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Another approach: Modeling the change in electric potential in
one-dimensional space by using Green’s functions

Beyza C. Aslana
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Abstract. The change in electric potential as a result of lightning in a one-dimensional domain is evaluated.
Green’s function is used to evaluate the new potential. The change in the electric potential is a constant
along the lightning channel, and it is the same as the pre-flash potential outside the channel. The governing
equation for the electric potential is obtained from Maxwell’s equations.

1. Introduction

Lightning is a process in which the electric charge buildup in two charge centers increase and eventually
reach a breakdown threshold, leading to a lightning discharge. This forms a lightning channel, it is what
we see as the lightning. During this process the conductivity along the lightning channel becomes very
large, therefore causing a change in the electric potential as well. In this study, we develop a new approach
to obtain a formula for the change in the electric potential immediately after lighting in a one-dimensional
space by using Green’s function, see [1], [3], [5]. To this end, we solve the following system:

ϕ̇xx = −(σϕx)x (x, t) ∈ [0, 1] × [0,∞), (1a)
ϕ(0, t) = 0 t ∈ [0,∞), (1b)
ϕ(1, t) = 0 t ∈ [0,∞), (1c)
ϕ(x, 0) = ϕ0(x) x ∈ [0, 1]. (1d)

The initial potential ϕ0 lies in the space

L2
0([0, 1]) = { f ∈ L2([0, 1])|

∫ 1

0
f (x) dx = 0},

where L2([0, 1]) is the usual space of square integrable functions on [0, 1] and σ > 0 lies in the space L∞([0, 1])
of essentially bounded functions on [0, 1].

In the moments after a lightning discharge, the conductivity along the lightning channel becomes
infinitely large. In our domain, we assume lightning channel L is centered around an interior point x0,
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L = [x0 −
∆x
2 , x0 +

∆x
2 ], with Lc = [0, 1]\[x0 −

∆x
2 , x0 +

∆x
2 ]. Therefore, we write σ = σ + τΨ, where Ψ is the

characteristic function ofL, that isΨ = 0 everywhere except onL, and τ is a large scalar. If lightning occurs
at time t = 0, then in the moments after lightning the electric potential is governed by

ϕ̇xx = −((σ + τΨ)ϕx)x (x, t) ∈ [0, 1] × [0,∞), (2)

subject to the boundary conditions (1b) - (1d). If ϕτ(x, t) is the solution to (2), then the potential after the
lightning is given by

ϕ+(x) = lim
t→0+

lim
τ→∞
ϕτ(x, t) (3)

assuming lightning is very fast.

In 2021, Aslan [2] obtained a formula that computes the change in electric potential due to lightning in
one-dimensional space of [0, 1]. They solved the problem (1a) - (1d) and obtained the following result for
ϕ+(x).

Theorem 1.1.

ϕ+(x) =
∫ x

0
ϕ+s (s) ds,

where ϕ+x (x) = (1 −Ψ(x))(ϕx(x, 0) − a) and

a =
1

1 − ∆x

∫
Lc
ϕs(s, 0) ds.

Note that 1 − ∆x is nonzero since ∆x is the length of the lightning domain L. In calculating the limit,
they used functions {κi}, i ≥ 1, where

κi(x) = {
1
√

2
, cos(πx), cos(2πx), . . .}

is a complete orthonormal basis for L2
0([−1, 1]). By using {κi}, i ≥ 1, a new set of basis functions are obtained

for L2
0([0, 1]). They used the orthonormality properties of these new basis functions as they computed

the limit and prove Theorem 1.1. In addition, they calculated ϕ+(x) explicitly and obtained the following
formula.

ϕ+(x) = lim
∆t→0

lim
τ→∞
ϕ(x,∆t)

=

∫ x

0
ϕ+s (s) ds

=


ϕ0(x) + x ϕ̄

1−∆x if x ∈ [0, x0 −
∆x
2 ] ,

ϕ0(x0 −
∆x
2 ) + (x0 −

∆x
2 ) ϕ̄

1−∆x if x ∈ [x0 −
∆x
2 , x0 +

∆x
2 ],

ϕ0(x) − (1 − x) ϕ̄
1−∆x if x ∈ [x0 +

∆x
2 , 1],

(4)

where ϕ̄ = ϕ0(x0 +
∆x
2 ) − ϕ0(x0 −

∆x
2 ).

In this paper, we consider the Green’s function for the boundary value problem

uxx = − f (x), 0 < x < 1,
u(0) = u(1) = 0

to prove Theorem 1.1 and obtain the formula (4).

The paper is organized as follows: In Section 2, we explain how the governing equation for the electric
potential is obtained from Maxwell’s equations. In Section 3, we develop the problem in one-dimensional
space of [0, 1]. In Section 4, we evaluate the limit to prove Theorem 1.1. Conclusions are given in Section 5.
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2. Maxwell equations

The governing equations for the potential are derived from the Maxwell’s equations for linear materials.
By Ampere’s law, the curl of the magnetic field strength is given by

∇ ×H = JT + ε
∂E
∂t
,

where H is the magnetic field, JT is the total current density, E is the electric field, and ε is the permittivity of
the air. The total current density JT is partly due to the movement of ice and water in the cloud and partly
due to the conductivity of the cloud. Therefore, we can write JT = Jp + σaE, where σa is the conductivity of
the atmosphere. Replacing JT and taking the divergence gives

ε∇ ·
∂E
∂t
= −∇ · (σaE) − ∇ · Jp. (5)

By Faraday’s law of induction,

∇ · E = −
∂B
∂t
,

where B is the magnetic flux density. In our model, we assume the time derivative of B can be neglected,
therefore obtaining ∇ · E = 0. This implies that E = ∇ϕ or E = −∇ϕ, where ϕ is the electric potential. It is
common to assume E = −∇ϕ. Substituting this into (5), we obtain

∂∇2ϕ

∂t
= −∇ · (σ∇ϕ) + ∇ · J,

where σ = σa/ε and J = Jp/ε.

3. The problem in a one-dimensional space

We consider the problem on the interval [0, 1]. In addition, we assume J can be neglected. Therefore the
following equations model our problem:

ϕ̇xx = −(σϕx)x (x, t) ∈ [0, 1] × [0,∞), (6)
ϕ(0, t) = 0 t ∈ [0,∞),
ϕ(1, t) = 0 t ∈ [0,∞),
ϕ(x, 0) = ϕ0(x) x ∈ [0, 1],

Then we consider the Green’s function for the boundary value problem

uxx = − f (x), 0 < x < 1, (7)
u(0) = u(1) = 0

to prove Theorem 1.1. By [6], Ch.9, we write the solution to (7) as

u(x) =
∫ 1

0
G(x, s) f (s) ds,

where

G(x, s) =
{

(1 − s)x if x < s ,
(1 − x)s if x > s.
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Now we multiply (6) by G(x, s) and integrate over [0, 1] to obtain∫ 1

0
ϕ̇ss(s)G(x, s) ds = −

∫ 1

0
(σ(s)ϕs(s))sG(x, s) ds (8)

By using the Green’s function formula for the solution to (6) in (8), we obtain −ϕ̇(x, t) on the left hand side.
Combining this with the integral of the right hand side gives

ϕ̇(x, t) = −
∫ 1

0
σ(s)ϕs(s, t)Gs(x, s) ds. (9)

Let M be a linear operator acting on ϕ defined by∫ 1

0
σ(s)ϕs(s, t)Gs(x, s) ds. (10)

Then we can rewrite (9) as

ϕ̇(x, t) = −Mϕ(x, t). (11)

Theorem 3.1. The linear operator M given in (10) is positive definite and the equation given in (11) has a unique
solution in the form of

ϕ(x, t) = e−Mtϕ(x, 0). (12)

Proof. For non-zero ϕ ∈ L2([0, 1]), we have

⟨Mϕ,ϕ⟩ =
∫ 1

0

(∫ 1

0
σ(s)ϕs(s, t)Gs(x, s) ds

)
ϕ(x, t) dx

=

∫ 1

0
ϕ(x, t)ϕ(x, t) dx

= ∥ϕ(x, t)∥22
> 0.

Here we use integration by parts on the inside integral. By using the boundary conditions and the Green
functions formula for the solution to (6), the inside integral reduces to ϕ(x, t) and the rest follows. Therefore
by [4], Theorem 4.1, (9) has a unique solution and it is given by

ϕ(x, t) = e−Mtϕ(x, 0). (13)

Now, to simulate lightning, in (9) we let σ→ σ + τΨ on the lightning domain L. Then we have

ϕ̇(x, t) = −

∫ 1

0
(σ(s) + τΨ(s))ϕs(s, t)Gs(x, s) ds

= −

∫ 1

0
σ(s)ϕs(s, t)Gs(x, s) ds − τ

∫
L

ϕs(s, t)Gs(x, s) ds

= −Mϕ(x, t) − τδMϕ(x, t)

where δM is a linear operator acting on ϕ defined by

δMϕ(x, t) =
∫
L

ϕs(s, t)Gs(x, s) ds =
∫ x0+

∆x
2

x0−
∆x
2

ϕs(s, t)Gs(x, s) ds.

Therefore by using (13), the solution can be written as

ϕ(x,∆t) = e−M∆te−τδM∆tϕ0(x), (14)

where ϕ0(x) = ϕ(x, 0).
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4. Computation of e−τδM∆tϕ0(x) and the limit

In this section we prove Theorem 1.1 by calculating e−τδM∆tϕ0(x). By expanding this in Taylor series, we
obtain

e−τδM∆tϕ0(x) =
∞∑

n=0

(−τ∆t)n

n!
(δM)nϕ0(x). (15)

Since lightning domain L separates the domain [0, 1] into three subintervals, [0, x0 −
∆x
2 ], [x0 −

∆x
2 , x0 +

∆x
2 ],

[x0 +
∆x
2 , 1], we compute δMϕ0(x) in each of these subintervals separately.

If x ∈ [0, x0 −
∆x
2 ], then x < s and Gs(x, s) = −x. Therefore,

δMϕ0(x) = −x
∫ x0+

∆x
2

x0−
∆x
2

ϕs(s, 0) ds = −xϕ̄, (16)

where ϕ̄ = ϕ0(x0 +
∆x
2 ) − ϕ0(x0 −

∆x
2 ). Then we have

(δM)2ϕ0(x) = −x[δMϕ0(x0 +
∆x
2

) − δMϕ0(x0 −
∆x
2

)]

= −x([1 − (x0 +
∆x
2

)]∆ϕ − (x0 −
∆x
2

)ϕ̄)

= −x(1 − ∆x)ϕ̄,

where

δMϕ0(x0 +
∆x
2

) = [1 − (x0 +
∆x
2

)]ϕ̄,

δMϕ0(x0 −
∆x
2

) = −(x0 −
∆x
2

)ϕ̄.

In general, we have

(δM)nϕ0(x) = −x(1 − ∆x)n−1ϕ̄.

Therefore,

e−τδM∆tϕ0(x) =

∞∑
n=0

(−τ∆t)n

n!
(δM)nϕ0(x)

= ϕ0(x) −
∞∑

n=0

(−τ∆t)n

n!
(1 − ∆x)n−1xϕ(x)

= ϕ0(x) −
xϕ̄

1 − ∆x

∞∑
n=0

(−τ∆t)n

n!
(1 − ∆x)n

= ϕ0(x) −
xϕ̄

1 − ∆x
[e−τ∆t(1−∆x)

− 1].

Since ∆t(1 − ∆x) > 0, e−τ∆t(1−∆x) approaches 0 as τ tends to infinity. Hence we have

lim
τ→∞

e−τδM∆tϕ(x) = ϕ(x) + x
ϕ̄

1 − ∆x
. (17)
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If x ∈ [x0 −
∆x
2 , x0 +

∆x
2 ], then we have

δMϕ0(x) =

∫ x

x0−
∆x
2

ϕs(s, 0)Gs(x, s) ds +
∫ x0+

∆x
2

x
ϕs(s, 0)Gs(x, s) ds

= (1 − x)
∫ x

x0−
∆x
2

ϕs(s, 0) ds − x
∫ x0+

∆x
2

x
ϕs(s, 0) ds

= (1 − x)(ϕ0(x) − ϕ0(x0 −
∆x
2

) − x(ϕ0(x0 +
∆x
2

) − ϕ0(x))

= ϕ0(x) − ϕ0(x0 −
∆x
2

) − xϕ̄. (18)

Then we have

(δM)2ϕ0(x) = [ϕ0(x) − ϕ0(x0 −
∆x
2

) − xϕ̄] − δMϕ0(x0 −
∆x
2

) − xδM(ϕ̄)

= ϕ0(x) − ϕ0(x0 −
∆x
2

) + (x0 −
∆x
2

)ϕ̄ − (1 + (1 − ∆x))xϕ̄,

where

δMϕ0(x0 −
∆x
2

) = (x0 −
∆x
2

)ϕ̄,

δM(ϕ̄) = (1 − ∆x)ϕ̄.

In general, we have

(δM)nϕ0(x) = ϕ0(x) − ϕ0(x0 −
∆x
2

) + [1 + (1 − ∆x) + . . . + (1 − ∆x)n−2](x0 −
∆x
2

)ϕ̄

− [1 + (1 − ∆x) + . . . + (1 − ∆x)n−1]xϕ̄.

Therefore,

e−τδM∆tϕ0(x) =

∞∑
n=0

(−τ∆t)n

n!
(δM)nϕ0(x)

= ϕ0(x) +
∞∑

n=1

(−τ∆t)n

n!
(ϕ0(x) − ϕ0(x0 −

∆x
2

))

+

∞∑
n=2

(−τ∆t)n

n!
[1 + (1 − ∆x) + . . . + (1 − ∆x)n−2](x0 −

∆x
2

)ϕ̄

−

∞∑
n=1

(−τ∆t)n

n!
[1 + (1 − ∆x) + . . . + (1 − ∆x)n−1]xϕ̄

= ϕ0(x) + A + B − C, (19)

where

A =
(
ϕ0(x) − ϕ0(x0 −

∆x
2

)
) ∞∑

n=1

(−τ∆t)n

n!

=
(
ϕ0(x) − ϕ0(x0 −

∆x
2

)
)

[e−τ∆t
− 1],
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B = (x0 −
∆x
2

)ϕ̄
∞∑

n=2

(−τ∆t)n

n!
[1 + (1 − ∆x) + . . . + (1 − ∆x)n−2]

= (x0 −
∆x
2

)ϕ̄
∞∑

n=2

(−τ∆t)n

n!
(1 − (1 − ∆x)n−1)

∆x

= (x0 −
∆x
2

)
ϕ̄

∆x

 ∞∑
n=2

(−τ∆t)n

n!
−

1
1 − ∆x

∞∑
n=2

(−τ∆t(1 − ∆x))n

n!


= (x0 −

∆x
2

)
ϕ̄

∆x

[
e−τ∆t

− (1 − τ∆t) −
1

1 − ∆x
[e−τ∆t(1−∆x)

− (1 − τ∆t(1 − ∆x))]
]

= (x0 −
∆x
2

)
ϕ̄

∆x

[
e−τ∆t

−
1

1 − ∆x
e−τ∆t(1−∆x) +

∆x
1 − ∆x

]
,

and

C = xϕ̄
∞∑

n=1

(−τ∆t)n

n!
[1 + (1 − ∆x) + . . . + (1 − ∆x)n−1]

= xϕ̄
∞∑

n=1

(−τ∆t)n

n!
1 − (1 − ∆x)n

∆x

= x
ϕ̄

∆x
[e−τ∆t

− 1 − (e−τ∆t(1−∆x)
− 1)]

= x
ϕ̄

∆x
[e−τ∆t

− e−τ∆t(1−∆x).

Since ∆t > 0, we have ∆t(1 − ∆x) > 0. Therefore as τ tends to infinity, we obtain

lim
τ→∞

A = −ϕ0(x) + ϕ0(x0 −
∆x
2

),

lim
τ→∞

B = (x0 −
∆x
2

)
ϕ̄

1 − ∆x
,

lim
τ→∞

C = 0.

Therefore by substituting these results into (19), we obtain

lim
τ→∞

e−τδM∆tϕ0(x) = lim
τ→∞

(ϕ0(x) + A + B − C)

= ϕ0(x0 −
∆x
2

) + (x0 −
∆x
2

)
ϕ̄

1 − ∆x
. (20)

If x ∈ [x0 +
∆x
2 , 1], then x > s and Gs(x, s) = 1 − x. Therefore,

δMϕ0(x) = (1 − x)
∫ x0+

∆x
2

x0−
∆x
2

ϕs(s) ds = (1 − x)ϕ̄. (21)

Then we have

(δM)2ϕ0(x) = (1 − x)[δMϕ(x0 +
∆x
2

) − δMϕ(x0 −
∆x
2

)]

= (1 − x)(1 − ∆x)ϕ̄.

In general, we have

(δM)nϕ0(x) = (1 − x)(1 − ∆x)n−1ϕ̄.
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Therefore,

e−τδM∆tϕ0(x) =

∞∑
n=0

(−τ∆t)n

n!
(δM)nϕ0(x)

= ϕ0(x) +
∞∑

n=0

(−τ∆t)n

n!
(1 − ∆x)n−1(1 − x)ϕ(x)

= ϕ0(x) + (1 − x)
ϕ̄

1 − ∆x

∞∑
n=0

(−τ∆t)n

n!
(1 − ∆x)n

= ϕ0(x) + (1 − x)
ϕ̄

1 − ∆x
[e−τ∆t(1−∆x)

− 1].

Since ∆t(1 − ∆x) > 0, as τ tends infinity we have

lim
τ→∞

e−τδM∆tϕ0(x) = ϕ0(x) − (1 − x)
ϕ̄

1 − ∆x
. (22)

Note that

lim
∆t→0

e−M∆t = 1.

Combining this with (17), (20), and (22), we have

ϕ+(x) = lim
∆t→0

lim
τ→∞
ϕ(x,∆t)

= lim
∆t→0

lim
τ→∞

e−M∆te−τδM∆tϕ0(x)

=


ϕ0(x) + x ϕ̄

1−∆x if x ∈ [0, x0 −
∆x
2 ] ,

ϕ0(x0 −
∆x
2 ) + (x0 −

∆x
2 ) ϕ̄

1−∆x if x ∈ [x0 −
∆x
2 , x0 +

∆x
2 ],

ϕ0(x) − (1 − x) ϕ̄
1−∆x if x ∈ [x0 +

∆x
2 , 1],

(23)

where ϕ̄ = ϕ0(x0 +
∆x
2 ) − ϕ0(x0 −

∆x
2 ).

5. Conclusions

We evaluated the new electric potential immediately after the lightning discharge. Theorem 1.1 shows
that the electric potential is constant along the lightning domain and it is equal to the pre-flash potential
elsewhere. The result was shown earlier in [2] by using eigenfunctions. Here, potential is evaluated by
using the Green’s function.
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