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Abstract. If a network modeled by a graph, then there are various graph theoretical parameters used to
express the vulnerability and stability of communication networks. One of them is the concept of bondage
number based on domination. The dominating set of a graph is a vertex set in that every vertex which is
not in the dominating set is adjacent to at least one vertex of the dominating set. The domination number
is the minimal cardinality among all dominating sets. The bondage number of any graph is the minimal
cardinality among all sets of edges whose removal from the graph results in a graph with domination
number greater than the domination number of the preliminary graph. In this paper, we investigate the
domination and bondage numbers for double vertex graphs of some certain graphs.

1. Introduction

Graph theory has become one of the most powerful mathematical tools in the analysis and study
of the architecture of networks whose vertices represent the components of the system and the edges
represent connection between a pair of vertices that enable mutual communication. The vulnerability of a
communication network measures the resistance of network to the disruption of operation after the failure
of certain stations or communication links. For any communication network greater degrees of stability
or less vulnerability is required. Vulnerability can be measured by certain parameters like domination,
bondage number, connectivity, betweenness, binding number, toughness, scattering number, integrity etc.
Colouring, choromatic index and bloking sets are also popular study topics in graph theory [7–12]. Graph
theory is among the popular methods for solving many complex problems. Graph theory increases its
development and usage area due to the easy modelling of daily problems and successful results of effective
solution methods. The dominant nodes indicate the dominance of the people or objects modelled on the
graph over each other. However, minimum domination set aims to connect all vertices in the graph with
the least number of vertices selected on the graph. Determining the minimum dominating set in graphs is
one of the most diffucult problems defined as NP-hard. When the usage areas of dominating sets in graphs
examined, it is seen to provide significant gains in many areas such as social networks, transportation
systmes, telecommunication, defence industry, health systems, etc. Domination varies when there are
changes in edge or vertices in the domination set can be considered transmitters that cover a wide variety
of communication links. The loss of certain links as a result of an attack on the graph may disrupt the
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connection. The question of re-establishing communication in the network after breaking the minimum
number of connections has been arisen.
In a graph G = (V(G),E(G)), a subset S ⊆ V(G) of vertices is a dominating set if every vertex in V(G) − S is
adjacent to at least one vertex of S. The domination number γ(G) is the minimal cardinality of a dominating
set. One of the vulnerability parameters based on domination number known as bondage number in a
graph G examines the situation in which the domination number increases if some connections are broken.
The opposite parameter, that is, examining the decrease in the domination number, is the reinforcement
number. The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose
removal from G results in a graph with domination number greater than γ(G). That is,

b(G) = min{|S| : S ⊆ E(G), γ(G − S) > γ(G)}.

We call such an edge set S that γ(G − S) > γ(G) the bondage set and the minimum one the minimum bondage
set. If b(G) does not exist, for example empty graphs, then b(G) = ∞ is defined.
The bondage number was introduced by Bauer, Harary, Nieminen and Suffel [4], and has been further
studied by Fink, Jacobson, Kinch and Roberts[6], Hartnell and Rall[3] and others. Later, the bondage
number for middle graphs and complementary prism graphs was studied in [1, 2].
In this paper, the graph G is taken as a simple, finite and undirected graph with vertex set V(G) and edge
set E(G). The distance d(u, v) between two vertices u and v in G is the length of a shortest path joining them
if any; otherwise d(u, v) = ∞. A shortest u − v path is often called a 1eodesic. The diameter of G, denoted
by diam(G) is the largest distance between two vertices in V(G). The number of the neighbor vertices of
the vertex v is called degree of v and denoted by de1G(v). The minimum and maximum degrees of a vertex
of G are denoted by δ(G) and ∆(G). A vertex v is said to be pendant vertex if de1G(v) = 1. A vertex u
is called support if u is adjacent to a pendant vertex [5]. Let u be a vertex of a graph G = (V,E). Then
N(u) = {v ∈ V(G), v and u are adjacent} is the open neighborhood of u, and N[u] = {u} ∪ N(u) denotes the
closed neighborhood of u. The eccentricity e(v) of a vertex v in a connected graph G is max d(u, v) for all u in
G. The radius r(G) is the minimum eccentricity of the vertices. Note that the maximum eccentricity is the
diameter. A vertex v is a central vertex if e(v) = r(G), and the center of G is the set of all central vertices [5].
So the central vertex c has degree n − 1 in a graph with n vertices. Furthermore, euv or (u, v) denotes the
edges between the vertices u and v.
Aim of the paper is to establish the domination and bondage numbers for double vertex graphs of some
certain graphs as the path Pn, the complete graph Kn, the star graph S1,n, the complete bipartite graph K2,m
and the wheel graph W1,n. We calculated exact results for domination and bondage number of double vertex
graphs and by comparing considered graphs with their double vertex graphs, we revealed the differences
regarding the domination and bondage number parameters.

Definition 1.1. [14] Let G be a graph of order n ≥ 2. The double vertex graph U2(G) of G is the graph whose
vertex set consists of all 2-element subsets of V such that two distinct vertices x, y and u, v are adjacent if and only if
|{x, y} ∩ {u, v}| = 1 and if x = u, then y and v are adjacent in G.

2. Basic Results

In this section, some well-known basic results are given with regard to domination and bondage number.

Theorem 2.1. [13] The domination number of
a) a path graph Pn is ⌈ n

3 ⌉, for n ≥ 2,
b) a star graph S1,n is 1,
c) a complete graph Kn is 1,
d) a wheel graph W1,n is 1,
e) a complete bipartite graph Kn,m is 2,

Theorem 2.2. [6] For a complete graph Kn of order n ≥ 2, then b(Kn) = ⌈ n
2 ⌉.
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Theorem 2.3. [6] For a path graph Pn of order n ≥ 2, then

b(Pn) =
{

2, if n ≡ 1(mod3)
1, otherwise

Theorem 2.4. [6] For a cycle graph Cn of order n ≥ 3, then

b(Cn) =
{

3, if n ≡ 1(mod3)
2, otherwise

Theorem 2.5. [6] For a star graph S1,n of order n + 1, where n ≥ 2. Then, b(S1,n) = 1.

Theorem 2.6. [6] If G = K(n1,n2,n3, ...,nt) is a complete t − partite graph, where n1 ≤ n2 ≤ ...nt, then

b(G) =


⌈

m
2 ⌉, if nm = 1 and nm+1 ≥ 2, for some m, 1 ≤ m < t,

2t − 1, if n1 = n2 = ... = nt = 2,∑t−1
i=1 ni, otherwise

Theorem 2.7. [6] If G is a nonempty graph with a unique minimum dominating set, then b(G) = 1.

Theorem 2.8. [6] If T is a nontrivial tree, then b(T) ≤ 2.

Theorem 2.9. [6] If G is a connected graph of order n ≥ 2, then b(G) ≤ n − 1.

Theorem 2.10. [6] If G is a nonempty graph, then

b(G) ≤ min{de1(u) + de1(v) − 1 : u and v are adjacent vertices.}

Theorem 2.11. [6] If ∆(G) and δ(G) denote respectively the maximum and minimum degree among all vertices of
nonempty connected graph G, then b(G) ≤ ∆(G)+ δ(G) − 1.

Theorem 2.12. [6] If G is a nonempty graph with domination number γ(G) ≥ 2, then b(G) ≤ (γ(G) − 1)∆(G) + 1.

Theorem 2.13. [6] If G is a connected graph of order n ≥ 2, then b(G) ≤ n − γ(G) + 1.

Theorem 2.14. [6] If G is a nonempty graph , then b(G) ≤ ∆(G) + 1.

3. Domination and Bondage Number of Some Double Vertex Graphs

In this section, we calculated the domination and bondage number for double vertex graphs of some
certain graphs as path graph Pn, complete graph Kn, star graph S1,n, complete bipartite graph K2,m and
wheel graph W1,n.
The double vertex graph U2(P9) is illustrated in Figure 1 and also the figure below shows the selection of
the γ − set S for the graph U2(P9).
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Figure 1: The graph U2(P9)

Theorem 3.1. Let Pn be a path graph of order n and U2(Pn) be a double vertex graph of Pn. Then,

γ(U2(Pn)) =
{

n2
−1
8 , if n is odd
⌈

n2

8 ⌉, if n is even

Proof. The graph U2(Pn) has n2
−n
2 vertices. Let S be any minimal dominating set of U2(Pn). We term each

vertex set of the graph, starting with n − 1 vertices and decreasing by one, as a level. We assume that two
consecutive levels form a group. If the vertex set V(U2(Pn)) is partitioned into groups of two, then the rule
of the vertex to be selected into the set S is similar for each group. The first level of the U2(Pn) starts with
n − 1 vertices and the number of the vertices decreases by one at each level until it reaches one. So, there
are n − 1 vertices at the first level, n − 2 vertices at the second level, n − 3 vertices at the third level,...and
lastly 1 vertex at the (n − 1)th. level. Hence, there are n2

−n
2 vertices in the double vertex graph of the

path graph of order n. We choose the vertices to be selected from n − 1 levels to S from the vertices that
dominate the most vertices, that is, the vertices with the maximum degree. The graph U2(Pn) contains the
graph U2(Pn−1), the graph U2(Pn−1) also contains the graph U2(Pn−2). Hence, the double vertex graph U2(Pn)
is a recursive structure and the induction method can be used for the proof. For example, in the figure
above, the vertices that are dominate all the graph with minimum cardinality are shown in squares. If we
continue to add vertices to S in this manner, we have, γ(U2(P5))=γ(U2(P3)) + 2, γ(U2(P7))=γ(U2(P5)) + 3,
γ(U2(P9))=γ(U2(P7))+4, γ(U2(P11))=γ(U2(P9))+5, γ(U2(P13))=γ(U2(P11))+6, γ(U2(P15))=γ(U2(P13))+7,... for n
is odd andγ(U2(P6))=γ(U2(P4))+3, γ(U2(P8))=γ(U2(P6))+3, γ(U2(P10))=γ(U2(P8))+5, γ(U2(P12))=γ(U2(P10))+
5, γ(U2(P14))=γ(U2(P12))+7, γ(U2(P16))=γ(U2(P14))+7, γ(U2(P18))=γ(U2(P16))+9, γ(U2(P20))=γ(U2(P18))+9,...
for n is even. We prove the theorem in two ways, depending on whether n is odd or even.
Case 1. n ≡ 1(mod 2)
In this case, there are n−1

2 groups in total and n−1
2 vertices from the first group; n−3

2 vertices from the second
group; n−5

2 vertices from the third group; n−7
2 vertices from the fourth group; n−9

2 vertices from the fifth
group;... n−(n−2)

2 = 1 vertex from the last group in S. Hence, the domination number of the graph U2(Pn), for
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A = n−1
2

γ(U2(Pn)) = A + A − 1 + A − 2 + A − 3 + ... + A − (
n − 1

2
− 1)

=
n − 1

2
A − (1 + 2 + 3 + ... +

n − 3
2

)

= (
n − 1

2
)2
−

n−3
2∑

i=1

i

= (
n − 1

2
)2
−

n−3
2

n−1
2

2

= (
n − 1

2
)2
−

n2
− 4n + 3

8

=
n2
− 1
8

=

n−1
2∑

i=1

i

So, we have γ(U2(P3)) = 1, γ(U2(P5)) = 3, γ(U2(P7)) = 6, γ(U2(P9)) = 10, γ(U2(P11)) = 15, γ(U2(P13)) =
21, γ(U2(P15)) = 28, γ(U2(P17)) = 36... We can prove our result using the induction method. Certainly
γ(U2(P3)) = 1. Assume γ(U2(Pk)) = k2

−1
8 for 1 < k < n − 2, then we need to show that γ(U2(Pn)) = n2

−1
8 .

γ(U2(Pk+2)) = γ(U2(Pk)) +
k + 1

2

=
k2
− 1
8
+

4k + 4
8

=
k2 + 4k + 3

8

=
(k + 2)2

− 1
8

(1)

Case 2. n ≡ 0(mod 2)
In this case, there are n

2 − 1 groups in total and one pendant vertex apart from these groups. The rule for the
vertices to be added to S is similar to Case 1. So, γ(U2(P4)) = 2, γ(U2(P6)) = 5, γ(U2(P8)) = 8, γ(U2(P10)) = 13,
γ(U2(P12)) = 18, γ(U2(P14)) = 25, γ(U2(P16)) = 32, γ(U2(P18)) = 41, γ(U2(P20)) = 50, γ(U2(P22)) = 61,...

So, for k = 0, n−6
4 we have

γ(U2(P4k+6)) = γ(U2(P4k+4)) +
4k + 6

2
= γ(U2(P4k+4)) + 2k + 3

and for k = 1, n−4
4

γ(U2(P4k+4)) = γ(U2(P4k+2)) +
4k + 2

2
= γ(U2(P4k+2)) + 2k + 1

To show this we use induction method. Certainly, γ(U2(P4)) = 2.

Case 2.1 For k = 0, n−6
4
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We need to show that γ(U2(Pn)) = ⌈ n2

8 ⌉. Assume that γ(U2(P4k+4)) = ⌈ (4k+4)2

8 ⌉.

γ(U2(P4k+6)) = ⌈
(4k + 4)2

8
⌉ + 2k + 3

=
16k2 + 48k + 40

8

=
(4k + 6)2 + 4

8

= ⌈
(4k + 6)2

8
⌉ (2)

Case 2.2 For k = 1, n−4
4

Assume that γ(U2(P4k+2)) = ⌈ (4k+2)2

8 ⌉, then we need to show that γ(U2(Pn)) = ⌈ n2

8 ⌉.

γ(U2(P4k+4)) = ⌈
(4k + 2)2

8
⌉ + 2k + 1

=
16k2 + 32k + 12

8

=
(4k + 4)2

− 4
8

Since ⌈ (4k+4)2
−4

8 ⌉ = ⌈
(4k+4)2

8 ⌉ and from Case 1 and Case 2 we have

γ(U2(Pn)) =
{

n2
−1
8 , if n is odd
⌈

n2

8 ⌉, if n is even

The proof is completed.

Theorem 3.2. The bondage number of the double vertex graph of Pn, n ≥ 3, is b(U2(Pn)) = 1.

Proof. When we make a pendant vertex degree of 1 in the graph U2(Pn) disconnected removing the edge
incident to this vertex from the graph, that remains is a graph consisting of U2(Pn−1), the graph Pn−2 and an
unconnected vertex. The domination number of the connected graph is γ(U2(Pn−1))+ ⌈ n−2

4 ⌉ = γ(U2(Pn)). By
adding the unconnected vertex to the dominating set S, the domination number increases by 1. Hence, we
have b(U2(Pn)) = 1.

The complete graph K5 and double vertex graph U2(K5) are illustrated in Figure 2.

Figure 2: The graphs K5 and U2(K5)
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Theorem 3.3. Let U2(Kn) be a double vertex graph of the complete graph Kn of order
(n−1

2
)
=

(n−1)n
2 , then the

domination number of U2(Kn) is γ(U2(Kn)) = ⌊ n
2 ⌋.

Proof. The degree of each vertex of U2(Kn) is 2n − 4. So, the graph U2(Kn) is (2n − 4) − re1ular. We can label
the vertices as V(Kn) = {1, 2, ...,n} and V(U2(Kn)) =

∑n−1
i=1
∑n

j=i+1 i j. So, S = {i j, xy, km, ...| k , m , i , j ,
x , y and A = {i, j, k,m, x, y, ...} = V(Kn) = {1, 2, 3, ...n} if n is even and S = {i j, xy, km, ...| k , m , i , j ,
x , y and A = {i, j, k,m, x, y, ...} and |V(Kn)| − |A| = 1} if n is odd, where S is the minimal dominating
set of U2(Kn). So, for example the sets {12, 34, 56}, {16, 23, 45}, {16, 24, 35}, {14, 23, 56},... are the minimal
dominating sets for U2(K6) and {17, 23, 45}, {12, 35, 67},... are the minimal dominating sets for U2(K7). Since,
the cardinality of these sets is ⌊ n

2 ⌋, we have γ(U2(Kn)) = ⌊ n
2 ⌋.

Theorem 3.4. The bondage number of the double vertex graph of the complete graph Kn, n > 4, is b(U2(Kn)) = 2n−4.

Proof. In order to increase the cardinality of the γ − set of the graph U2(Kn), any vertex must dominate
itself. This yields deleting the edges to isolate any vertex. Therefore, the domination number of the
remaining graph results with ⌊ n

2 ⌋ + 1, which is 1 more than γ(U2(Kn)). Since de1(v) = 2n − 4 for v ∈ U2(Kn),
b(U2(Kn)) = 2n − 4.

The star graph S1,5 and double vertex graph U2(S1,5) are illustrated in Figure 3.

Figure 3: The graphs S1,5 and U2(S1,5)

Theorem 3.5. Let S1,n be a star graph of order n + 1 and U2(S1,n) be a double vertex graph of S1,n of order n2+3n
2 .

Then, γ(U2(S1,n)) = n − 1.

Proof. We denote the central vertex degree of n with c and the pendant vertices degree of 1 with 1, 2, ...,n
of the graph S1,n; n major vertices degree of n − 1 with ci, i = 1,n and

∑n−1
i=1 i = n2

−n
2 minor vertices degree

of 2 with
∑n−1

i=1
∑n

j=i+1 i j of the graph U2(S1,n). Any vertex ci dominates the all n − 1 minor vertices i j. The
minor vertex i j also dominates the vertices ci and cj. Hence, in the minimal dominating set of U2(S1,n)
there are n − 1 vertices in total, n − 2 of which are from major vertices and 1 from minor vertices like
S = {ci, xy | i , x , y and |{ci}| = n − 2}, where S is a minimal dominating set. For example, the sets
{c1, c2, c3, c4, 56}, {c1, c4, c5, c6, 23}, {c2, c3, c4, c5, 16} are the minimal dominating sets for U2(S1,6). So, we
have γ(U2(S1,n)) = n − 1. This completes the proof.

Theorem 3.6. The bondage number of the double vertex graph of the star graph S1,n is b(U2(S1,n)) = 2.

Proof. If one of the edges connecting the vertex i j, i = 1,n − 1 and j = 2,n, to the vertices ci or cj, for example
the edge (i j, cj) is removed from the graph U2(S1,n), then the vertex set S = {ci, ck, xy | k ∈ {1, 2, ...,n}, |{ck}| =
n − 3 and i , k , x , y} dominates the remaining structure. If we denote the set of deleted edges by S′
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and S′ = (i j, cj), then |S| = n − 1 and γ(U2(S1,n) − S′) = γ(U2(S1,n). The removal of an edge set S′ of U2(S1,n)
of cardinality less than two results in a graph with the same domination number as that of U2(S1,n). If we
remove the both edges (i j, ci) and (i j, cj), then the remaining graph, except the vertex i j, is dominated by
S∗ = {ck, xy | {k}∪x∪ y = {1, 2, ...,n}, k , x , y and |{ck}| = n−2}. Since the edges (i j, ci) and (i j, cj) incident to
the vertex i j are deleted, the vertex i j must be included in the minimal dominating set S. γ(U2(S1,n)−S′′) = n,
S′′ = {(i j, ci), (i j, cj)}, which is greater by 1 than that of γ(U2(S1,n)) = n − 1. Therefore, the bondage number
of U2(S1,n) is b(U2(S1,n)) = 2.

The complete bipartite graph K2,4 and double vertex graph U2(K2,4) are illustrated in Figure 4.

Figure 4: The graphs K2,4 and U2(K2,4)

Theorem 3.7. Let Kn,m be a complete bipartite graph of order n + m and U2(Kn,m) be a double vertex graph of Kn,m
of order n2 + nm. Then, the domination number of U2(K2,m) is γ(U2(K2,m)) = m.

Proof. We can denote the vertices of Kn,m and U2(Kn,m) with A = {a, b, c, ...,n}, |A| = n; B = 1, 2, 3, ...,m, |B| = m
and a1, a2, ..., am; b1, b2, ..., bm; c1, c2, ..., cm;...,n1,n2, ...,nm; ab, ac, ..., an; bc, ..., bn; 12, 13, ..., 1m; 23, 24, ..., 2m;
34, 35, ..., 3m; ...(m − 1)m, respectively. We can split into three subsets of the vertex set V(U2(Kn,m)) as
V(U2(Kn,m)) = V1(U2(Kn,m)) ∪ V2(U2(Kn,m)) ∪ V3(U2(Kn,m)) :
V1(U2(Kn,m)) = {a1, a2, ..., am; b1, b2, ..., bm; c1, c2, ..., cm; ...,n1,n2, ...,nm | the set that consists o f the vertices
de1ree o f n +m + 2}
V2(U2(Kn,m)) = {ab, ac, ..., an; bc, ..., bn | the set that consists o f the vertices de1ree o f 2m}
V3(U2(Kn,m)) = {12, 13, ..., 1m; 23, 24, ..., 2m; 34, 35, ..., 3m; ...(m− 1)m | the set that consists o f the vertices de1ree
o f 2n}
We can easily see that specially de1(v) = m i f v ∈ V1(U2(K2,m)), de1(v) = 2m i f v ∈ V2(U2(K2,m)) and
de1(v) = 4 i f v ∈ V3(U2(K2,m)) for n = 2.
By definition, the γ − set includes the vertex ab with maximum degree. Hence, all vertices in V1(U2(K2,m))
are dominated by ab. The vertices 12, 13, 14, ..., 1m; 23, 24, ..., 2m; 34, 35, ..., 3m;...; (m − 2)(m − 1), (m − 2)m are
dominated by the vertices a1 or b1; a2 or b2; a3 or b3;...; a(m − 2) or b(m − 2), respectively. Lastly, the vertex
(m−1)m is dominated by a(m−1) or am or b(m−1) or bm. The dominating set S thus obtained is the minimal
dominatig set. S1 ⊂ V1(U2(K2,m)), |S1| = m − 1, S2 = {ab} = V2(U2(K2,m)) and S = S1 ∪ S2. Hence, we have
|S| = γ(U2(K2,m)) = m.

Theorem 3.8. The bondage number of the double vertex graph of K2,m, m ≥ 3, is b(U2(K2,m)) = 3.

Proof. If we denote the set of the deleted edges by S′, then γ(U2(K2,m) − S′) > γ(U2(K2,m). Assume that this
set is S′ = {(ab, ai), (ab, b(i + 1))}, 1 ≤ i < m. In this case the vertices ai and b(i + 1) can be dominated by the
vertex i(i+1). So, sets of the form {a1, b2, ..., a(m−2), i(i+1), ab}, {b1, a2, b3, ..., b(m−2), i(i+1), ab} are minimal
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dominating sets and |S1| = |S2| = m. So, if less than three edges of U2(K2,m) are deleted, then γ(U2(K2,m)) is
unchanged. In order to increase the cardinality of the γ− set, we need to delete the edge (ai, i(i+1)) from the
graph. So, the vertex ai can not be dominated by i(i+1). In this case another vertex i j, j , i+1 must be added
to γ− set. Furthermore, the vertex b(i+ 1) can also be dominated by any vertex j(i+ 1), 1 ≤ j ≤ m. Therefore,
sets of the form S3 = {i j, j(i+ 1), ab, a1, b2, ..., a(m− 2)}, S4 = {i j, i(i+ 1), ab, b1, b2, ..., b(m− 2)}... are the minimal
dominating sets and their cardinality is m+ 1. Hence, removing the set S′ = {(ab, ai), (ab, b(i+ 1)), (ai, i(i+ 1))}
from the graph U2(K2,m)) increases the domination number by 1 and b(U2(K2,m)) = 3 is obtained.

The wheel graph W1,5 and double vertex graph U2(W1,5) are illustrated in Figure 5.

Figure 5: The graphs W1,5 and U2(W1,5)

Theorem 3.9. Let W1,n be a wheel graph of order n + 1 and U2(W1,n) be a double vertex graph of W1,n. Then,

γ(U2(W1,n) =
{

2, if n=4
n − 2, if n > 4

Proof. There are n vertices ci, i = 1,n, degree of n + 1; n − 1 vertices i(i + 1) and the vertex 1n de-
gree of 4 and n2

−3n
2 remaining vertices degree of 6 in U2(W1,n) for n ≥ 4. We can denote the vertex

set V(U2(W1,n)) = V1(U2(W1,n)) ∪ V2(U2(W1,n)) ∪ V3(U2(W1,n)), where v ∈ V1(U2(W1,n)) if de1(v) = n + 1,
v ∈ V2(U2(W1,n)) if de1(v) = 6 and v ∈ V3(U2(W1,n)) if de1(v) = 4.
Let S be a minimal dominating set of U2(W1,n). |V1(U2(W1,4))| = 4, |V2(U2(W1,4))| = 2, |V3(U2(W1,4))| = 4.
There isn’t any vertex from V1(U2(W1,4)) in S and V2(U2(W1,4)) = {13, 24} = S. So, γ(U2(W1,4)) = 2.
There are n − 4 or n − 5 vertices from V1(U2(W1,n)) and two or three vertices from V2(U2(W1,n)) in S, respec-
tively for n > 4. So, we have γ(U2(W1,n)) = n − 2, for n > 4. For example {c1, c2, c4, 36, 57}, {c1, c2, c3, 46, 57},
{c1, c5, c7, 24, 36}, {c1, c2, 35, 47, 57}, {c2, c6, 14, 35, 47}, {c4, c5, c6, 13, 27},... are minimal dominating sets for
U2(W1,7). The graph U2(W1,n) contains the graph U2(W1,n−1) except for the edge (c1, c(n− 1)). The equalities
γ(U2(W1,4)) = 2, γ(U2(W1,5)) = 3, γ(U2(W1,6)) = 4,...hold. Since, U2(W1,n) is a recursive structure, we can
express the domination number as γ(U2(W1,n)) = γ(U2(W1,n−1))+ 1. We assume that γ(U2(W1,n)) = n− 2 and
using our assumption

γ(U2(W1,n)) = γ(U2(W1,n−1)) + 1
= n − 3 + 1
= n − 2

This completes the proof.
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Theorem 3.10. The bondage number of the double vertex graph of W1,n is

b(U2(W1,n) =
{

1, if n=4
4, if n > 4

Proof. Case 1. n = 4
In this case, the minimal dominating set S = {13, 24} is unique. So, b(U2(W1,4)) = 1 from the Theorem 2.7.
Case 2. n > 4
In this case, any vertex v ∈ V3(U2(W1,n)) degree of 4 can be dominated by at most two vertices ci ∈
V1(U2(W1,n)) or by at most two vertices i j ∈ V2(U2(W1,n)), i ∈ {1, 2, ...,n−2} and j ∈ {3, 4, ...,n} in S. Even if the
two edges connecting the vertex v ∈ V3(U2(W1,n)) to two distinct vertices in S are removed from the graph
U2(W1,n), the vertex v can be dominated by another minimal dominating set of cardinality n − 2 without
these two vertices since each pair of minimal dominating sets has at most ⌈ n−2

2 ⌉ common vertices. Since
the vertex v degree of 4 can be dominated by at least one of adjacent four vertices, the domination number
only increases by 1 removing the edges that are incident to the vertex v from the graph. Hence, we have
b(U2(W1,n)) = 4.

4. Conclusion

In this paper, we have concentrated on domination and bondage number, a measure of network vulner-
ability. We have computed the domination and bondage numbers of double vertex graphs of some certain
graphs as the path Pn, the complete graph Kn, the star graph S1,n, the complete bipartite graph K2,m and the
wheel graph W1,n. Double vertex graphs are taken to model the network system and the domination and
bondage number values of them reveal that how network can be made more stable than earlier. Although
the number of the vertices and the domination number of double vertex graphs of considered graphs are
increase in high number, bondage number values are not. This means that the double vertex graph of a
graph can be more strong according to the graph itself. These results can help the network designers to
choose a suitable topology for the network. Consequently if we design a communication network, then we
can prefer the double vertex graphs.
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