From (18), we find
ĥ′2(x3) = 2c1F1(x1) − f2(x2)l′2(x2),

which must be a constant, let’s say, c6, which gives

ĥ2(x3) = c6x3 + c7.

Since 2c1F1(x1) = f2(x2)l′2(x2) + c6 and F1 is not constant, we get

c1 = 0, l2(x2) = −c6F2(x2) + c8.

We have obtained
V1(x1, x2, x3) = −λF1(x1) + c2F2(x2) + c3x3 + c4

V2(x1, x2, x3) = −λF2(x2) − c2F1(x1) + c6x3 + c7

V3(x1, x2, x3) = −(λ + µ)x3
− c3F1(x1) + c5 − c6F2(x2) + c8

,

which, by changing the indices of some constants, gives (14).
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Example 3.10. For fi = ki ∈ R \ {0}, i ∈ {1, 2}, the vector field V with V1, V2 and V3 given by:

V1(x1, x2, x3) = −
λ
k1

x1 +
c1

k2
x2 + c2x3 + c3

V2(x1, x2, x3) = −
c1

k1
x1
−
λ
k2

x2 + c4x3 + c5

V3(x1, x2, x3) = −
c2

k1
x1
−

c4

k2
x2
− (λ + µ)x3 + c6

,

where ci ∈ R for i ∈ {1, 2, 3, 4, 5, 6}, is the potential vector field of the η-Ricci soliton (I, 1̃, λ, µ) for η = dx3.

Remark 3.11. If fi = fi(xi) for i ∈ {1, 2}, then V with V1, V2 and V3 given by:
V1(x2, x3) = c1F2(x2) + c2x3 + c3

V2(x1, x3) = −c1F1(x1) + c4x3 + c5

V3(x1, x2) = −c2F1(x1) − c4F2(x2) + c6

is a Killing vector field on (I, 1̃), where Fi is an antiderivative of 1
fi

for i ∈ {1, 2} and ci ∈ R for i ∈ {1, 2, 3, 4, 5, 6}.

Theorem 3.12. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with η = dx3. If fi = fi(x3) for i ∈ {1, 2}, and
Vi = Vi(x3) for i ∈ {1, 2, 3}, then:

V1 =
c1

f1

V2 =
c2

f2
(b − d)V3 = (b − d)′ − (b2

− d2)
(b − d)λ = b′d − bd′

(b − d)2µ = −(b − d)[(b − d)′′ + b′d − bd′] + [(b − d)′]2 + (b − d)2(b2 + d2)

,

where c1, c2 ∈ R.
We have the following cases.

(i) On any open interval J3 ⊆ I3 on which
( f1

f2

)′
, 0 everywhere (equivalent to b , d on J3), we have:

V1 =
c1

f1
, V2 =

c2

f2
, V3 =

(b − d)′

b − d
− (b + d),

λ =
b′d − bd′

b − d
, µ = −

(b − d)′′ + b′d − bd′

b − d
+

(
(b − d)′

b − d

)2

+ b2 + d2,

where c1, c2 ∈ R.
In particular:

(1) if f1 is constant on an open interval J ⊆ J3 (from which f ′2 , 0 everywhere on J), we have on J:

V1 = c1, V2 =
c2

f2
, V3 =

d′ − d2

d
,

λ = 0, µ = −
d′′

d
+

(
d′

d

)2

+ d2,

where c1, c2 ∈ R;
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(2) if f2 is constant on an open interval J ⊆ J3 (from which f ′1 , 0 everywhere on J), we have on J:

V1 =
c1

f1
, V2 = c2, V3 =

b′ − b2

b
,

λ = 0, µ = −
b′′

b
+

(
b′

b

)2

+ b2,

where c1, c2 ∈ R.

(ii) On any open interval J3 ⊆ I3 on which
f1
f2

is constant (equivalent to b = d on J3), we have:

V1 =
c1

f1
, V2 =

c2

f2
, bV3 = b′ − 2b2 + λ, (V3)′ = −2(b′ − b2) − (λ + µ),

where c1, c2 ∈ R.
In addition:

(1) if J ⊆ J3 is an open interval with f ′1 , 0 (and f ′2 , 0) everywhere on J, we have on J:

V1 =
c1

f1
, V2 =

c2

f2
, V3 =

b′ − 2b2 + λ
b

,

λ = −

(
b′ + λ

b

)′
+ 2b2

− µ,

where c1, c2 ∈ R;
(2) if f1 and f2 are constant on an open interval J ⊆ J3, we have on J:

V1 = c1, V2 = c2, V3 = F,

λ = 0,

where F′ = −µ and c1, c2 ∈ R.

Proof. In this case, we have a = 0, b =
f ′1
f1

, c = 0, d =
f ′2
f2

, and

Ric(E1,E1) = b′ − b2
− bd, Ric(E2,E2) = d′ − d2

− bd, Ric(E3,E3) = b′ + d′ − b2
− d2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = 0,

and (13) becomes

f1
∂V1

∂x1 − bV3 + b′ − b2
− bd + λ = 0

f2
∂V2

∂x2 − dV3 + d′ − d2
− bd + λ = 0

∂V3

∂x3 + b′ − b2 + d′ − d2 + λ + µ = 0

f1
∂V2

∂x1 + f2
∂V1

∂x2 = 0

f1
∂V3

∂x1 +
∂V1

∂x3 + bV1 = 0

f2
∂V3

∂x2 +
∂V2

∂x3 + dV2 = 0

,
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which is equivalent to

(V1)′ = −bV1

(V2)′ = −dV2

(V3)′ = −(b′ − b2 + d′ − d2) − (λ + µ)

bV3 = b′ − b2
− bd + λ

dV3 = d′ − d2
− bd + λ

. (19)

From the first two equations, we get either Vi = 0 or (Vi)′

Vi = −
f ′i
fi

, i.e., Vi =
ci
fi

, where ci ∈ R \ {0} for i ∈ {1, 2}.

From the last two equations, we obtain

(b − d)V3 = (b − d)′ − (b2
− d2)

and
(b − d)λ = b′d − bd′.

Differentiating the second-last equality, multiplying the result with b−d and substituting in it the expressions
of (b − d)V3 and (V3)′, we get

(b − d)2µ = −(b − d)[(b − d)′′ + b′d − bd′] + [(b − d)′]2 + (b − d)2(b2 + d2).

(i) For x3
∈ I3, we notice that

( f1
f2

)′
(x3) , 0 if and only if b(x3) , d(x3). From the last three equalities from

above, on any open interval J3 ⊆ I3 such that
( f1

f2

)′
(x3) , 0 for any x3

∈ J3 (equivalent to b , d everywhere

on J3), we get the expressions of V3, λ, and µ.

(ii) We notice that
f1
f2

is constant on J3 if and only if
( f1

f2

)′
= 0 on J3 (equivalent to b = d on J3). In this

case, (19) becomes
(V1)′ = −bV1

(V2)′ = −bV2

(V3)′ = −2(b′ − b2) − (λ + µ)

bV3 = b′ − 2b2 + λ

.

On any open interval J ⊆ J3 where f ′1 , 0 everywhere, we have b , 0 and

V3 =
b′ − 2b2 + λ

b
,

which, by differentiation and using the third relation, gives the expression of µ.
If f1 and f2 are constant on J ⊆ J3, then b = d = 0 on J and (19) becomes
λ = 0

(V1)′ = 0

(V2)′ = 0

(V3)′ = −µ

.

Example 3.13. The Riemannian Sol3 Lie group (R3, 1̃), where f1(x3) = e−x3 and f2(x3) = ex3 , is an η-Ricci soliton
for η = dx3, with

V = c1
∂

∂x1 + c2
∂

∂x2 (c1, c2 ∈ R), λ = 0, µ = 2.
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Remark 3.14. If fi = fi(x3) for i ∈ {1, 2}, then V with V1, V2 and V3 given by:
V1(x3) =

c1

f1(x3)

V2(x3) =
c2

f2(x3)

V3 = 0

is a Killing vector field on (I, 1̃), where ci ∈ R for i ∈ {1, 2}.

Theorem 3.15. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with η = dx3. If f1 = f1(x1), f2 = f2(x3), and
Vi = Vi(x3) for i ∈ {1, 2, 3}, then:

V1 = c1

V2 =
c2

f2
dV3 = d′ − d2

λ = 0

d2µ = (d′)2 + d4
− dd′′

,

where c1, c2 ∈ R.
We have the following cases.
(i) On any open interval J3 ⊆ I3 on which f2 is constant, we have:

V1 = c1, V2 = c2, V3 = F,

λ = 0,

where F′ = −µ and c1, c2 ∈ R.
(ii) On any open interval J3 ⊆ I3 on which f ′2 , 0 everywhere (equivalent to d , 0 on J3), we have:

V1 = c1, V2 =
c2

f2
, V3 =

d′ − d2

d
,

λ = 0, µ = −
d′′

d
+

(
d′

d

)2

+ d2,

where c1, c2 ∈ R.

Proof. In this case, we have a = b = c = 0, d =
f ′2
f2

, and

Ric(E2,E2) = Ric(E3,E3) = d′ − d2,

Ric(E1,E1) = Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = 0,
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and (13) becomes

f1
∂V1

∂x1 + λ = 0

f2
∂V2

∂x2 − dV3 + d′ − d2 + λ = 0

∂V3

∂x3 + d′ − d2 + λ + µ = 0

f1
∂V2

∂x1 + f2
∂V1

∂x2 = 0

f1
∂V3

∂x1 +
∂V1

∂x3 = 0

f2
∂V3

∂x2 +
∂V2

∂x3 + dV2 = 0

,

equivalent to

λ = 0

(V1)′ = 0

(V2)′ = −dV2

(V3)′ = −d′ + d2
− µ

dV3 = d′ − d2

, (20)

from which we get

V1 = c1, V2 =
c2

f2
,

where c1, c2 ∈ R. Differentiating the last equality of the previous system, multiplying the result with d and
substituting in it the expressions of dV3 and (V3)′, we get

d2µ = (d′)2 + d4
− dd′′.

(i) We notice that f2 is constant on J3 if and only if d = 0 on J3, and (20) becomes
λ = 0

(V1)′ = 0

(V2)′ = 0

(V3)′ = −µ

.

(ii) We notice that f ′2 , 0 on J3 if and only if d , 0 on J3. Dividing the relations for dV3 and d2µ by d and
d2, respectively, we obtain the expressions of V3 and µ.

Example 3.16. For f1(x1) = ex1 , f2(x3) = ex3 , the vector field

V = c1ex1 ∂

∂x1 + c2
∂

∂x2 −
∂

∂x3 (c1, c2 ∈ R)

is the potential vector field of the η-Ricci soliton (R3, 1̃, 0, 1) for η = dx3.
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Theorem 3.17. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with η = dx3. If fi = fi(x2) for i ∈ {1, 2} and Vi = Vi(x3)
for i ∈ {1, 2, 3}, then:

V1 = c1

V2 = c2

V3 = F
c1 f ′1 = 0 = c2 f ′1

λ = 2 f 2
2

(
f ′1
f1

)2

− f2 f ′2
f ′1
f1
− f 2

2

f ′′1
f1

,

where c1, c2 ∈ R, F′ = G, µ(x2, x3) = −λ(x2) − G(x3), with G = G(x3) a smooth function on I3.
We have the following cases.
(i) For J2 ⊆ I2 a nontrivial interval on which f1 is constant, we have

λ(x2) = 0, F′(x3) = −µ(x2, x3) for x2
∈ J2, x3

∈ I3.

(ii) For f1 constant, we have

λ = 0, µ = µ(x3), F′(x3) = −µ(x3) for x3
∈ I3.

(iii) For f1 not constant, we have
V1 = V2 = 0.

Proof. In this case, we have a = f2
f ′1
f1

, b = c = d = 0, and

Ric(E1,E1) = Ric(E2,E2) = E2(a) − a2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = Ric(E3,E3) = 0,

and (13) becomes

f1
∂V1

∂x1 − aV2 + f2a′ − a2 + λ = 0

f2
∂V2

∂x2 + f2a′ − a2 + λ = 0

∂V3

∂x3 + λ + µ = 0

f1
∂V2

∂x1 + f2
∂V1

∂x2 + aV1 = 0

f1
∂V3

∂x1 +
∂V1

∂x3 = 0

f2
∂V3

∂x2 +
∂V2

∂x3 = 0

,

that is,

aV1 = 0

aV2 = 0

(V1)′ = 0

(V2)′ = 0

(V3)′ = −(λ + µ)

f2a′ − a2 + λ = 0

.
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From the second-last equation, we deduce that λ + µ depends only on x3; therefore,

0 =
∂(λ + µ)
∂x2 = λ′ +

∂µ

∂x2 ,

which, by integration, gives
µ(x2, x3) = −λ(x2) − G(x3)

with G = G(x3) a smooth function on I3. We obtain

V1 = c1

V2 = c2

V3 = F

aV1 = 0

aV2 = 0

λ = − f2a′ + a2

, (21)

where F′ = G and c1, c2 ∈ R.
(i) We notice that f1 is constant on J2 if and only if a = 0 on J2; therefore, a′ = 0 and λ = 0, hence F′ = −µ

on J2.
(ii) It follows from (i) for J2 = I2.
(iii) For f1 not constant, there exists x2

0 ∈ I2 such that f ′1(x2
0) , 0, i.e., a(x2

0) , 0, and from the second- and
third-last equations of (21), it follows that V1 = V2 = 0.

Example 3.18. The manifoldH2
×R := {(x1, x2, x3) ∈ R3 : x2 > 0} with

1̃ =
1
f 2 dx1

⊗ dx1 +
1
f 2 dx2

⊗ dx2 + dx3
⊗ dx3,

where f (x2) = x2, is an η-Ricci soliton for η = dx3, with

V =
∂

∂x3 , λ = 1, µ = −1.

Theorem 3.19. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with η = dx3. If f1 = f1(x2), f2 = f2(x1), and
Vi = Vi(x3) for i ∈ {1, 2, 3}, then:

V1 = c1

V2 = c2

V3 = F

c1 f2
f ′1
f1
= −c2 f1

f ′2
f2

c2 f2
f ′1
f1
= c1 f1

f ′2
f2

λ = c1 f1
f ′2
f2
+ f 2

1

( f ′2
f2

)2

−

(
f ′2
f2

)′ + f 2
2

( f ′1
f1

)2

−

(
f ′1
f1

)′

,

where c1, c2 ∈ R and F′ = −(λ + µ).
For c1 , 0 or c2 , 0, we get f1 and f2 constant, λ = 0, and F′ = −µ.
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Proof. In this case, we have a = f2
f ′1
f1

, b = 0, c = f1
f ′2
f2

, d = 0, and

Ric(E1,E1) = Ric(E2,E2) = E1(c) + E2(a) − a2
− c2,

Ric(E1,E2) = Ric(E1,E3) = Ric(E2,E3) = Ric(E3,E3) = 0,

and (13) becomes

E1(V1) − aV2 + E1(c) + E2(a) − a2
− c2 + λ = 0

E2(V2) − cV1 + E1(c) + E2(a) − a2
− c2 + λ = 0

E3(V3) + λ + µ = 0

E1(V2) + E2(V1) + aV1 + cV2 = 0

E1(V3) + E3(V1) = 0

E2(V3) + E3(V2) = 0

. (22)

Since Vi for i ∈ {1, 2, 3} depends only on x3, (22) becomes

aV2 = f1
∂c
∂x1 + f2

∂a
∂x2 − a2

− c2 + λ = cV1

aV1 = −cV2

(V1)′ = 0

(V2)′ = 0

(V3)′ = −(λ + µ)

.

From the last three equations, we infer V1 = c1, V2 = c2, where c1, c2 ∈ R, and V3 = F, where F′ = −(λ + µ),
and the previous system is equivalent to

V1 = c1

V2 = c2

λ = c1 f1
f ′2
f2
+ f 2

1

( f ′2
f2

)2

−

(
f ′2
f2

)′ + f 2
2

( f ′1
f1

)2

−

(
f ′1
f1

)′
c2a = c1c
c1a = −c2c

V3 = F

.

We get (c2
1 + c2

2)a = 0. If c1 , 0 or c2 , 0, then a = 0, i.e., f1 is constant, and further, c = 0, i.e., f2 is constant.
In this case,

λ = 0, V3 = F,

where F′ = −µ. So, we get the conclusion.

Example 3.20. For f1(x2) = ex2 and f2(x1) = ex1 , the vector field

V =
1
2

e2x3 ∂

∂x3

is the potential vector field of the almost η-Ricci soliton(
R3, 1̃, λ(x1, x2) = e2x1

+ e2x2
, µ(x1, x2, x3) = −(e2x1

+ e2x2
+ e2x3

)
)

for η = dx3.
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Theorem 3.21. Let (I, 1̃,V, λ, µ) be an almost η-Ricci soliton with η = dx3. If f1 = f1(x2), f2 = f2(x3), and
Vi = Vi(x3) for i ∈ {1, 2, 3}, then:

V1 = c1

V2 = c2 f2 +
c3

f2
aV1 = 0

dV3 = aV2 + d′ − d2

a = −c2 f2 + F

λ = aV2
− f2F′ + a2

(V3)′ = −(d′ − d2) − (λ + µ)

,

where c1, c2, c3 ∈ R, and F is a smooth real function on I2. Moreover,
(i) if f2 is constant, then V2 is constant;
(ii) if f2 is not constant, then f1(x2) = c4e−c2x2 , where c4 ∈ R \ {0}, and a = −c2 f2;
(iii) if V1 , 0, then a = 0, dV3 = d′ − d2, λ = − f2F′, and f1 is constant. If, in addition, f2 is not constant, then

V2 =
c3

f2
, F = 0, λ = 0, and µ = −(V3)′ − (d′ − d2).

Proof. In this case, we have a = f2
f ′1
f1

, b = c = 0, d =
f ′2
f2

, and

Ric(E1,E1) = E2(a) − a2, Ric(E2,E2) = E2(a) − a2 + E3(d) − d2, Ric(E3,E3) = E3(d) − d2,

Ric(E1,E2) = Ric(E1,E3) = 0, Ric(E2,E3) = E3(a),
and (13) becomes

f1
∂V1

∂x1 − aV2 + f2
∂a
∂x2 − a2 + λ = 0

f2
∂V2

∂x2 − dV3 + d′ − d2 + f2
∂a
∂x2 − a2 + λ = 0

∂V3

∂x3 + d′ − d2 + λ + µ = 0

f1
∂V2

∂x1 + f2
∂V1

∂x2 + aV1 = 0

f1
∂V3

∂x1 +
∂V1

∂x3 = 0

1
2

[
f2
∂V3

∂x2 +
∂V2

∂x3 + dV2

]
+
∂a
∂x3 = 0

,

which is equivalent to

(V1)′ = 0

aV1 = 0

(V2)′ + dV2 = −2
∂a
∂x3

aV2 = f2
∂a
∂x2 − a2 + λ

(V3)′ = −(d′ − d2) − (λ + µ)

dV3 = f2
∂a
∂x2 − a2 + d′ − d2 + λ

. (23)
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From the first equation, it follows that V1 is constant. From the third equation, we deduce that
∂a
∂x3 depends

only on x3, while a depends on x2 and x3. On the other hand, we have
∂a
∂x3 = f ′2

f ′1
f1

. Since
f ′1
f1

depends only

on x2, if there exists x3
0 ∈ I3 such that f ′2(x3

0) , 0, then
f ′1
f1

is constant on I2, let’s say
f ′1
f1
= c1 with c1 ∈ R. So,

in the case f2 not constant, we infer that f1(x2) = c2ec1x2
, where c2 ∈ R \ {0}, and a = c1 f2. Hence,

∂a
∂x3 = c1 f ′2 ,

and we obtain the equation

(V2)′ +
f ′2
f2

V2 = −2c1 f ′2 ,

with the solution V2 = −c1 f2 +
c3

f2
, where c3 ∈ R. If f2 is constant on I3, we obtain

∂a
∂x3 = 0 and d = 0, and the

third equation of the system becomes (V2)′ = 0, so V2 = c4, where c4 ∈ R. We notice that we always have

∂a
∂x3 = c1 f ′2 and V2 = −c1 f2 +

c3

f2
,

where c1, c3 ∈ R. We infer that a(x2, x3) = c1 f2 + F(x2), where F is a smooth real function on I2. Hence,
∂a
∂x2 = F′, and, from the fourth equation of the system, we get

λ = aV2
− f2F′ + a2.

The fifth equation of (23) gives
µ = −(V3)′ − (d′ − d2) − λ,

while, from the last equation of the system and the expression of λ, we get

dV3 = aV2 + d′ − d2,

that is,

dV3 = −c1 f 2
2

f ′1
f1
+ c3

f ′1
f1
+ d′ − d2.

Example 3.22. For f1(x2) = ex2 and f2(x3) = ex3 , the vector field

V = (1 − e2x3
)
∂

∂x2 − e2x3 ∂

∂x3

is a potential vector field of the almost η-Ricci soliton(
R3, 1̃, λ = 1, µ(x3) = 2e2x3

)
for η = dx3.

3.3. Almost η-Ricci solitons with η = dx3 and V = ∂
∂x3

If V1 = V2 = η1 = η2 = 0 and V3 = η3 = 1, then the system (2) becomes

− b + Ric(E1,E1) + λ = 0
− d + Ric(E2,E2) + λ = 0
Ric(E3,E3) + λ + µ = 0
Ric(E1,E3) = 0
Ric(E2,E3) = 0

. (24)
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Theorem 3.23. Let V = ∂
∂x3 and η = dx3. If fi = fi(x3) for i ∈ {1, 2}, then (I, 1̃,V, λ, µ) is an almost η-Ricci soliton

if and only if

λ =
f ′1
f1

(
f ′2
f2
+ 1

)
−

f ′′1
f1
+ 2

(
f ′1
f1

)2

and µ = −
f ′1
f1

(
f ′2
f2
+ 1

)
−

f ′′2
f2
+ 2

(
f ′2
f2

)2

,

and f1 and f2 satisfy

f ′′1 − f ′1
f1

− 2
(

f ′1
f1

)2

=
f ′′2 − f ′2

f2
− 2

(
f ′2
f2

)2

. (25)

Proof. In this case, we have a = 0, b =
f ′1
f1

, c = 0, d =
f ′2
f2

, and (24) becomes
− b + Ric(E1,E1) + λ = 0
− d + Ric(E2,E2) + λ = 0
Ric(E3,E3) + λ + µ = 0

, (26)

with

Ric(E1,E1) =
f ′′1
f1
− 2

(
f ′1
f1

)2

−
f ′1
f1

f ′2
f2
,

Ric(E2,E2) =
f ′′2
f2
− 2

(
f ′2
f2

)2

−
f ′1
f1

f ′2
f2
,

Ric(E3,E3) =
f ′′1
f1
− 2

(
f ′1
f1

)2

+
f ′′2
f2
− 2

(
f ′2
f2

)2

.

The two functions f1 and f2 must satisfy (25) due to the first two equations of (26), and we obtain the
expressions of λ and µ from the first and the last equation of the same system.

Example 3.24. For fi(x3) = kiekx3 , i ∈ {1, 2}, k, k1, k2 ∈ R \ {0}, V = ∂
∂x3 , and η = dx3, (R3, 1̃,V, λ, µ) is an η-Ricci

soliton if and only if
λ = 2k2 + k and µ = −k.

Corollary 3.25. Under the hypotheses of Theorem 3.23, if f1 = f2 =: f (x3), then (I, 1̃,V) is an almost η-Ricci soliton
with λ and µ as scalar functions if and only if they are given by

λ = 3
(

f ′

f

)2

+
f ′ − f ′′

f
and µ =

(
f ′

f

)2

−
f ′ + f ′′

f
.

Proof. It follows immediately from Theorem 3.23.

Theorem 3.26. Let V = ∂
∂x3 and η = dx3. If f1 = f1(x1), f2 = f2(x3), then (I, 1̃,V, λ, µ) is an almost η-Ricci soliton

if and only if
f2(x3) = c0e−x3

, λ = 0, µ = 1,

where c0 ∈ R \ {0}, or

f2(x3) =
c1

c2ex3 + 1
, λ = 0, µ(x3) =

c2ex3

c2ex3 + 1
,

where c1, c2 ∈ R \ {0} such that c2 , −e−x3 for all x3
∈ I3.

In particular, for I3 = R, we additionally have the condition c2 > 0.
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Proof. In this case, we have a = b = c = 0, d =
f ′2
f2

, and (24) becomes
λ = 0

− d + d′ − d2 = 0

d′ − d2 + µ = 0

.

If d = 0, then f2 is constant, and λ = µ = 0 (which contradicts µ , 0). If d = −1, then ln | f2(x3)| = −x3 + k0,
where k0 ∈ R, and we get f2(x3) = ±e−x3+k0 and µ = 1. If d , −1 and d , 0, from the second equation of the
above system, we get

1 =
d′

d2 + d
=

d′

d
−

d′

d + 1
,

which, by integration, gives

ln
(∣∣∣∣∣∣ d(x3)

d(x3) + 1

∣∣∣∣∣∣
)
= x3 + k1,

where k1 ∈ R, from which
(1 − k2ex3

)d(x3) = k2ex3
,

where k2 ∈ R \ {0} and for all x3
∈ I3. This infers

f ′2(x3)

f2(x3)
= d(x3) =

k2ex3

1 − k2ex3 ,

where k2 , e−x3
for all x3

∈ I3, and, by integrating, we get

f2(x3) =
k3

1 − k2ex3 ,

where k3 ∈ R \ {0}, and

µ(x3) = d2(x3) − d′(x3) = −d(x3) =
−k2ex3

1 − k2ex3 .

Theorem 3.27. Let V = ∂
∂x3 and η = dx3. If fi = fi(x2) for i ∈ {1, 2}, then (I, 1̃,V, λ, µ) is an almost η-Ricci soliton

if and only if

λ = − f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2

+
f ′1
f1

f ′2
f2

 and µ = f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2

+
f ′1
f1

f ′2
f2

 .
Proof. In this case, we have a = f2

f ′1
f1

, b = c = d = 0, and (24) becomes
Ric(E1,E1) + λ = 0
Ric(E2,E2) + λ = 0
λ + µ = 0

,

with

Ric(E1,E1) = Ric(E2,E2) = f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2

+
f ′1
f1

f ′2
f2

 .
Example 3.28. For f1(x2) = k1e−x2 , f2(x2) = k2ex2 , k1, k2 ∈ R \ {0}, V = ∂

∂x3 , and η = dx3, (R3, 1̃,V, λ, µ) is an
almost η-Ricci soliton if and only if

λ(x2) = 2k2
2e2x2

and µ(x2) = −2k2
2e2x2
.
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Corollary 3.29. Under the hypotheses of Theorem 3.27, if f1 = f2 =: f (x2), then (I, 1̃,V) is an almost η-Ricci soliton
with λ and µ as scalar functions if and only if they are given by

λ = ( f ′)2
− f ′′ f and µ = −( f ′)2 + f ′′ f .

Proof. It follows immediately from Theorem 3.27.

Theorem 3.30. Let V = ∂
∂x3 and η = dx3. If f1 = f1(x2) and f2 = f2(x1), then (I, 1̃,V, λ, µ) is an almost η-Ricci

soliton if and only if

λ = − f 2
1

( f ′2
f2

)′
−

(
f ′2
f2

)2 − f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 and µ = f 2
1

( f ′2
f2

)′
−

(
f ′2
f2

)2 + f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 .
Proof. In this case, we have a = f2

f ′1
f1

, b = 0, c = f1
f ′2
f2

, d = 0, and (24) becomes


Ric(E1,E1) + λ = 0
Ric(E2,E2) + λ = 0
λ + µ = 0

,

with

Ric(E1,E1) = Ric(E2,E2) = f 2
1

( f ′2
f2

)′
−

(
f ′2
f2

)2 + f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 .
Example 3.31. For f1(x2) = ex2 , f2(x1) = ex1 , V = ∂

∂x3 , and η = dx3, (R3, 1̃,V, λ, µ) is an almost η-Ricci soliton if
and only if

λ(x1, x2) = e2x1
+ e2x2

and µ(x1, x2) = −e2x1
− e2x2

.

Theorem 3.32. Let V = ∂
∂x3 and η = dx3. If f1 = f1(x2) and f2 = f2(x3), then (I, 1̃,V, λ, µ) is an almost η-Ricci

soliton if and only if
d′ = d(d + 1), f ′1 f ′2 = 0,

λ = − f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 and µ = f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 − ( f ′2
f2

)′
−

(
f ′2
f2

)2 .
Moreover, one of the following cases is satisfied:
(i) f2 = k2 ∈ R \ {0} and

λ = − f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 , µ = f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 ;

(ii) f1 = k1 ∈ R \ {0}, f2(x3) = c1

c2ex3
+ 1

, where c1, c2 ∈ R \ {0} such that c2 , −e−x3 for all x3
∈ I3, and

λ = 0, µ =
c2ex3

c2ex3
+ 1

;

(iii) f1 = k1 ∈ R \ {0}, f2(x3) = c0e−x3 , where c0 ∈ R \ {0}, and

λ = 0, µ = 1.
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Proof. In this case, we have a = f2
f ′1
f1

, b = c = 0, d =
f ′2
f2

, and (24) becomes


Ric(E1,E1) + λ = 0
− d + Ric(E2,E2) + λ = 0
Ric(E3,E3) + λ + µ = 0
Ric(E2,E3) = 0

, (27)

with

Ric(E1,E1) = f 2
2

( f ′1
f1

)′
−

(
f ′1
f1

)2 ,
Ric(E2,E2) = f 2

2

( f ′1
f1

)′
−

(
f ′1
f1

)2 + (
f ′2
f2

)′
−

(
f ′2
f2

)2

,

Ric(E3,E3) =
(

f ′2
f2

)′
−

(
f ′2
f2

)2

,

Ric(E2,E3) =
f ′1 f ′2
f1
.

f2 must satisfy d′ = d(d + 1) due to the first two equations of (27), and we obtain the cases:
(i) f2 constant;
(ii) f1 constant and f2(x3) = c1

c2ex3
+ 1

on I3, where c1, c2 ∈ R \ {0} and ex3
, − 1

c2
on I3;

(iii) f1 constant and f2(x3) = c0e−x3
, where c0 ∈ R \ {0}.

Example 3.33. For f1 = 1, f2(x3) = e−x3 , V = ∂
∂x3 , and η = dx3, (R3, 1̃,V, λ, µ) is an η-Ricci soliton if and only if

λ = 0 and µ = 1.
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