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Halpern type convergence theorems on a geodesic space with curvature
bounded above by a general real number
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aDepartment of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

Abstract. In this paper, we prove convergence theorems with the Halpern type iterative scheme in the
setting of geodesic spaces with curvature bounded above by general real numbers. To obtain the results,
we consider another type of convex combination than the canonical one.

1. Introduction

To generate an approximation sequence converging to a fixed point of a mapping, a lot of researchers have
introduced many effective iterative schemes. For instance, the Picard type and the Mann type iterative
schemes guarantee to generate a weak convergent sequence approximating to some fixed point. On the
other hand, Halpern’s iterative sequence converges strongly to the closest fixed point to the anchor point.
Besides that, there are approximation methods using a sequence of subsets and projections onto them.
Fixed point approximation methods above were proposed on Hilbert spaces, and were generalised to those
on Banach spaces. For more details about related works, refer to [4, 15, 16] for instance. Recently, they
are introduced on a metric space having some convex structures, namely, a geodesic space. Mann’s one is
investigated by [3, 7] for instance; Halpern’s one is also studied by [8–10, 13] for instance.

In a CAT(κ) space, its curvature κ determines the properties of the space. For this reason, many proofs
of propositions are based on its curvature. However, according to a function with curvature as a parameter
which is proposed by Kajimura and the first author [5], we become able to investigate CAT(κ) spaces
without separating cases.

In this paper, we deal with the Halpern type iterative scheme in the setting of geodesic spaces with
curvature bounded above by general real numbers. To prove a convergence theorem, we use another notion
of convex combination than the canonical one proposed by the first author and Sasaki [8, 9]. Using another
convex combination called κ-convex combination, we first prove a convergence theorem for a strongly
quasinonexpansive mapping. After that, we get a convergence theorem with the usual convex combination
as a direct consequence of one with κ-convex combination. At the end of this paper, we consider the
coefficient condition adapted to Halpern type iterative sequences.
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2. Preliminaries

Let (X, d) be a metric space and let D ∈ ]0,∞]. X is called a uniquely D-geodesic space if there exists a
unique geodesic for each x, y ∈ X with d(x, y) < D. That is, there is a unique isometric mapping γxy from
[0, d(x, y)] into X such that γxy(0) = x and γxy(d(x, y)) = y. In a uniquely D-geodesic space X, for x, y ∈ X
with d(x, y) < D and t ∈ [0, 1], there is a unique point z such that

d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y).

We denote such a point z by tx ⊕ (1 − t)y, and call it convex combination for x and y.
We define Dκ ∈ ]0,∞] as follows: Dκ = ∞ if κ ≤ 0; Dκ = π/

√
κ if κ > 0. To define a CAT(κ) space, we

use a function cκ from [0,Dκ/2[ into [0,∞[ defined by

cκ(a) =
1
2

a2 +

∞∑
n=2

(−κ)n−1a2n

(2n)!
=



1
κ

(
1 − cos

(√
κa

))
(κ > 0);

1
2

a2 (κ = 0);

1
−κ

(
cosh

(√
−κa

)
− 1

)
(κ < 0)

for a ∈ [0,Dκ/2[. Then, we know

c′κ(a) =



sin
(√
κa

)
√
κ

(κ > 0);

a (κ = 0);

sinh
(√
−κa

)
√
−κ

(κ < 0)

and

c′′κ (a) =


cos

(√
κa

)
(κ > 0);

1 (κ = 0);

cosh
(√
−κa

)
(κ < 0)

for a ∈ [0,Dκ/2[. It hold from the definition of cκ that cκ(0) = c′κ(0) = 0 and c′′κ (0) = 1 for each κ ∈ R. Further,

κcκ(a) + c′′κ (a) = 1

for all a ∈ [0,Dκ/2[. For more details about the function cκ, see [5].
For a metric space (X, d), we define a function ϕκ from X2 into R by

ϕκ(x, y) = cκ(d(x, y))

for x, y ∈ X, and we define an adjuster (·)κl from [0, 1] onto [0, 1] by

(t)κl =


c′κ(tl)
c′κ(l)

(l ∈ ]0,Dκ[);

t (l = 0)

for t ∈ [0, 1]. We know the following properties about ϕκ:

• ϕκ(x, y) ≥ 0 for every x, y ∈ X;
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• ϕκ(x, y) = 0 if and only if x = y, where d(x, y) < 2Dκ;

• ϕκ(x, y) = ϕκ(y, x) for every x, y ∈ X.

Now, we can define a CAT(κ) space. The canonical definition of a CAT(κ) space uses a notion of model
spaces and their comparison triangle. However, we can define a CAT(κ) space as follows: Let κ ∈ R and X
a uniquely Dκ-geodesic space. We call X a CAT(κ) space if

ϕκ(tx ⊕ (1 − t)y, z) ≤ (t)κl ϕκ(x, z) + (1 − t)κl ϕκ(y, z)
− (t)κl ϕκ(x, tx ⊕ (1 − t)y) − (1 − t)κl ϕκ(y, tx ⊕ (1 − t)y)

for every x, y, z ∈ X with d(y, z) + d(z, x) + l < 2Dκ and t ∈ [0, 1], where l = d(x, y). For more details about
this definition, see [11]. Moreover, X is said to be admissible if d(u, v) < Dκ/2 for any u, v ∈ X.

Let κ ∈ R. We define a function tκ from [0,Dκ/2[ into [0,∞[ by

tκ(a) =
c′κ (a)
c′′κ (a)

=



tan(
√
κa)

√
κ

(κ > 0);

a (κ = 0);

tanh(
√
−κa)

√
−κ

(κ < 0)

for every a ∈ [0,Dκ/2[. We know tκ is continuous, increasing and tκ(0) = 0. Since c′′κ (a)2 + κc′κ(a)2 = 1 for
a ∈ [0,Dκ/2[, the following hold:

c′κ(a) =

√
tκ(a)2

1 + κtκ(a)2 and c′′κ (a) =

√
1

1 + κtκ(a)2 .

Let X be an admissible CAT(κ) space for κ ∈ R. For a real valued function f on X, we denote the set of
all minimisers of f by Argminu∈X f (u), and defined by

Argmin
u∈X

f (u) =
{
u ∈ X

∣∣∣∣∣ f (u) = inf
x∈X

f (x)
}
.

For x, y ∈ X and t ∈ [0, 1], a function

tϕκ(x, ·) + (1 − t)ϕκ(y, ·) : X→ R

has a unique minimiser. We define κ-convex combination as{
tx
κ
⊕ (1 − t)y

}
= Argmin

u∈X

(
tϕκ(x,u) + (1 − t)ϕκ(y,u)

)
.

Moreover, we know

tx
κ
⊕ (1 − t)y

=
1

d(x, y)
t−1
κ

(
tc′κ(d(x, y))

1 − t + tc′′κ (d(x, y))

)
x ⊕

1
d(x, y)

t−1
κ

(
(1 − t)c′κ(d(x, y))

t + (1 − t)c′′κ (d(x, y))

)
y

for x, y ∈ X with x , y and t ∈ [0, 1]. If x = y, then tx
κ
⊕ (1 − t)y = x = y. For more details about κ-convex

combination, see [8, 9, 11] for instance.
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Theorem 2.1 (Kimura–Sudo [11]). Let X be an admissible CAT(κ) space for κ ∈ R. Then,

ϕκ(tx
κ
⊕ (1 − t)y, z)

≤
tϕκ(x, z) + (1 − t)ϕκ(y, z) − tϕκ(x, tx

κ
⊕ (1 − t)y) − (1 − t)ϕκ(y, tx

κ
⊕ (1 − t)y)√

t2 + (1 − t)2 + 2t(1 − t)c′′κ (d(x, y))

and

ϕκ(tx
κ
⊕ (1 − t)y, z) ≤ tϕκ(x, z) + (1 − t)ϕκ(y, z)

for every x, y, z ∈ X and t ∈ [0, 1].

Let X be a metric space and T a mapping from X into itself. Fix T stands for the set of all fixed points of T.
Further, T is said to be quasinonexpansive if Fix T is nonempty and d(p,Tx) ≤ d(p, x) for every p ∈ Fix T and
x ∈ X. Moreover, on a CAT(κ) space X, we say T is strongly quasinonexpansive if it is quasinonexpansive,
and for a sequence {xn} of X, it holds that limn→∞ d(xn,Txn) = 0 whenever there exists a fixed point p ∈ Fix T
such that supn∈N d(p,Txn) < Dκ/2 and that

lim
n→∞

(d(p, xn) − d(p,Txn)) = 0.

Let X be an admissible CAT(κ) space for κ ∈ R and C a subset of X. We say C is convex if tx⊕ (1− t)y ∈ C
for every x, y ∈ C and t ∈ [0, 1]. A fixed point set of a quasinonexpansive mapping on admissible CAT(κ)
spaces is closed and convex.

Let C be a nonempty closed convex subset of an admissible complete CAT(κ) space X. Then, for x ∈ X,
there exists a unique point px ∈ C such that

d(x, px) = inf
y∈C

d(x, y).

We call such a mapping PC defined by PCx = px a metric projection onto C. Notice that metric projections
are quasinonexpansive with the fixed point set Fix PC = C.

Let X be a metric space and {xn} a bounded sequence of X. We call z ∈ X an asymptotic centre of {xn} if

z ∈ Argmin
u∈X

(
lim sup

n→∞
d(u, xn)

)
= Argmin

u∈X

(
lim sup

n→∞
ϕκ(u, xn)

)
.

Let {xn} be a sequence of X and x0 ∈ X. We say {xn} ∆-converges to a ∆-limit x0 if x0 is a unique asymptotic
centre of any subsequence {xni } of {xn}. A sequence {xn} of an admissible CAT(κ) space X for κ ∈ R is said
to be κ-bounded if

inf
x∈X

lim sup
n→∞

d(x, xn) <
Dκ
2
.

We know the following lemmas about ∆-convergence:

Lemma 2.2 (Bačák [1], Espínola–Fernández-León [2], Kirk–Panyanak [12]). Let X be a complete CAT(κ) space
for κ ∈ R and {xn} a κ-bounded sequence of X. Then, {xn} has a unique asymptotic centre and it has a ∆-convergent
subsequence.

Lemma 2.3 (Bačák [1], He–Fang–Lopez–Li [3]). Let (X, d) be an admissible complete CAT(κ) space for κ ∈ R.
Then,

d(x0, z) ≤ lim inf
n→∞

d(xn, z)

for all z ∈ X whenever a κ-bounded sequence {xn} ∆-converges to x0 ∈ X.

Let X be an admissible CAT(κ) space for κ ∈ R and T a mapping on X. We say T is ∆-demiclosed if
x0 ∈ X is a fixed point of T whenever limn→∞ d(xn,Txn) = 0 for some κ-bounded sequence {xn} of X which
∆-converges to x0.



Y. Kimura, S. Sudo / Filomat 38:31 (2024), 11111–11126 11115

3. Lemmas to prove convergence theorems

In this section, we obtain some lemmas to prove a convergence theorem.

Lemma 3.1. Let X be an admissible CAT(κ) space for κ ∈ R. Then,

ϕκ(tx
κ
⊕ (1 − t)y, z) ≤

tϕκ(x, z) + (1 − t)ϕκ(y, z)
M

−
2t(1 − t)ϕκ(x, y)

M(1 +M)

for every x, y, z ∈ X and t ∈ [0, 1], where

M =
√

t2 + (1 − t)2 + 2t(1 − t)c′′κ (d(x, y)).

Proof. When x = y or κ = 0, we easily obtain the desired inequality. We assume that x , y and κ , 0. From
Theorem 2.1,

ϕκ(tx
κ
⊕ (1 − t)y, z)

≤
tϕκ(x, z) + (1 − t)ϕκ(y, z) − tϕκ(x, tx

κ
⊕ (1 − t)y) − (1 − t)ϕκ(y, tx

κ
⊕ (1 − t)y)

M
.

We prove the following identity:

tϕκ(x, tx
κ
⊕ (1 − t)y) + (1 − t)ϕκ(y, tx

κ
⊕ (1 − t)y) =

2t(1 − t)ϕκ(x, y)
1 +M

.

Let l = d(x, y) , 0 and

σ =
1
l

t−1
κ

(
tc′κ(l)

1 − t + tc′′κ (l)

)
.

We remark that tx
κ
⊕ (1 − t)y = σx ⊕ (1 − σ)y. Then, we obtain

c′′κ (σl) = c′′κ

(
t−1
κ

(
tc′κ(l)

1 − t + tc′′κ (l)

))
=

√
(1 − t + tc′′κ (l))2

(1 − t + tc′′κ (l))2 + κt2c′κ(l)2

=
1 − t + tc′′κ (l)√

(1 − t + tc′′κ (l))2 + t2κc′κ(l)2

=
1 − t + tc′′κ (l)√

(1 − t)2 + 2t(1 − t)c′′κ (l) + t2c′′κ (l)2 + t2κc′κ(l)2

=
1 − t + tc′′κ (l)√

t2 + (1 − t)2 + 2t(1 − t)c′′κ (l)
=

1 − t + tc′′κ (l)
M

.

Similarly, we get

c′′κ ((1 − σ)l) =
t + (1 − t)c′′κ (l)

M
.

Thus,

tϕκ(x, tx
κ
⊕ (1 − t)y) + (1 − t)ϕκ(y, tx

κ
⊕ (1 − t)y)

=
1
κ

(
1 − tc′′κ ((1 − σ)l) − (1 − t)c′′κ (σl)

)
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=
1
κ

(
1 −

t2 + (1 − t)2 + 2t(1 − t)c′′κ (l)
M

)
=

1 −M
κ
=

1 −M2

κ(1 +M)

=
1 − t2

− (1 − t)2
− 2t(1 − t)c′′κ (l)

κ(1 +M)
=

2t(1 − t)(1 − c′′κ (l))
κ(1 +M)

=
2t(1 − t)ϕκ(x, y)

1 +M
.

Hence, we obtain the desired result.

Using this result, we get the following:

Lemma 3.2. Let X be an admissible CAT(κ) space for κ ∈ R. Let x, y, z ∈ X, and α ∈ ]0, 1[. Set

M =
√
α2 + (1 − α)2 + 2α(1 − α)c′′κ (d(x, y)) and β = 1 −

1 − α
M
, 0.

Then,

ϕκ(αx
κ
⊕ (1 − α)y, z)

≤ (1 − β)ϕκ(y, z) + β
(

(M + 1 − α)((1 +M)ϕκ(x, z) − 2(1 − α)ϕκ(x, y))
(1 +M)(α + 2(1 − α)c′′κ (d(x, y)))

)
.

Proof. From the previous theorem, we get

ϕκ(αx
κ
⊕ (1 − α)y, z) ≤ (1 − β)ϕκ(y, z) +

αϕκ(x, z)
M

−
2α(1 − α)ϕκ(x, y)

M(1 +M)
.

Then,

αϕκ(x, z)
M

−
2α(1 − α)ϕκ(x, y)

M(1 +M)
= β

(
1
β

) (
αϕκ(x, z)

M
−

2α(1 − α)ϕκ(x, y)
M(1 +M)

)
= β

(
M

M − (1 − α)

) (
αϕκ(x, z)

M
−

2α(1 − α)ϕκ(x, y)
M(1 +M)

)
= β

(
αϕκ(x, z)

M − (1 − α)
−

2α(1 − α)ϕκ(x, y)
(1 +M)(M − (1 − α))

)
= β

(
α(M + 1 − α)ϕκ(x, z)

M2 − (1 − α)2 −
2α(1 − α)(M + 1 − α)ϕκ(x, y)

(1 +M)(M2 − (1 − α)2)

)
= β

(
α(M + 1 − α)ϕκ(x, z)
α2 + 2α(1 − α)c′′κ (d(x, y))

−
2α(1 − α)(M + 1 − α)ϕκ(x, y)

(1 +M)(α2 + 2α(1 − α)c′′κ (d(x, y)))

)
= β

(
(M + 1 − α)ϕκ(x, z)
α + 2(1 − α)c′′κ (d(x, y))

−
2(1 − α)(M + 1 − α)ϕκ(x, y)

(1 +M)(α + 2(1 − α)c′′κ (d(x, y)))

)
= β

(
(1 +M)(M + 1 − α)ϕκ(x, z) − 2(1 − α)(M + 1 − α)ϕκ(x, y)

(1 +M)(α + 2(1 − α)c′′κ (d(x, y)))

)
.

It completes the proof.

Moreover, we get the following lemmas:

Lemma 3.3. Let κ ∈ R and {ln} a bounded real sequence of [0,Dκ/2[. Let {αn} be a real sequence of ]0, 1[ such that
limn→∞ αn = 0 and

∑
∞

n=1 αn = ∞. Define a real sequence {βn} of ]0, 1[ by

βn = 1 −
1 − αn√

α2
n + (1 − αn)2 + 2αn(1 − αn)c′′κ (ln)

for each n ∈N. Further, assume one of the following:
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(a) supn∈N ln < Dκ/2;

(b)
∑
∞

n=1 α
2
n = ∞.

Then, limn→∞ βn = 0 and
∑
∞

n=1 βn = ∞.

Proof. Since {ln} is bounded, there exists L > 0 such that c′′κ (ln) ≤ L for any n ∈N. We first show limn→∞ βn = 0.
From the definition of {βn},

0 ≤ βn ≤ 1 −
1 − αn√

α2
n + (1 − αn)2 + 2αn(1 − αn)L

.

Since αn → 0, we have βn → 0 as n → ∞. We next show
∑
∞

n=1 βn = ∞. Since limn→∞ αn = 0, there exists
n0 ∈N such that 1 − αn ≥ 1/2 for any n ≥ n0. Note that

α2
n + (1 − αn)2

≤ 2 and αn(1 − αn) ≤ 1

for any n ∈N. Let

Mn =

√
α2

n + (1 − αn)2 + 2αn(1 − αn)c′′κ (ln)

for each n ∈N. We remark that Mn ≤
√

2(1 + L) for all n ∈N. Then, for n ≥ n0, we obtain

βn = 1 −
1 − αn

Mn
=

Mn − (1 − αn)
Mn

=
M2

n − (1 − αn)2

Mn(Mn + 1 − αn)

=
α2

n + 2αn(1 − αn)c′′κ (ln)
Mn(Mn + 1 − αn)

≥
α2

n + c′′κ (ln)αn√
2(1 + L)

(√
2(1 + L) + 1

) .
From (a) or (b), we get

∑
∞

n=1 βn = ∞.

Lemma 3.4. Let κ ∈ R, {ln} a bounded real sequence of [0,Dκ/2[ and l ∈ [0,Dκ/2[. Let {αn} be a real sequence of
]0, 1[ which converges to 0. Let

Mn =

√
α2

n + (1 − αn)2 + 2αn(1 − αn)c′′κ (ln)

and

tn =
(Mn + 1 − αn)((1 +Mn)cκ(l) − 2(1 − αn)cκ(ln))

(1 +Mn)(αn + 2(1 − αn)c′′κ (ln))

for each n ∈N. Then, lim supn→∞ tn ≤ 0 whenever lim infn→∞ ln ≥ l.

Proof. Note that Mn → 1 as n→∞ since αn → 0 and {ln} is bounded. We can take a subsequence {tni } of {tn}

such that

lim
i→∞

tni = lim sup
n→∞

tn.

Moreover, there exists a subsequence {lni j
} of {lni } which converges to l0 = lim infi→∞ lni . Henceforth, we

denote ni j by j simply. We remark that

l0 = lim
j→∞

l j = lim inf
i→∞

lni ≥ lim inf
n→∞

ln ≥ l.

Since α j → 0 as j→∞, we have

lim sup
n→∞

tn = lim
j→∞

(M j + 1 − α j)((1 +M j)cκ(l) − 2(1 − α j)cκ(l j))
(1 +M j)(α j + 2(1 − α j)c′′κ (l j))
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= lim
j→∞

4cκ(l) − 4cκ(l j)
4c′′κ (l j)

= lim
j→∞

cκ(l) − cκ(l j)
c′′κ (l j)

.

Whenever c′′κ (l0) , 0, we obtain the desired result. In what follows, we assume that κ > 0 and l0 = Dκ/2.
Then,

lim sup
n→∞

tn = lim
j→∞

cκ(l) − cκ(l j)
c′′κ (l j)

= lim
j→∞

1 − c′′κ (l) − 1 + c′′κ (l j)
κc′′κ (l j)

= lim
j→∞

c′′κ (l j) − c′′κ (l)
κc′′κ (l j)

=
1
κ
− lim

j→∞

c′′κ (l)
κc′′κ (l j)

= −∞ < 0.

It completes the proof.

4. Halpern type convergence theorems

In this section, we prove convergence theorems to a fixed point a mapping. To obtain the results, we use
the following lemma:

Lemma 4.1 (Kimura–Saejung [6], Saejung–Yotkaew [14]). Let {sn} be a real sequence of [0,∞[ and {tn} a real
sequence. Let {βn} be a real sequence of ]0, 1] such that

∑
∞

n=1 βn = ∞. Suppose that

sn+1 ≤ (1 − βn)sn + βntn

for all n ∈N and that lim supi→∞ tni ≤ 0 for every subsequence {sni } of {sn} satisfying that

lim sup
i→∞

(
sni − sni+1

)
≤ 0.

Then, limn→∞ sn = 0.

We first obtain the following convergence theorems with the Halpern type iterative scheme:

Theorem 4.2. Let X be an admissible complete CAT(κ) space for κ ∈ R and T a strongly quasinonexpansive and
∆-demiclosed mapping on X. Let {αn} be a real sequence of ]0, 1[ such that limn→∞ αn = 0 and that

∑
∞

n=1 αn = ∞.
For an anchor point u ∈ X and an initial point x1 ∈ X, generate a sequence {xn} of X as follows:

xn+1 = αnu
κ
⊕ (1 − αn)Txn

for each n ∈N. Further, assume one of the following:

(a) supn∈N d(u,Txn) < Dκ/2;

(b)
∑
∞

n=1 α
2
n = ∞.

Then, {xn} converges to a fixed point PFix Tu, where PFix T is a metric projection onto Fix T.

Proof. Set p = PFix Tu. Since T is quasinonexpansive, for each n ∈N,

ϕκ(p, xn+1) ≤ αnϕκ(p,u) + (1 − αn)ϕκ(p,Txn)
≤ αnϕκ(p,u) + (1 − αn)ϕκ(p, xn) ≤ max{ϕκ(p,u), ϕκ(p, xn)}.

Therefore, for all n ∈N,

d(p,Txn) ≤ d(p, xn) ≤ max{d(p,u), d(p, x1)} <
Dκ
2
,
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which implies that {xn} is κ-bounded and supn∈N d(p,Txn) < Dκ/2. Further, for any n ∈N,

d(u,Txn) ≤ d(u, p) + d(p,Txn) ≤ max{2d(u, p), d(u, p) + d(p, x1)} < Dκ

and thus {d(u,Txn)} is bounded. Fix n ∈N. Let l = d(u, p), ln = d(u,Txn),

Mn =

√
α2

n + (1 − αn)2 + 2αn(1 − αn)c′′κ (ln) and βn = 1 −
1 − αn

Mn
.

Further, set

tn =
(Mn + 1 − αn)((1 +Mn)ϕκ(p,u) − 2(1 − αn)ϕκ(u,Txn))

(1 +Mn)(αn + 2(1 − αn)c′′κ (d(u,Txn)))

=
(Mn + 1 − αn)((1 +Mn)cκ(l) − 2(1 − αn)cκ(ln))

(1 +Mn)(αn + 2(1 − αn)c′′κ (ln))

and sn = ϕκ(p, xn). From Lemma 3.2,

sn+1 = ϕκ(p, xn+1) = ϕκ(p, αnu
κ
⊕ (1 − αn)Txn) ≤ (1 − βn)ϕκ(p,Txn) + βntn

≤ (1 − βn)ϕκ(p, xn) + βntn = (1 − βn)sn + βntn.

Since one of (a) and (b) holds, from Lemma 3.3, we have

lim
n→∞
βn = 0 and

∞∑
n=1

βn = ∞.

Let {sni } be a subsequence of {sn} such that

lim sup
i→∞

(
sni − sni+1

)
≤ 0,

and we show lim supi→∞ tni ≤ 0. Then, we get

0 ≥ lim sup
i→∞

(
sni − sni+1

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p, xni+1)

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p, αni u

κ
⊕ (1 − αni )Txni )

)
≥ lim sup

i→∞

(
ϕκ(p, xni ) − αniϕκ(p,u) − (1 − αni )ϕκ(p,Txni )

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
≥ lim inf

i→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
≥ 0

and thus limi→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
= 0. We notice that c−1

κ is uniformly continuous on a compact
interval [0, cκ(supn∈N d(p, xn))] and that

lim
i→∞

∣∣∣cκ(d(p, xni )) − cκ(d(p,Txni ))
∣∣∣ = 0.

Therefore,

lim
i→∞

(d(p, xni ) − d(p,Txni )) = lim
i→∞

∣∣∣c−1
κ

(
cκ(d(p, xni ))

)
− c−1
κ

(
cκ(d(p,Txni ))

)∣∣∣ = 0.

Since T is strongly quasinonexpansive, we have

lim
i→∞

d(Txni , xni ) = 0.
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Take a subsequence {w j} of {xni } such that

lim
j→∞

d(u,w j) = lim inf
i→∞

d(u, xni )

and that it ∆-converges to some w ∈ X. Since T is ∆-demiclosed, we get w ∈ Fix T. Further, since

d(u, xni ) ≤ d(u,Txni ) + d(Txni , xni ) ≤ d(u, xni ) + 2d(Txni , xni ),

we have

lim inf
i→∞

lni = lim inf
i→∞

d(u,Txni ) = lim inf
i→∞

d(u, xni ).

Hence, from Lemma 2.3,

lim inf
i→∞

lni = lim inf
i→∞

d(u, xni ) = lim
j→∞

d(u,w j) ≥ d(u,w) ≥ d(u, p) = l.

From Lemma 3.4, we have

lim sup
i→∞

tni ≤ 0.

Consequently, from Lemma 4.1, we obtain limn→∞ sn = 0. It means that {xn} converges to PFix Tu.

Theorem 4.3. Let X, T, {αn} and {xn} be the same as the previous theorem, and assume one of the following:

(A) supy∈X d(u, y) < Dκ/2;

(B) d(u,PFix Tu) < Dκ/4 and d(u,PFix Tu) + d(x1,PFix Tu) < Dκ/2;

(C)
∑
∞

n=1 α
2
n = ∞.

Then, {xn} converges to a fixed point PFix Tu, where PFix T is a metric projection onto Fix T.

Proof. It is sufficient to prove supn∈N d(u,Txn) < Dκ/2 when (A) or (B) hold. If (A) holds, then we easily get
the desired inequality. Assume (B) holds. We know

d(PFix Tu,Txn) ≤ max{d(u,PFix Tu), d(x1,PFix Tu)}

for all n ∈N. Then,

sup
n∈N

d(u,Txn) ≤ sup
n∈N

(d(u,PFix Tu) + d(Txn,PFix Tu))

≤ d(u,PFix Tu) +max{d(u,PFix Tu), d(x1,PFix Tu)}

= max{2d(u,PFix Tu), d(u,PFix Tu) + d(x1PFix Tu)} <
Dκ
2
.

It completes the proof.

In Theorem 4.2, to get convergence of the sequence, we need to use κ-convex combination. To obtain a
convergence theorem with the usual convex combination as a direct consequence of Theorem 4.2, we need
the following lemmas:

Lemma 4.4 (Kimura–Sudo [11]). Let X be an admissible CAT(κ) space for κ ∈ R. Then,

tx ⊕ (1 − t)y =
( (t)κl

(t)κl + (1 − t)κl

)
x
κ
⊕

( (1 − t)κl
(t)κl + (1 − t)κl

)
y

for every x, y ∈ X and t ∈ [0, 1], where l = d(x, y).
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Lemma 4.5. Let κ ∈ R. Let {αn} be a real sequence of ]0, 1[ which converges to 0 and let {ln} be a bounded real
sequence of [0,Dκ/2[. Let

σn =
(αn)κln

(αn)κln + (1 − αn)κln

for each n ∈N. Then, there exist positive real numbers r1 and r2, and n0 ∈N such that

r1αn ≤ σn ≤ r2αn

for all n ∈N with n ≥ n0.

Proof. We first show that there exist a real number r2 and n0 ∈ N such that σn ≤ r2αn for all n ∈ N with
n ≥ n0. Fix n ∈N arbitrarily. If ln = 0, then

σn =
(αn)κ0

(αn)κ0 + (1 − αn)κ0
= αn.

Suppose ln , 0. Then,

σn =
(αn)κln

(αn)κln + (1 − αn)κln
=

c′κ(αnln)
c′κ(αnln) + c′κ((1 − αn)ln)

.

We notice that

τln
c′κ(τln)

≤ 2

for any κ ∈ R and τ ∈ ]0, 1[. Therefore,

c′κ(αnln) + c′κ((1 − αn)ln) ≥
αnln

2
+

(1 − αn)ln
2

=
ln
2

and hence

σn ≤
2c′κ(αnln)

ln
= 2αn ·

c′κ(αnln)
αnln

.

Since {ln} is bounded and limn→∞ αn = 0, we have

lim
n→∞

c′κ(αnln)
αnln

= 1.

Therefore, setting r2 = 4, we obtain the desired evaluation. We next show that there exists a real number
r1 such that r1αn ≤ σn for all n ∈ N. Let l0 = supn∈N ln. If l0 = 0, then setting r1 = 1, we obtain the desired
result. Fix n ∈N arbitrarily. Suppose ln , 0. If κ > 0, then

σn =
(αn)κln

(αn)κln + (1 − αn)κln
≥

(αn)κln
2
=

c′κ(αnln)
2c′κ(ln)

≥
αnc′κ(ln)
2c′κ(ln)

=
αn

2
.

On the other hand, if κ ≤ 0, then

σn =
(αn)κln

(αn)κln + (1 − αn)κln
≥ (αn)κln =

c′κ(αnln)
c′κ(ln)

≥
αnln
c′κ(ln)

.
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Since

c′κ(a) ≤
c′κ(l0)

l0
a

for all a ∈ [0, l0], we have

σn ≥
αnln
c′κ(ln)

≥
αnl0
c′κ(l0)

.

Set r1 = min{1/2, l0/c′κ(l0)}. Then, for any κ ∈ R, we have σn ≥ r1αn whenever ln , 0. Note that this
inequality holds even if ln = 0. Consequently, we obtain the desired result.

Using lemmas above, we obtain the following result:

Corollary 4.6. Let X be an admissible complete CAT(κ) space for κ ∈ R and T a strongly quasinonexpansive and
∆-demiclosed mapping on X. Let {αn} be a real sequence of ]0, 1[ such that limn→∞ αn = 0 and that

∑
∞

n=1 αn = ∞.
For an anchor point u ∈ X and an initial point x1 ∈ X, generate a sequence {xn} of X as follows:

xn+1 = αnu ⊕ (1 − αn)Txn

for each n ∈N. Further, assume one of the following:

(a) supn∈N d(u,Txn) < Dκ/2;

(b)
∑
∞

n=1 α
2
n = ∞.

Then, {xn} converges to a fixed point PFix Tu, where PFix T is a metric projection onto Fix T.

5. An improvement of coefficient condition

In Theorem 4.3, we need to assume one of the following conditions:

(A) supy∈X d(u, y) < Dκ/2;

(B) d(u,PFix Tu) < Dκ/4 and d(u,PFix Tu) + d(x1,PFix Tu) < Dκ/2;

(C)
∑
∞

n=1 α
2
n = ∞.

When κ ≤ 0, the condition (B) always holds in the situation of Theorem 4.3. However, the condition (A) is
too strong to assume for each κ ∈ R, and the condition (C) is barely proper for actual calculation when κ > 0.
In what follows, we consider an improvement of the coefficient condition for a Halpern type convergence
theorem. Focusing on the proofs of Lemma 3.3 and Theorem 4.2, we obtain the following theorem:

Theorem 5.1. Let X be an admissible complete CAT(κ) space for κ ∈ R and T a strongly quasinonexpansive and
∆-demiclosed mapping on X. Let {εn} be a real sequence of ]0, 1[ such that limn→∞ εn = 0 and that

∑
∞

n=1 εn = ∞. For
an anchor point u ∈ X and an initial point x1 ∈ X, generate a sequence {xn} of X as follows:

γn ∈

]
0,

c′′κ (d(u,Txn))
2

]
;

αn ∈

[√
εn + γ2

n − γn,
√
εn

]
⊂ ]0, 1[ ;

xn+1 = αnu
κ
⊕ (1 − αn)Txn

for each n ∈N. Then, {xn} converges to a fixed point PFix Tu, where PFix T is a metric projection onto Fix T.
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Proof. For ε ∈ ]0, 1[ and γ > 0, we know

0 <
√
ε + γ2 − γ <

√
ε < 1.

Indeed,√
ε + γ2 − γ >

√
γ2 − γ = 0

and (√
ε + γ2 − γ

)2

= ε + 2γ2
− 2γ

√
ε + γ2 < ε + 2γ2

− 2γ
√
γ2 = ε < 1.

Therefore, the sequence {xn} is well-defined and limn→∞ αn = 0. Moreover, we obtain

α2
n + 2γnαn ≥ εn + 2γ2

n − 2γn

√
εn + γ2

n + 2γn

(√
εn + γ2

n − γn

)
= εn

and hence
∞∑

n=1

(α2
n + c′′κ (d(u,Txn))αn) ≥

∞∑
n=1

(α2
n + 2γnαn) ≥

∞∑
n=1

εn = ∞.

In what follows, we prove convergence of the sequence {xn}. Although we use the same fashions as
Lemma 3.3 and Theorem 4.2, we give the proof for the sake of completeness. Set p = PFix Tu. Since T is
quasinonexpansive, for each n ∈N,

ϕκ(p, xn+1) ≤ αnϕκ(p,u) + (1 − αn)ϕκ(p,Txn)
≤ αnϕκ(p,u) + (1 − αn)ϕκ(p, xn) ≤ max{ϕκ(p,u), ϕκ(p, xn)}.

Therefore, for all n ∈N,

d(p,Txn) ≤ d(p, xn) ≤ max{d(p,u), d(p, x1)} <
Dκ
2
,

which implies that {xn} is κ-bounded. Further, for any n ∈N,

d(u,Txn) ≤ d(u, p) + d(p,Txn) ≤ max{2d(u, p), d(u, p) + d(p, x1)}

and thus {d(u,Txn)} is bounded. Fix n ∈N. Let l = d(u, p), ln = d(u,Txn),

Mn =

√
α2

n + (1 − αn)2 + 2αn(1 − αn)c′′κ (ln) and βn = 1 −
1 − αn

Mn
.

Further, set

tn =
(Mn + 1 − αn)((1 +Mn)ϕκ(p,u) − 2(1 − αn)ϕκ(u,Txn))

(1 +Mn)(αn + 2(1 − αn)c′′κ (d(u,Txn)))

=
(Mn + 1 − αn)((1 +Mn)cκ(l) − 2(1 − αn)cκ(ln))

(1 +Mn)(αn + 2(1 − αn)c′′κ (ln))

and sn = ϕκ(p, xn). From Lemma 3.2,

sn+1 = ϕκ(p, xn+1) = ϕκ(p, αnu
κ
⊕ (1 − αn)Txn) ≤ (1 − βn)ϕκ(p,Txn) + βntn

≤ (1 − βn)ϕκ(p, xn) + βntn = (1 − βn)sn + βntn.
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We next show that
∑
∞

n=1 βn = ∞. Since {ln} is bounded, there exists L > 0 such that c′′κ (ln) ≤ L. Note that
Mn ≤

√
2(1 + L) for all n ∈N. Moreover, there exists n0 ∈N such that 1− αn ≥ 1/2 for all n ∈Nwith n ≥ n0

since limn→∞ αn = 0. Therefore, we have

βn =
α2

n + 2αn(1 − αn)c′′κ (ln)
Mn(Mn + 1 − αn)

≥
α2

n + c′′κ (ln)αn√
2(1 + L)

(√
2(1 + L) + 1

)
and hence

∑
∞

n=1 βn = ∞. Let {sni } be a subsequence of {sn} such that

lim sup
i→∞

(
sni − sni+1

)
≤ 0,

and we show lim supi→∞ tni ≤ 0. Then, we get

0 ≥ lim sup
i→∞

(
sni − sni+1

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p, xni+1)

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p, αni u

κ
⊕ (1 − αni )Txni )

)
≥ lim sup

i→∞

(
ϕκ(p, xni ) − αniϕκ(p,u) − (1 − αni )ϕκ(p,Txni )

)
= lim sup

i→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
≥ lim inf

i→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
≥ 0

and thus limi→∞

(
ϕκ(p, xni ) − ϕκ(p,Txni )

)
= 0. We notice that c−1

κ is uniformly continuous on a compact
interval [0, cκ(supn∈N d(p, xn))] and that

lim
i→∞

∣∣∣cκ(d(p, xni )) − cκ(d(p,Txni ))
∣∣∣ = 0.

Therefore,

lim
i→∞

(d(p, xni ) − d(p,Txni )) = 0.

Since T is strongly quasinonexpansive, we have

lim
i→∞

d(Txni , xni ) = 0.

Take a subsequence {w j} of {xni } such that

lim
j→∞

d(u,w j) = lim inf
i→∞

d(u, xni )

and that it ∆-converges to some w ∈ X. Since T is ∆-demiclosed, we get w ∈ Fix T. Further, since

d(u, xni ) ≤ d(u,Txni ) + d(Txni , xni ) ≤ d(u, xni ) + 2d(Txni , xni ),

we have

lim inf
i→∞

lni = lim inf
i→∞

d(u,Txni ) = lim inf
i→∞

d(u, xni ).

Hence, from Lemma 2.3,

lim inf
i→∞

lni = lim inf
i→∞

d(u, xni ) = lim
j→∞

d(u,w j) ≥ d(u,w) ≥ d(u, p) = l.

From Lemma 3.4, we have

lim sup
i→∞

tni ≤ 0.

Consequently, from Lemma 4.1, we obtain limn→∞ sn = 0. It means that {xn} converges to PFix Tu.
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According to Theorem 5.1, the generated sequence {xn} converges to the closest fixed point to u even
if

∑
∞

n=1 α
2
n < ∞ and supy∈X d(u, y) = Dκ/2. Furthermore, we know the following facts: In the iteration of

Theorem 5.1, we can take {αn} as {
√
εn} for each κ ∈ R. We further suppose that c′′κ (d(u,Txn)) > 1 − εn for

n ∈N. Then, we can take γn as

γn ∈

]
1 − εn

2
,

c′′κ (d(u,Txn))
2

]
.

It implies that 1 − 2γn < εn and thus εn − 2γnεn < ε2
n. Then, we know

εn + γ
2
n < ε

2
n + 2γnεn + γ

2
n = (εn + γn)2

and therefore
√
εn + γ2

n − γn < εn. It means that

εn ∈

[√
εn + γ2

n − γn,
√
εn

]
.

It implies that we can set αn = εn for n ∈Nwhenever

c′′κ (d(u,Txn)) > 1 − εn.

If κ ≤ 0, we can always take {αn} as {εn}. Indeed, when κ ≤ 0, we get

c′′κ (d(u,Txn)) ≥ 1 > 1 − εn

for any n ∈N. Consequently, Theorem 5.1 is a result with an improvement of the coefficient condition.

6. Conclusion

In this paper, we introduced an iteration method with an improvement of the coefficient condition. In
previous research, we should consider proofs which are dependent on curvature parameters. However,
using Lemma 3.1, we can prove Halpern type convergence theorems without separating cases with κ and in
a manner of Banach spaces. They imply that some techniques in this paper can be applied to other issues in
geodesic spaces with general curvatures. They also may let us study geodesic spaces such as flat, spherical
and hyperbolical surfaces in the same ways.
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