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Existence result for a new class ofΨ-Caputo fractional differential
equation involving the p-Laplacian operator
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Abstract. This paper investigates the existence result for a new class of Ψ-Caputo-type fractional differ-
ential equation involving the p-Laplacian operator. By making use of some basic proprieties of fractional
calculus and the p-Laplacian operator and by applying Schaefer’s fixed point theorem we established the
existence result. As application, we give an example to demonstrate our theoretical result.

1. Introduction

Newly, fractional differential equations have attracted the curiosity of numerous mathematicians, due
to the fact that it can accurately model a wide range of scientific phenomena, and has been proven to be
effective in physics, mechanics, biology, chemistry, and control theory, and other domains for exemple, see
[1, 4, 5, 8, 12, 14, 15, 17–19, 27–31].

There are several ways to define fractional integrals and derivatives, however the most well-known ones
are the Riemann-Liouville and the Caputo fractional integrals and derivatives, in [14], Almeida introduce
the generalization of these derivatives under the name of Ψ-Caputo fractional derivative, for more details
forΨ-Caputo and Caputo fractional derivative, we direct readers to the papers [13, 21–24]. In the previous
few decades, differential equations with p-Laplacian operator commonly used in a wide range of scientific
domains, such as dynamical systems and mathematical models of mechanics. To investigate these kinds of
situations, in [11] Leibenson, introduced the p-Laplacian equation as follows(

ϕp

(
u′(τ)

))′
= f (τ,u(τ),u′(τ)).

Where ϕp(s) = |s|s−2s, p > 1, ϕp is invertible and its inverse operator is ϕq, with q > 1 such that
1
p
+

1
q
= 1.

For the fractional differential equations with the p-Laplacian operator, we refers to [2, 3, 7, 10, 16]
Liu and Jia [6], discussed the existence and uniqueness of solutions to some fractional differential

equation involving the p-Laplacian operator, by means of the Banach contraction mapping principle.
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Su et al. [9], studied the existence criteria of non-negative solutions of nonlinear p-Laplacian fractional
differential equations with first order derivative, the existence result are obtained by making use of the
nonlinear alternative of Leray-Schauder type and Banach fixed point theorems.

Motivated by the mentioned works, in this paper, we combine their ideas to investigate the existence
result for the problem of the form


CD

α;Ψ
a+

(
ϕp

[
CD

β;Ψ
a+ u(τ)

])
= h(τ,u(τ)), τ ∈ Λ := [a, b],

u(a) = µu(ξ) , CDβ;Ψ
a+ u(a) = 0 , CDβ;Ψ

a+ u(b) = κCDβ;Ψ
a+ u(η).

(1)

Where CDα;Ψ
a+ and CD

β;Ψ
a+ are the Ψ-Caputo fractional derivative of order α, 0 < α ≤ 2, and β, 0 < β ≤ 1,

respectively, a ≥ 0, µ, κ ∈ R, η, ξ ∈ Λ, h ∈ C
(
Λ×R,R

)
andϕp(τ) is the p-Laplacian operator (i.eϕp(τ) = |τ|p−2τ,

p > 1).
The originality of this work is studing a new and a challenging case of fractional derivative named the

Ψ-Caputo fractional derivative [14], this kind of fractional derivative generalize the well-known fractional
derivatives, for different values of functionΨ such as

⋆ IfΨ(τ) = τ, then the problem (1) reduces to Caputo-type fractional derivative.

⋆ IfΨ(τ) = lo1(τ), then the problem (1) reduces to Caputo-Hadamard-type fractional derivative.

⋆ IfΨ(τ) = τρ, then the problem (1) reduces to Caputo-Katugampola-type fractional derivative.

The rest of this paper is organized as follows : In section 2, we recall some notations, definitions, and
lemmas from fractional calculus and important results of p-Laplacian operator that will be used in our
study. In section 3, we discuss the existence result for the problem (1), by making use of Schaefer’s fixed
point theorem. In section 4, an example is provided to illustrate the main result.

2. Preliminaries

In this section, we introduce some definitions, useful notations of fractional calculus and some basic
properties of the p-Laplacian operator which will be used throughout this paper.
C(Λ,R) denote the Banach space of all continuous functions from Λ into R with the norm defined

by ∥h∥ = supτ∈Λ{|h(τ)|}. We denote by Cn(Λ,R) the n-times absolutely continuous functions given by

C
n(Λ,R) =

{
h : Λ −→ R ; h(n−1)

∈ C(Λ,R)
}
. Bρ denote the closed ball centered at 0 with radius ρ. We

denote by L1(Λ,R) the space of Lebesgue integrable real-valued functions on Λ equipped with the norm

∥h∥L1 =

∫
Λ

|h(τ)|dτ.

Definition 2.1. [14] For α > 0, h ∈ L1(Λ,R) and Ψ ∈ Cn(Λ,R), with Ψ′(τ) > 0, for all τ ∈ Λ, the Ψ-Riemann-
Liouville fractional integral of order α of a function h is defined by

I
α;Ψ
a+ h(τ) =

1
Γ(p)

∫ t

a
Ψ
′

(τ)(Ψ(τ) −Ψ(s))α−1h(s)ds, (2)

where Γ(.) represents the gamma function, Γ (z) =

∞∫
0

tz−1e−tdt, Re(z) > 0.
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Definition 2.2. [14] For α > 0, h ∈ Cn−1(Λ,R) and Ψ ∈ Cn(Λ,R), with Ψ′(τ) > 0, for all τ ∈ Λ, the Ψ-Caputo
fractional derivative of order α of a function h is defined by

CD
α;Ψ
a+ h(τ) = In−α;Ψ

a+ h[n]
Ψ

(τ)

=
1

Γ(n − α)

∫ τ

a
Ψ
′

(τ)(Ψ(τ) −Ψ(s))n−α−1h[n]
Ψ

(s)ds, (3)

where h[n]
Ψ

(τ) =
(

1
Ψ′ (τ)

d
dτ

)n

, n − 1 < α < n, n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3. [14] Let α, β > 0. Then we have the following semigroup property given by

I
α;Ψ
a+ I

β;Ψ
a+ h(τ) = Iα+β;Ψ

a+ h(τ), τ > a. (4)

Proposition 2.4. [14] Let α > 0, υ > 0 and τ ∈ Λ. Then

(i) Iα;Ψ
a+ (Ψτ) −Ψ(a))υ−1 =

Γ(υ)
Γ(υ + α)

(Ψ(τ) −Ψ(a))υ+α−1.

(ii) CDα;Ψ
a+ (Ψ(τ) −Ψ(a))υ−1 =

Γ(υ)
Γ(υ − α)

(Ψ(τ) −Ψ(a))υ−α−1.

(iii) CDα;Ψ
a+ (Ψ(τ) −Ψ(a))k = 0, ∀k < n ∈N.

Lemma 2.5. [14] If h ∈ Cn(Λ,R), n − 1 < α < n, then

I
α;Ψ
a+ (CDα;Ψ

a+ h)(τ) = h(τ) −
n−1∑
k=0

h[k]
Ψ

(a)
k!

(Ψ(τ) −Ψ(a))k, (5)

for all τ ∈ Λ, where h[k]
Ψ

(τ) :=
( 1
Ψ′ (τ)

d
dτ

)k
h(τ).

Lemma 2.6. [20]
Let ϕp : R −→ R be a p-Laplacian operator defined by ϕp(u) = |u|p−2u, then we have

⋆ If 1 < p < 2 and u , 0 then (ϕp(u))′ = (p − 1)|u|p−2.

⋆⋆ If 1 < p < 2, uv > 0 and |u|, |v| ≥ l > 0, then

|ϕp(u) − ϕp(v)| ≤ (p − 1)lp−2
|u − v|.

⋆ ⋆ ⋆ If p > 2, and |u|, |v| ≤ L, then

|ϕp(u) − ϕp(v)| ≤ (p − 1)Lp−2
|u − v|.

⋆ ⋆ ⋆⋆ ϕp is revertible such that ϕ−1
p = ϕq, 1

p +
1
q = 1.

Theorem 2.7. [25, 26]
Let X be a Banach space and W : X −→ X, be a completely continuous operator. If the set Υε = {u ∈ X | u =
εWu ; 0 ≤ ε ≤ 1} is bounded, thenW has at least a fixed point in X.
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3. Main results

Definition 3.1. A function u ∈ C(Λ,R) is said to be a solution of problem (1), if u satisfies the equation

CD
α;Ψ
a+

(
ϕp

[
CD

β;Ψ
a+ u(τ)

])
= h(τ,u(τ)), a.e on Λ and the conditions u(a) = µu(ξ) , CDβ;Ψ

a+ u(a) = 0 , CDβ;Ψ
a+ u(b) =

κCD
β;Ψ
a+ u(η).

Lemma 3.2. Let a ≥ 0, 0 < β ≤ 1, y ∈ C(Λ,R) and µ ∈ R, such that µ , 1. Then the function u is a solution of the
following boundary value problem: CDβ;Ψ

a+ u(τ) = y(τ), τ ∈ Λ := [a, b]
u(a) = µu(ξ), a < ξ < b,

(6)

if and only if

u(τ) =
1
Γ(β)

∫ τ

a
Ψ′(s)(Ψ(τ)−Ψ(s))β−1y(s)ds

+
µ

(1 − µ)Γ(β)

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1y(s)ds. (7)

Proof. Applying the Ψ-Riemann-Liouville fractional integral of order β to both sides of (6) we obtain by
using Lemma 2.5

u(τ) = Iβ;ψ
a+ y(τ) + d0, (8)

where d0 is a constant. Next, by using the boundary condition u(a) = µu(ξ) in (8) we obtain

u(a) = d0 = µI
β;Ψ
a+ h(ξ) + µd0, (9)

then

d0 =
µ

(1 − µ)Γ(β)

∫ ξ

a+
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1y(s)ds. (10)

Substituting the value of d0 in (8) we obtain the integral equation in (7), defined by

u(τ) =
1
Γ(β)

∫ τ

a
Ψ′(s)(Ψ(τ)−Ψ(s))β−1y(s)ds

+
µ

(1 − µ)Γ(β)

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1y(s)ds.

Lemma 3.3. Let a ≥ 0, 0 < β ≤ 1, 1 < α ≤ 2, w ∈ C(Λ,R) and µ, κ ∈ R, such that µ , 1. Then the function u is a
solution of the following boundary value problem:

CD
α;Ψ
a+

(
ϕp

[
CD

β;Ψ
a+ u(τ)

])
= w(τ), τ ∈ Λ := [a, b],

u(a) = µu(ξ) , CDβ;Ψ
a+ u(a) = 0 , CDβ;Ψ

a+ u(b) = κCDβ;Ψ
a+ u(η); η, ξ ∈ Λ,

(11)
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if and only if

u(τ) = Iβ;Ψ
a+ ϕq

(
I
α;Ψ
a+ w(τ) + G1w(τ)

)
+ G2w(τ)

=
1
Γ(β)

∫ τ

a
Ψ′(s)(Ψ(τ) −Ψ(s))β−1ϕq

(
1
Γ(α)

∫ s

a
Ψ′(ς)(Ψ(s) −Ψ(ς))α−1w(ς)dς

+ G1w(s)
)
ds + G2w(τ), (12)

where

G1w(τ) =
Ψ(s) −Ψ(a)
ΘΓ(α)

[
κp−1

∫ η

a
Ψ′(s)(Ψ(η) −Ψ(s))α−1w(s)ds

−

∫ b

a
Ψ′(s)(Ψ(b) −Ψ(s))α−1w(s)ds

]
, (13)

G2w(τ) =
µ

(1 − µ)Γ(β)

×

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1ϕq

(
1
Γ(α)

∫ s

a
Ψ′(ς)(Ψ(s) −Ψ(ς))α−1w(ς)dς + G1w(s)

)
ds, (14)

Θ = (Ψ(b) −Ψ(a)) − κp−1(Ψ(η) −Ψ(a)) , 0. (15)

Proof. Applying the Ψ-Riemann-Liouville fractional integral of order α to both sides of (11) we obtain by
using Lemma 2.5

ϕp

[
CD

β;Ψ
a+ u(τ)

]
= Iα;Ψ

a+ w(τ) + d1 + d2(Ψ(τ) −Ψ(a)), (16)

where d1, d2 are constants. Next, by using the boundary condition CDβ;Ψ
a+ u(a) = 0 in (16) we obtain

ϕp

[
CD

β;Ψ
a+ u(a)

]
= ϕp(0) = 0 = d1,

it follows that

ϕp

[
CD

β;Ψ
a+ u(τ)

]
= Iα;Ψ

a+ w(τ) + d2(Ψ(τ) −Ψ(a)), (17)

by using the boundary condition CDβ;Ψ
a+ u(b) = κ CDβ;Ψ

a+ u(η) and the proprieties of ϕp in (17) we get

I
α;Ψ
a+ w(b) + d2(Ψ(b) −Ψ(a)) = κp−1I

α;Ψ
a+ w(η) + d2κ

p−1(Ψ(η) −Ψ(a)), (18)

then

d2 =
κp−1I

α;Ψ
a+ w(η) − Iα;Ψ

a+ w(b)

(Ψ(b) −Ψ(a)) − κp−1(Ψ(η) −Ψ(a))
=
κp−1I

α;Ψ
a+ w(η) − Iα;Ψ

a+ w(b)
Θ

, (19)

it follows that

ϕp

[
CD

β;Ψ
a+ u(τ)

]
= Iα;Ψ

a+ w(τ) + (Ψ(τ) −Ψ(a))
κp−1I

α;Ψ
a+ w(η) − Iα;Ψ

a+ w(b)
Θ

, (20)
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then

CD
β;Ψ
a+ u(τ) = ϕq

[
I
α;Ψ
a+ w(τ) + (Ψ(τ) −Ψ(a))

κp−1I
α;Ψ
a+ w(η) − Iα;Ψ

a+ w(b)
Θ

]
= ϕq

[
I
α;Ψ
a+ w(τ) + G1w(τ)

]
(21)

Using Lemma 3.2 and setting y(τ) = ϕq

[
I
α;Ψ
a+ w(τ) + G1w(τ)

]
we get

u(τ) = Iβ;Ψ
a+ ϕq

(
I
α;Ψ
a+ w(τ) + G1w(τ)

)
+ G2w(τ)

=
1
Γ(β)

∫ τ

a
Ψ′(s)(Ψ(τ) −Ψ(s))β−1ϕq

(
1
Γ(α)

∫ s

a
Ψ′(ς)(Ψ(s) −Ψ(ς))α−1w(ς)dς

+ G1w(s)
)
ds + G2w(τ),

Now, we deal with the existence result for the problem (1), for that to simplify the computations, we use
the following notations

A =
(Ψ(b) −Ψ(a))β

Γ(β + 1)
+
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)
. (22)

B =
(Ψ(b) −Ψ(a))α

Γ(α + 1)
+

(ψ(b) − ψ(a))
|Θ|Γ(α + 1)

[
κp−1(ψ(η) − ψ(a))α + (Ψ(b) −Ψ(a))α

]
. (23)

We assume the following hypotheses throughout the rest of our paper

(H1): there exist nonnegative functions γ, δ ∈ C(Λ,R) such that

|h(t,u)| ≤ γ(τ) + δ(τ)|u|p−1, f or each t ∈ Λ and u ∈ C(Λ,R). (24)

(H2): Ap−1B∥δ∥ < 1 where A,B are given by (22), (23).

From Lemma 3.3 we define the operatorW : C(Λ,R) −→ C(Λ,R) by

Wu(τ) = Iβ;Ψ
a+ ϕq

(
I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))

)
+ G2h(τ,u(τ))

=
1
Γ(β)

∫ τ

a
Ψ′(s)(Ψ(τ) −Ψ(s))β−1ϕq

(
1
Γ(α)

∫ s

a
Ψ′(ς)(Ψ(s) −Ψ(ς))α−1h(ς,u(ς))dς

+
Ψ(s) −Ψ(a)
ΘΓ(α)

[
κp−1

∫ η

a
Ψ′(s)(Ψ(η) −Ψ(s))α−1h(s,u(s))ds

−

∫ b

a
Ψ′(s)(Ψ(b) −Ψ(s))α−1h(s,u(s))ds

])
ds +

µ

(1 − µ)Γ(β)

×

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1ϕq

(
1
Γ(α)

∫ s

a
Ψ′(ς)(Ψ(s) −Ψ(ς))α−1h(ς,u(ς))dς

+
Ψ(s) −Ψ(a)
ΘΓ(α)

[
κp−1

∫ η

a
Ψ′(s)(Ψ(η) −Ψ(s))α−1h(s,u(s))ds

−

∫ b

a
Ψ′(s)(Ψ(b) −Ψ(s))α−1h(s,u(s))ds

])
ds, (25)
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Theorem 3.4. Suppose that (H1)–(H2) are satisfied, then the problem (1) has at least one solution u ∈ C(Λ,R).

As a means of demonstrating the Theorem 3.4, we will prove that the operatorW satisfies the conditions
of Theorem 2.7 (Schaefer’s fixed point theorem).

Proof. Consider the operatorW defined in (25), we will show thatW is completely continuous operator.
step 1: W is continuous.
Let (un) ∈ C(Λ,R) be a sequence such that un −→ u in C(Λ,R), by using the continuity of the function h and
ϕq we get lim

n→+∞
G1h(τ,un(τ)) = G1h(τ,u(τ)) and lim

n→+∞
G1h(τ,un(τ)) = G2h(τ,u(τ)), furthermore

lim
n→+∞

Wun(τ) = lim
n→+∞

(
I
β;Ψ
a+ ϕq

(
I
α;Ψ
a+ h(τ,un(τ)) + G1h(τ,un(τ))

)
+ G2h(τ,un(τ))

)
= I

β;Ψ
a+ ϕq

(
I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))

)
+ G2h(τ,u(τ))

)
=Wu(τ).

This shows thatW is continuous.
step 2: W is bounded.

Let N a bounded set, such that N ⊂ Bρ, we will show thatW(N) is bounded, for that ∀u ∈ N , we have
∥u∥ ≤ ρ, by making use of the continuity of the function h and (H1), we get |h(τ,u)| ≤ |γ|+ |δ|ρp−1 := N1, then
for all τ ∈ Λ, u ∈ N we have

|I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))| ≤

1
Γ(α)

∫ τ

a
Ψ′(s)(Ψ(τ) −Ψ(s))α−1

|h(s,u(s))|ds

+
Ψ(τ) −Ψ(a)
|Θ|Γ(α)

[
κp−1

∫ η

a
Ψ′(s)(Ψ(η) −Ψ(s))α−1

|h(s,u(s))|ds

−

∫ b

a
Ψ′(s)(Ψ(b) −Ψ(s))α−1

|h(s,u(s))|ds
]
,

≤ BN1.

And

|G2h(τ,u(τ))| ≤
|µ|

|1 − µ|Γ(β)

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1

×

∣∣∣∣ϕq

(
I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))

)∣∣∣∣
≤
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)

[
BN1

]q−1
,

it follows that

|Wu(τ)| ≤
(Ψ(b) −Ψ(a))β

Γ(β + 1)

[
BN1

]q−1
+
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)

[
BN1

]q−1
,

≤ A
[
BN1

]q−1
.

Taking the supremum over τ, we obtain

∥Wu∥ ≤ A
[
BN1

]q−1
.

ThenW(N) is bounded.
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step 3:W is equicontinuous.
Let τ1, τ2 ∈ Λwith τ1 < τ2 and for u ∈ N ; (see that G2u given by (14) is independent of τ); then we have

|Wu(τ2) −Wu(τ1)| =
∣∣∣∣∣Iβ;Ψ

a+ ϕq

(
I
α;Ψ
a+ h(τ2,u(τ2)) + G1h(τ2,u(τ2)

)
− I

β;Ψ
a+ ϕq

(
I
α;Ψ
a+ h(τ1,u(τ1)) + G1h(τ1,u(τ1)

)∣∣∣∣∣,
≤

∣∣∣∣∣ 1
Γ(β)

∫ τ1

a
Ψ′(s)

[
(Ψ(τ2) −Ψ(s))β−1

− (Ψ(τ1) −Ψ(s))β−1
]

× ϕq

(
I
α;Ψ
a+ h(s,u(s)) + G1h(s,u(s)

)
ds

+
1
Γ(β)

∫ τ2

τ1

Ψ′(s)(Ψ(τ2) −Ψ(s))β−1

× ϕq

(
I
α;Ψ
a+ h(s,u(s)) + G1h(s,u(s)

)
ds

∣∣∣∣∣,
≤

[
BN1

]q−1

Γ(β)

{ ∫ τ1

a
Ψ′(s)

∣∣∣(Ψ(τ2) −Ψ(s))β−1
− (Ψ(τ1) −Ψ(s))β−1

∣∣∣ds

+

∫ τ2

τ1

Ψ′(s)(Ψ(τ2) −Ψ(s))β−1ds
}

≤

[
BN1

]q−1

Γ(β + 1)

{
2(Ψ(τ2) −Ψ(τ1))β

+
∣∣∣(Ψ(τ2) −Ψ(s))β − (Ψ(τ1) −Ψ(s))β

∣∣∣}.
By using the continuity of the functionΨ, the right hand side of the above inequality tends to 0 as τ2 tends
to τ1 this implies that W(N) is equicontinuous. From step 2 and step 3 It follows by using the Arzelà-
Ascoli theorem that the operatorW is relatively compact, as consequence the operatorW is completely
continuous.

Step 4:The set Υε = {u ∈ C(Λ,R) | u = εWu ; 0 < ε ≤ 1} is bounded.
We are going to show that the set Υε is bounded. By using (H1) we have

|I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))| ≤

1
Γ(α)

∫ τ

a
Ψ′(s)(Ψ(τ) −Ψ(s))α−1

|h(s,u(s))|ds

+
Ψ(τ) −Ψ(a)
|Θ|Γ(α)

[
κp−1

∫ η

a
Ψ′(s)(Ψ(η) −Ψ(s))α−1

|h(s,u(s))|ds

−

∫ b

a
Ψ′(s)(Ψ(b) −Ψ(s))α−1

|h(s,u(s))|ds
]
,

≤ B(∥γ∥ + ∥δ∥∥u∥p−1).

And

|G2h(τ,u(τ))| ≤
|µ|

|1 − µ|Γ(β)

∫ ξ

a
Ψ′(s)(Ψ(ξ) −Ψ(s))β−1

×

∣∣∣∣ϕq

(
I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))

)∣∣∣∣
≤
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)

[
B(∥γ∥ + ∥δ∥∥u∥p−1)]q−1,
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for all u ∈ Υε we have u(τ) = εWu(τ) then it follows that

|u(τ)| ≤
∣∣∣Iβ;Ψ

a+ ϕq

(
I
α;Ψ
a+ h(τ,u(τ)) + G1h(τ,u(τ))

)∣∣∣ + ∣∣∣G2h(τ,u(τ))
∣∣∣

≤
(Ψ(b) −Ψ(a))β

Γ(β + 1)

[
B(∥γ∥ + ∥δ∥∥u∥p−1)

]q−1

+
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)

[
B(∥γ∥ + ∥δ∥∥u∥p−1)

]q−1

≤

(
(Ψ(b) −Ψ(a))β

Γ(β + 1)
+
|µ|(Ψ(ξ) −Ψ(a))β

|1 − µ|Γ(β + 1)

)[
B(∥γ∥ + ∥δ∥∥u∥p−1)

]q−1

≤ ABq−1
(
∥γ∥ + ∥δ∥∥u∥p−1

)q−1

.

Where A and B are given by (22) and (23). Thus, we have

∥u∥ ≤ ABq−1
(
∥γ∥ + ∥δ∥∥u∥p−1

)q−1

,

then

∥u∥p−1
≤ Ap−1B

(
∥γ∥ + ∥δ∥∥u∥p−1

)
,

by using (H2), we get

∥u∥p−1
≤
Ap−1B∥γ∥

1 − Ap−1B∥δ∥
:=M,

finally

∥u∥ ≤ Mq−1.

This proves that the set Υε is bounded in C(Λ,R), by using Theorem 2.7, W has at least one fixed point
which is the solution of the problem (1).

4. Example

Consider the following problem
CD

3
2 ; eτ

3
0+

(
ϕ3

[
CD

2
5 ; eτ

3
0+ u(τ)

])
=

5τ2

cosτ
+

1
7 + eτ

u2(τ), τ ∈ Λ := [0, 1],

u(0) = 5
8 u( 2

3 ) , CD
2
5 ; eτ

3
0+ u(a) = 0 , CD

2
5 ; et

3
0+ u(1) = 3

8
CD

2
5 ; eτ

3
0+ u( 1

2 ).

(26)

Where α =
3
2

, β =
2
5

, p = 3, q =
3
2

, a = 0, b = 1, Λ = [0, 1], ξ =
2
3

, η =
1
2

, κ =
3
8

, µ =
5
8

andΨ(τ) =
eτ

3
.

We define h(t,u) =
5τ2

cosτ
+

1
7 + eτ

u2, τ ∈ [0, 1]. h is a continuous function, furthermore for every τ ∈ [0, 1]

we put : γ(τ) =
5τ2

cosτ
and δ(τ) =

1
7 + eτ

such that the condition (H1) holds. By using the data given above,

we get : |Θ| = 0.6701, A = 1.378024, B = 1.138093 and ∥δ∥ =
1
8
= 0.125.

Then A2B∥δ∥ = 1.3780242
× 1.138093 × 0.125 = 0.270147 < 1.

The problem (26) satisfies all the hypothesis of Theorem 3.4. Thus, The problem (26) has at least one
solution on [0, 1].
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5. Conclusion

In this paper, we have studied and investigated the existence result for a new class of Ψ-Caputo-type
fractional differential equation involving the p-Laplacian operator. The novelty of the considered problem
is that it has been investigated under the Ψ-Caputo fractional derivatives, which is more general than
the works based on the well-known fractional derivatives such as (Caputo fractional derivative, Caputo-
Hadamard fractional derivative and Caputo-Katugampola fractional derivative) for different values of the
function Ψ. In this article we established the existence results for the problem (1), by using a standard
fixed point theorem (Schaefer’s fixed point theorem). Finally a numerical example is presented to clarify
the obtained result.
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