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Abstract. In this work, we are interested to study the initial inverse problem for elliptic equation with
Caputo derivative. We obtained some different results regarding the well-posedness of the solution corre-
sponding to the given input data. In addition, we also derive the upper bound of the derivative of the mild
solution. The principal analysis is based on the estimation of the Mittag-Leffler function, combined with
main analysis in Hilbert scale authorized, and we also use fixed point techniques to prove the inequalities
in this paper.

1. Introduction

Fractional calculus has extensive use in several sectors, including biology, engineering, physics, and
more. While there are many different kinds of minor derivatives, the community focuses mostly on two
types of derivatives: Riemann-Liouville and Caputo. Referring to some fascinating studies on Caputo or
Riemann-Liouville, we have the following [16} 1}, 12} (13|14} [15] 25, 26) 27, [28].

Let Q be a bounded domain in RN (N > 1) with sufficiently smooth boundary dQ, T be a positive
number. In this paper, we examined the following model

cDfu + Au = F(x, t), in Qx(0,T],
u'&Q = 0/ in Q/ (1)
u(x,0) =0, in Q,

with the terminal condition

u(x, T) = g(x), xeQ. 2)

2020 Mathematics Subject Classification. Primary 47H07; Secondary 47H08, 47H10.

Keywords. Fixed point theory, Fractional elliptic equation, Mittag-Leffler functions, initial inverse problem

Received: 10 August 2024; Revised: 11 August 2024; Accepted: 20 August 2024

Communicated by Maria Alessandra Ragusa

* Corresponding author: Nguyen Hoang Tuan

Email addresses: nhtuan.sdh231@hcmut . edu.vn (Nguyen Hoang Tuan), ledinhlong@iuh.edu.vn (Le Dinh Long),
ytkadai@hcmut.edu.vn (Le Xuan Dai)



N. H. Tuan et al. / Filomat 38:31 (2024), 11017-11030 11018

Here g is the function defined later. The symbol ¢D{z is the Caputo derivative, (see [18, 6]])

Déz(x,t) = _t ft(t - r)l‘“8—2z(x rdr, for 1<a<?2
YT T2 =) Jy a2 ’
)
14 — aaz —
cDfz(t, x) = W(x, f), for a=1,2,

and I is the Gamma function. This model mentioned above is an approximation of the elliptic equation.
Indeed, if @ — 27 then the solution of Problem (I) tends to the solution of the elliptic equation. The elliptic
equation has many applications, see in [7]. There are several results on Cauchy elliptic equations with
classical derivatives such as [17, [10} [12] and references therein. In some phenomena related to memory,
the fractional derivative model is often used instead of the classical derivative. It explains a number of
phenomena related to past distribution or viscosity models. In [8], Binh-Thang-Phuong [8] considered the

elliptic equation under the Caputo derivative on the plane

cDYu + Au = F(x, 1), in R?>x(0,T],
u(x,0) =0, in RR?, (4)
u(x,0) =0, in RZ

They obtained several regularity results for the mild solution based on various assumptions of the
input data. The principal techniques of the analysis is based on the bound of the Mittag-Leffler functions,
combined with analysis in Hilbert scales space. In [9]], the authors studied an initial value problem for a
class of 2D time-fractional diffusion evolution equations with Riemann-Liouville fractional derivative.

They focused the existence and ill-posedness result (in the sense of Hadamard) in some cases of the
source terms. By Fourier truncation method, the authors founded the regularized problems, and shown the
error estimate between the exact solution and the approximate solution. Next, in [11], the authors considered
a Cauchy problem for a semi linear fractional elliptic equation. They known the approximated solution
through truncation method, the order logarithmic is error estimate between the regularized solution and
the sought solution.

This type of backward problem in the fractional diffusion equation has an important application founda-
tion and is receiving more and more attention. The final value problem is an inverse problem that requires
redefining the distribution at the initial time when the distribution at the past time is known. Backward
problem appear in many applications, such as image deblurring and inpainting. Some typical papers on
backward problem can be listed as follows, see in [19] 12} 22 23] 24].

This paper is organized as follows. Under homogeneous case, we obtain the well-posedness of the
mild solution. Under the inhomogeneous linear source term, we also get the regularity results of the mild
solution with some fixed point techniques used.

2. Preliminaries

Definition 2.1. The spectral problem

Aey(x) = —Ayen(x), x€Q),
€n(X) =0, X € 8Q,

admits the eigenvalues 0 < Ay < Ay <--- < A, < ..., and corresponding eigenfunctions
e, € H(Q)
n 0 .

Definition 2.2. The Hilbert scale space IH*(Q) given as follows

@ = (re 2@ | Y [ foe ) <o), ®
n=1
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for any s > 0, with the the norm

o 172
ke = (Y 43 [ sweswar)) , ferr@) ©
n=1 Q
Definition 2.3. The Mittag-Leffler function
had M
Eap(z) = mZ=o Tam+0) € C (7)

where a > 0 and 0 € R are arbitrary constants.

Lemma 2.4 (See [21]). Let 1 < ag < a1 < 2 and « € [ag, 1]. Then there exists a constant mq, my, my, Mo > 0 and
z > 0 such that

% exp(z%) <Eui1(z) < % exp(z%), (8)

and

M o M
71 exp(z%) <z% Eya(z) < 72 exp(zi). )
Lemma 2.5. Let z € R. Then we have

d _ Ea,a(z) d ay 1 o
EEa,l(Z) - ’ dZEa'l(AZ )— ZEa,O(/\Z ) (10)

Lemma 2.6. Let a € (1,2),and A > 0and u > 0, we get

Ea,l (H) - Ea,l (_[J)

= EZa,a+1 ([,12),

2u
Epu-1(z) + (1= p+u)Eyu(2) _ EW(ZZ),
p
1
Eou(z) = T}l) +2zEqp1a(z), A >0,u>0. (11)

Lemma 2.7. Forz >0, a € (1,2), it gives (see p.5, [20])

E2a(?) = 5 (Ea®) + Ea(-2), (12)
and
[ Eage)] = 2" Bl (13)

Lemma 2.8. Let h, k > 0, then we receive

1 t — ’ - — a
T f (t = 1) Eqp(Ar®)ftdr = tF1E, g (A1Y). (14)
0

We can see the proof in Vol. 1, pp. 269-295 [3]].
Lemma?29. Forl<a <2,A>0,andt > 0, then we have

a) Ea1(AtY) = AME, (AtY), and  9;(t* 'Enn(—=AtY)) = tY2Eq 41 (=AY,
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b) JfEn1(=AtY) = =AEs1(=AtY), and  f (19 Ego(—AtY)) = =AY E o (—ALY).
Definition 2.10. The Gevrey class of functions of order ¥ > 0 and index Y > 0, defined by the spectrum of the
Laplacian is denoted by
v 2 2w Ty,2
GV (Q) = (f e AQ) : Z 22Y exp(Y AT < o, (15)
j=1

and its norm given by

Ifllgr, = ()i 22V exp@rat ). (16)
=1
Lemma 2.11. Let 1 < a0 < 2, then we get
% exp()\ji ) <Ean (A]-t"‘) < % exp()\]‘% t). (17)
and
%Af‘ltlﬂ exp(tA7) < Eqa(Ajt) < %A%_ltl’“ exp(tA?). (18)
Using Lemma (2:4) with z = A]‘% t, (I7) and (I8) is proved.

Lemma 2.12. Let 1 < o < 2, then we receive

1 E.q </\ 'ta)
m 1 a, ™y
— {' — << —_ < -z a .
_ exp (AJ (t T)) S B AT S exp()\ t-"T)) (19)

Using Lemma (2.4), we derive that
mq i a my %
o exp(/\]. t) < Eqq (A]‘t ) < o exp()\]. t). (20)
Since (20), one has
Eap (A1)

% exp(A (£~ T)) < < "2 exp(AZ (t - T). @1)
2

Eop (AjT2) ~ ™
Lemma 2.13. Let 1 < a < 2, then we have

m 1_ 1 aa(A'a) m

"M og—aya1y Ty < l-ayi- _ 1
T =T < S 0 < m t AT (E=TIAD). 22)

Using @), for any 0 < t < T, we have
a m ayt a ;a m %_1 - %
Epa(Ajt?) < Ezexp((/\]'t ) (A) * = EZAJ 7% exp (t/\]. ) (23)
This inequality together with (20) yields to

aa(/\'ta) Tl’lz @i %
m < 24 A ((t—T)/\j ) (24)

by a similar techmques, one has

Eoa(At%)

W > tl a/\a exp ((t - T)/\]E) (25)
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3. Homogeneous case F = 0

We consider the following problem
cDfw + Aw =0, in Qx(0,T],

w'(?Q =0, in Q, (26)
wt(xr 0) = 0/ in Q,

with the terminal condition (2).

Theorem 3.1. Let the terminal data g € HT5(Q) for g = 0 and 0 < p < 1. Then problem 26)-@) has a unique
solution w € L*(0, T; H1(Q)) for any 1 < s < %. In addition, we get

”w“Ls(O,T;]Hﬂ(Q)) <Clp,s, Q)T%_P“éfnw—g(o)- (27)
If g € H*-14Q) for 0 < p < 1 then w € CYF ([0, T]; HY(Q)). In addiiton, we get that
Cyi, T
”w“cl =#([0,T);HI(Q S %ﬁ) 1_[;”9“]1{%#4(9)' (28)

Let us assume that the problem with the terminal condition (@) has a solution w, then we have

w]‘(f) =E,1 (A]'ta) w]-(O). (29)
Taking the derivative of w;, we get
) d a
wi(t) = E(Ea,1 (A1t%) )ew;(0). (30)
From (30), we know that
w]-(T) = E,XJ(/\]'TO()ZU]‘(O) = g]'. (31)
Hence, we derive that
Eq1(AitY)
wi(t) = ————( f g(x)ej(x)dx). 32)
Ean (/\ ,Ta) 0
This implies that
w(x, ) = Z — 7 f g()e;(x)dx)e;(x). (33)
=1 al /\ T

Thank to the inequality eV < C,y " for any p > 0, one has
a,l Ajt 2 2
M —§ exp(2/\ t-1)<IC, |2—2(T £)” 2”)\ = (34)
Eq1(AT0)) — m m?
where we have used Lemma (2.12). This follows from (33) that
0 Eqn </\ 'f“) 2 2
2 2q a, ]
w(., t) = AN ———= f (x)ej(x)dx
” ”]HW(Q) ;‘ ] (Ea,l (AjT"‘)) ( Qg ] )

2 00 2
< |cp|ZZ—§(T— B2y AT fQ g(x)e]-(x)dx)z. (35)
=1
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Therefore, we give the following bound
I, Dl < Cp, 2, )T =7 gl (36)

for any p < 1 and C(p,my, m1) depends on p,my, m;. Since 1 < s < %, then the integral fOT(T — t)7Pdt is
convergent. This allows us to get that w € L°(0, T; H7(Q)) since the following observation

T 1/s
1_
Il o = ( fo koG Dlfaydt) < Clo,m, s, s, )T Plgllyy e g (37)

From and we take t,t + O suchthat 0 <t <t+ 60 < T, and 6 > 0. Then we get

W, t+ 6) — w(x, ) = i Eaa (A0 +0) j‘“ (45¢) ( f g(x)e]-(x)dx) ()
Q

= Eq1 (AT
+6
= Aj [ P Ega(Ajr)dr
- Z t f g(x)ej(x)dx)e;(x). (38)
=1 Eqn (/\jT“
Here in the last above equality, we have used Lemma [2.5|in order to obtain that
d wn AEq1(A;t%) d(At%) a1 R
EEQ,l(/\jt )= FRYD pra At Eg0(AjtY). (39)

In view of Lemma (2.13), we derive that forany 0 <r < T

aa(/\ ,roz) mz
al(/\ Ta) Tom

Ly

lI-aya™ _ C 1-ay —_ P
—t A exp((r T)/\ )< —— t /\ (T-r)"P, (40)

where we used the inequality e™* < Cgz# for any z > 0 and B > 0. Thus, if we choose 0 < f < 1, one has

1 ft+9 a— 1Eaa(/1 7 )d?’ Cﬁm2 - 01)\ t+6

al (A Tu) m t

YT - r)Pdr. (41)

It is obvious to see that

t+0 t+0
f YT —r)Pdr < T"“lf (T —r)Pdr
t t
1B _ (T _+_ o\1-B a-1p71—
_ e (T=H) (T-t-07" 170 P
1-p 1-p

(42)
Combining ([@0) and {#2), we infer that

t+0
Aj | P B oA jr®)dr - Cpima T 1
]ft i) < £ 2 /\ 1615, 0<B<1. 43
p (43)
Eap (A;T?) mi(l=p)

This inequality together with (38) yields that

A [ 1 W (A )
ko, t + 6) = w(x, )y = Zﬂ( i) E ) i r) ( f (x)e](x)dx)z

((;fl’?fT ﬁ) 22 ZﬁZAZ“ ( f (x)e;(x) dx) . (44)
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By Parseval’s equality, we derive that

CﬁﬁzTa_l
S [

mi(1 - p)
This implies that w € C'7F ([0, T]; H1(Q)).

[, £+ 6) — w(x, t)||Hq(Q) 0" lgll

1- .
H 2 1(Q)

4. Linear inhomogeneous case F = F(x, t)

We consider the following problem

cDfw + Aw = F(x, 1), in Qx(0,T],
wbﬂ = 0/ in Q/
wt(xl O) = 0/ ln Q,

11023

(45)

(46)

with the terminal condition (). Our main aim in this section is to show that the well-posedness of the mild

solution.

_ 1
Theorem 4.1. Let g € HI™5@ for g > 0,0 < p <1, let F € [2(0, T;G-oy" "= X(Q)), then

I Dty < CoT =0l + T=07IF, o)
7T a2T

Let g € HT 5 and F € L=(0, T; HY(QY)), then we obtain

my

llu(., Ok @) < CpTPllgl -2 + \/(m_l

2 3-3a TZ—D{
) Caly" 57—

From [8]], one gets
wj(t) =Eap (At*) w;(0) + fo (t = 1) Eqa (At = 1) Fi(s)ds.

By let t = T, we find that

T
gj = wj(T) = Eaj (4;T%) w;(0) + fo (T = 1)* " Eqa (A{(T = 1)%) Fj(1)dr.

Hence, one has the following equality
T
gi I (T =0 Ea (A/T = 0)%) Fi(r)dr
Eon (A,T?) Eon (AT?)
From (49) and (51), one gets

o Eo1 (Ajt)g;  Ean(Ajt9) fOT(T = 1) Eqa (A/(T = 7)) Fi(s)ds
Uu; =
" B (AT) Eaj (4,T%)

w;(0) =

+ ﬁ t(t = 1) g (Aj(t - 1)%) Fi(7)dr.

1 2_¢4 ||F“L°°(0,T;H’4(Q))'

(47)

(48)

(49)

(50)

(51)

(52)
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Hence, one has

= S (Bt [ (T = 0 B (AT = 0 Fi(9)ds
u(x, t) —Z a1 /\]Ta)g]e](x) ;( E. (/\jT"‘) )6’]

+ ; j(; (t= 1) "Enpq (/\j(f - T)“)Fj(’[)dl')ej(x)

=Ki(x, t) + Ka(x, ) + Ks(x, t). (53)

8 —

Part 1. The case t > 0. Under this case, we get that
M(.X, t) =Ky (x/ t) + l[<2(x/ t) + ]I<3(.X', t) (54)
By a similar techniques as in (35), we find that
o 0% 2
1K1, Bl gy < Clp, ma, m)(T = 5720 Y AT ( f g(x)ej()dx) . (55)
=1 Q
Thus, we get that

1K (-, Hllrse) < Clp, ma, ma)(T = £)7Pllgll,-

sy O<p<l (56)

Let us continue to estimate the second term K. It is obvious to see that

2

MK (OB < ColT = 672 Z 2 f (T = 0 B (VT = ) Fie)ds) 57)

Using Holder inequality, we find that
T 2
( f (T =1 Eqe (AT - T)a)P]‘(T)dT)
0
T T
< ( f (T = D* " Eqa (AT = 7)) s )( f (T = 1)* " Eqa (4T - 7)°) Fﬁ(s)ds)
(AT
= # f (T = D)* " Eqa (AT - T)“)PZ(s)ds) L. (58)
)
Here we note that
T Ex1(AT*) -1
f (T = 0" B AT — s = 22T 2L
0 ’ /\j
In view of Lemma (2.11)), we get
ns lx mz %_1 - i

Ex1(AT%) < —= exp (2 : T), Eaa(Ajt*) < —A £ exp(tA?). (59)

This together with (57) yields to
CP(T - f)_zmemz > 2[]_,_'_ 1 T 1
K2, 8)|[5 o < — Z A % exp (tA : ) fo exp((T = DA )F(v)dr. (60)

=1
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It is obvious to see that
N n (T L\ T 2
Z; )\]. exp (t/\j )fo exp ((T - T)/\j )Fj (t)dt < I) ||F(., T)”qu;T%%Q(Q)M
= ,

Thus, one gets

Co(T - t) 2P mym:
2 )] g3 < \/ - —

In order to estimate the third term K3, we observe that its evaluation is similar to the evaluation for the
component IL;. Thus, we obtain

61
LZ OTGM u a (Q)) ( )

( fo t(t = 1) Eqa (At - T)a)P]-(T)dT)Z

¢
m 1 1
< Z{ 2 )\" exp (/\]“ t) \fo exp ((t - T)/\]‘.* )F?(T)d’[. (62)
This implies that
< ¢ 2
K3 (s )iy = Z Aﬂ( f (t = 1) " Eqa(At - T)“)Fj(f)dz)
j=1 0
— 0 t
m 2q+1-2 1
< ;2 2 Z A]ﬂ“ fo exp((t = DA (0)dr. (63)
j=1
Thus, we obtain that
D
||IK3(" t)”]H‘Y(Q) s || ||L2(0TG Q) (64)
By collecting some previous results, we find that
3
””(" t)HlHq(Q) = Z ”]Kf(" t)”]H‘I(Q) < Cp(T - t)_p”g”w-%(m
j=1
- mzmz
+ (T -t)P||F + el o 65
( ) “ HLZ(O T; 621777 772(0)) ” || 0 T Gaqu” (Q)) ( )
Part 2. The case t = 0. Under this case, we get that
u(x,0) = Ky(x, 0) + K(x, 0).
Using the similar techniques as in (56), we know that
K10 O30y < CoT P l9llggr-00r O <p < 1. (66)
In addition, one gets
T
< (T = 1) Eg o (AT = T)*)Fj(t)dT
Ko(x,0) = — 0 . ) (). 7
25,0 ==Y ( ET 6i(x) (©7)

=1
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Using Lemma (2.13), we get that

Q -1 nmy 1- Lly_l %
EaaA(T = 1)) (Eag(WT%) < m—l(T — D)4 exp(-TA?).
Hence, we obtain

I = 0 B (AT = 1)) Fi(0)d
Eap(A;T)

Using Holder inequality, we obtain

T Eg o (A(T = 1)%) Fi(1)d1 )2

DNl
HI(Q) = j Ea1 (/\jT"‘)
) L[| w(-mf o)
T \m j=1 P 0 PATH RO
_ 00 . T 1
(e 2(f0 oxp(-2 0t

j=1

.o

IA

Using the inequality eV < C,y™# withy = %L and y = T/\“ we get

exp ( - 27/\%) < Ca’cl_“/\;‘;*a.

This implies that
2, 22 ! : 2 TN 29, 32 2
Z;A], A ( fo exp(~2TA 1 )IF(0) dT)sCa fo T (Z;A]. A IE ) )dT.
= J=

3-3a 3-3a

Combining (70) and (71), and noting that A" A", one gets

2 3-3a T

S T R G

2 3 T
Ve W [ )

)c Asf“ re

3|

||IK2( O)HII—N(Q) (

(

IA
HED §|

Il
—~

“ HLw (0,T;HI(Q))"
Thus, we deduce that

3230 T2 3
(., Ol < ((mj) Ca/\ff m)z “F“Lw(o,T;lHq(Q))'

Combining (66) and (73), we deduce that
i Oy = 1 Ol + Kot Ol

Mr\2 330 T2 3
((m_j) Caty® m) HF”Lw(o,T;JHq(Q))‘

< CoT gy

L T 1
LA [ ewtr o)

11026

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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Theorem 4.2. Let F(x,t) = F(x), let us assume that g € ]I—Iq’g(Q) and F € HI7Y(Q) for any p > 0,q > 0, then we

obtain

i€ D)oy < s, m2)(T = 72 (M9l g2 g + Wl ) + IFllE -
If g € H*1=5(Q) and F € HY 5 (Q) then

D1, Dl gy < Cormma, m2)(T = P (gl gy g+ WFlloot )

Since F(x, t) = F(x), we know that Fj(7) = F; forany 0 < 7 < T, where
F;= f F(x)ej(x)dx.
Q
Thus, we have immediately that

Ean (Ajt7) 5 (T = 09 B (AT = %) i) Ea (A7) E,y(4,T%) 1
Eor (A1) TEAGT A,

Hence, we get the following equality

B © —Eqq (A]'ta)Fj . < Enq (A]'ta)l:]' ‘
Ka(x, £) = ; > e;(x) + ; L (/\jTa)e](x),

and

©, Eqn (Ajt?) -1

Ks(x,t) =) | ( j; (t =" Eqa (At - ’C)a)Pj(T)dT)e]‘(x) =Y.
j=1

=1

By collecting some previous results, we obtain the fomula of the mild solution

& Ea (259 F; > Fj
u(x, t) = ; —Ea,l (/\,-Ta)(g] ])e](x) ; /\je](x).

Using Parseval’s equality, one has

k) Ea,1 (/\ji’a)

””( t) “]HW(Q) = Z A?q(

2o\ )V 52 - 2‘7&2
=1 Eal(A-Ta))(g’+Aj>+ZAj(/\j)

=1
; n T)) 7 +2;Aj (Ea’1 ()\jT"‘)) (A—]) +;M (
By noting (34), we get
2 1)
Zl‘ Ea ( AT))91<|C s (T_t) ZPJZ:‘AZL] ag;'
and
Zq al /\ ta) F

L AT&)) (/‘) <ICy 'Z—Z(T B ZPZAzq “p
=t al

Pjej(x).

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)
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and

Z Ay q |F||IH4 Q) (84)

Combining (88), (82), B9), (84), we derive that

2 2
= 2|CP|ZZ—§(T - f)fsz9||§{af§<Q> + 2|CP|2%(T - t)iszF”@ZHWf%fl(Q) + ”F”;—Iq-l(ﬂ)‘ (85)

This implies that

llu(., Ollme) < Clp, my, ma)(T — t)_p(”9||w—§(g) + ||F||Hq-§-l(g)) + ||F||H'1-1(Q)' (86)

Let us now to provide the proof of estimate for the derivative of the mild solution. The proof is similar to
the above but with other modifications. In fact, it yields

D?Ea,l ()\]‘ta) = /\an,l (/\]‘ta)
and based on (80), we get the following equalities

Ea,l (/\]'ta) F:

Dju(x, )= )" A; (g;+ A—;)e]-(x). (87)

S Ear (A7)
Using Parseval’s equality and the inequality (2 + b)? < 24> + 2b%, one has

al Ata) 2 F..2
et = 1 m [+ 3)

= alAt

2q+2 1 ) 2/ F;
Z al(A T +ZZ/\ ]Ta) (/\]-)‘ (88)

=1

In view of (82), we know that

> (1 t*) 2 m2 — -
)4 Eu (), J 7 <IC P2 -1y Y A (®9)
m -
1 j=1

=1 al )

In view of (83), we know that

i A Ta)) 2(§ ) <IC, |2—2(T—t) 2p2/\2q FZ. (90)
j=1 al j=1

Combining three latter results, we obtain that

2
m
+2|C,P—2(T

[t uC Dl = 2, |2—2<T 0 llfer-s )+ 2ACoP ST =D El o)
1

This completes the proof of (76).
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