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On a Pexider-Drygas functional equation on semigroups with an
endomorphism
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Abstract. Let S be a semigroup that need not be abelian, let (H,+) be a uniquely 2-divisible abelian group,
and let φ be an endomorphism of S. We characterize the solutions f , 1 : S → H of the pexiderized version
of the variant of Drygas’ equation, that is,

f (xy) + f (φ(y)x) = 2 f (x) + 1(y), x, y ∈ S.

Interesting consequences of this result are presented.

1. Set up, notation and terminology

Throughout the paper, assume that S is a semigroup (a non-empty set equipped with an associative
composition rule (x, y) 7→ xy), (H,+) is an abelian group which is uniquely 2-divisible (for any h ∈ H the
equation 2x = h has exactly one solution x ∈ H), the maps φ and ϕ are endomorphisms of S, and σ is an
involutive automorphism of S (i.e., σ(xy) = σ(x)σ(y) and σ2(x) = x for all x, y ∈ S). By φ2 we means φ ◦ φ.

A map A : S→ H is said to be additive if

A(xy) = A(x) + A(y) for all x, y ∈ S.

A map Q : S × S→ H is called bi-additive if it is additive in each variable.
ByN(S,H, σ) we mean the set of the solutions θ : S→ H of homogeneous equation

θ(xy) − θ(σ(x)y) = 0, x, y ∈ S.

Let f : S→ H be a map. f is said to be central if f (xy) = f (yx) for all x, y ∈ S. The Cauchy difference C f
of the map f is defined by

C f (x, y) := f (xy) − f (x) − f (y), x, y ∈ S,

and the maps ψ f and A f are defined as follow ψ f (x) := f (φ(x)x) for all x ∈ S and A f = f − f ◦ φ.
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2. Introduction

In [7], Drygas dealt with a functional equation related to the quadratic functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), x, y ∈ R. (1)

He generalized (1) to

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y), x, y ∈ R. (2)

The equation (2) is known in the literature as Drygas’ functional equation. Many authors studied the
Drygas functional equation, for example Stetkær [22], Faı̆ziev and Sahoo [12], Jung and Sahoo [14], Łukasik
[15], Szabo [25] and Yang [26].

In [21], Stetkær determined the solutions f : G→ C of the functional equation

f (x + y) + f (x + σ(y)) = 2 f (x) + f (y) + f ◦ σ(y), x, y ∈ G,

where (G,+) is an abelian group.
In [19], Sahoo found the central solutions f : G→ C of the functional equation

f (xy) + f (σ1(y)x) = 2 f (x) + f (y) + f ◦ σ2(y), x, y ∈ G,

where G is a group and σ1, σ2 are two involutive automorphisms of G.
We refer also to the paper by Fadli et al. [11] who characterized the solutions of the variant of Drygas’

functional equation, that is

f (xy) + f (σ(y)x) = 2 f (x) + f (y) + f ◦ σ(y), x, y ∈ S.

More details on the study of Drygas’ equation can be found in [1–3, 8, 10, 17, 19, 23].
In the present paper, in terms of additive and bi-additive maps, and solutions of the symmetrized

additive Cauchy equation

f (xy) + f (yx) = 2 f (x) + 2 f (y), x, y ∈ S, (3)

we characterize the solutions f : S→ H of the following functional equation

f (xy) + f (φ(y)x) = 2 f (x) + 1(y), x, y ∈ S, (4)

on a semigroup S that need not be abelian. So, our main contribution is a natural extension of the works by
Sabour [17], and by Akkaoui et al. [4], where they studied the solutions of Eq. (4) on abelian semigroups
(φ is supposed to be involutive in [4]).

Equation (4), in case where 1 = 2 f ◦ ϕ, becomes the following quadratic type equation

f (xy) + f (φ(y)x) = 2 f (x) + 2 f ◦ ϕ(y), x, y ∈ S, (5)

which generalizes the variant of the quadratic functional equation

f (xy) + f (φ(y)x) = 2 f (x) + 2 f (y), x, y ∈ S,

which was studied, under the condition that φ is an involutive automorphism, by Fadli et al. [11].
Equation (4) with 1 = f ◦ ϕ + f ◦ φ becomes the following Drygas’ type equation

f (xy) + f (φ(y)x) = 2 f (x) + f ◦ ϕ(y) + f ◦ φ(y), x, y ∈ S. (6)

If ϕ is the identity map, then Eq.(6) becomes

f (xy) + f (φ(y)x) = 2 f (x) + f (y) + f ◦ φ(y), x, y ∈ S,
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which was treated by Mouzoun et al. [16].
When 1 = f + f ◦ ϕ, Eq.(4) takes the form

f (xy) + f (φ(y)x) = 2 f (x) + f (y) + f ◦ ϕ(y), x, y ∈ S. (7)

This equation was solved by Sahoo [18] under the condition that φ and ϕ are two involutive automor-
phisms. Each of equations (5), (6) and (7) is with two endomorphisms.

Moreover, we solve the perturbed Jensen’s functional equation, in which α ∈ H is a constant,

f (xy) + f (φ(y)x) = 2 f (x) + α, x ∈ S, (8)

When α = 0, Eq. (8) was treated by Fadli et al. in [9] under the condition that the endomorphism φ is
surjective.

Let E1( f ) = 0 and E2(1) = 0 be two functional equations for maps f , 1 : S→ H. The equations E1 and E2
are said to be strongly alien in the sense of Dhombres, if any solution f , 1 : S→ H of

E1( f ) + E2(1) = 0

is a solution of E1( f ) = 0 and E2(1) = 0. This definition was introduced in [6].
As a further application of our result, we will find the solutions f , h : S→ H of the functional equation

f (xy) + f (φ(y)x) + h(xy) + h(φ(y)x) = 2 f (x) + 2h(x) + 2h(y), x, y ∈ S.

This allows us to show that, if additionally φ is involutive, then the variant of Jensen equation f (xy) +
f (φ(y)x) = 2 f (x), x, y ∈ S, and the variant of the quadratic equation h(xy)+ h(φ(y)x) = 2h(x)+ 2h(y), x, y ∈ S
are strongly alien in the sense of Dhombres.

We will encounter the results about Whitehead’s functional equation

f (xyz) = f (xy) + f (xz) + f (yz) − f (x) − f (y) − f (z), x, y, z ∈ S, (9)

and the following variant of Drygas’ equation

f (xy) + f (φ(y)x) = 2 f (x) + f (y) + f ◦ φ(y), x, y ∈ S, (10)

which were given in [24] and [16], respectively.

3. Preliminary results

We start with a crucial connection between Eq. (4) and solutions of Whitehead’s functional equation (9).

Lemma 3.1. [3, Lemma 3.1] Suppose f , 1 : S → H satisfy (4). Then, 1 is a solution of Whitehead’s functional
equation (9).

In the following lemma we derive some basic properties of the solutions of (4).

Lemma 3.2. Suppose f , 1 : S→ H satisfy (4). Then, the following statements hold:

1. f + f ◦ φ − 1 is a constant map.
2. f − f ◦ φ is an additive map.

Proof. Let f , 1 : S→ H be a solution of (4).
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1. If we replace (x, y) by (φ(y), x) in (4), we obtain

f (φ(y)x) + f ◦ φ(xy) = 2 f ◦ φ(y) + 1(x), x, y ∈ S. (11)

If we subtract (4) from (11) we see that

( f − f ◦ φ)(xy) = 2 f (x) − 1(x) − 2 f ◦ φ(y) + 1(y), x, y ∈ S,

which is equivalently

( f − f ◦ φ)(xy) − ( f − f ◦ φ)(x) − ( f − f ◦ φ)(y) (12)
= f (x) + f ◦ φ(x) − 1(x) − f (y) − f ◦ φ(y) + 1(y), x, y ∈ S.

Consider the map Γ : S × S→ H defined by

Γ(x, y) := ( f − f ◦ φ)(xy) − ( f − f ◦ φ)(x) − ( f − f ◦ φ)(y) x, y ∈ S.

As a Cauchy difference, the map Γ satisfies the cocycle functional equation

Γ(xy, z) + Γ(x, y) = Γ(x, yz) + Γ(y, z), x, y, z ∈ S. (13)

If we use (12) in (13), we obtain after some computations that

f (xy) + f ◦ φ(xy) − 1(xy) + f (yz) + f ◦ φ(yz) − 1(yz)
= 2 f (y) + 2 f ◦ φ(y) − 21(y), x, y, z ∈ S. (14)

Putting z = x in (14), we get

f (xy) + f ◦ φ(xy) − 1(xy) + f (yx) + f ◦ φ(yx) − 1(yx)
= 2 f (y) + 2 f ◦ φ(y) − 21(y), x, y ∈ S. (15)

Since the left hand side of (15) is invariant under interchange of x and y and H is uniquely 2-divisible,
we find that f + f ◦ φ − 1 is a constant map.

2. Since f + f ◦ φ − 1 is a constant map, the identity (12) becomes

( f − f ◦ φ)(xy) = ( f − f ◦ φ)(x) + ( f − f ◦ φ)(y), x, y ∈ S.

This means that f − f ◦ φ is an additive map.

The following lemma plays a key role in the next section. It lists pertinent properties of the solutions of
Eq. (10).

Lemma 3.3. [3, Lemma 3.3] Suppose that f : S→ H satisfies (10), that is,

f (xy) + f (φ(y)x) = 2 f (x) + f (y) + f (φ(y)), x, y ∈ S.

Then, the following statements hold

1. A f := f − f ◦ φ is an additive map.
2. f is a solution of Whitehead’s functional equation (9).
3. C f : S × S→ H is a bi-additive map satisfying

C f (φ(y), x) = −C f (x, y) for all x, y ∈ S. (16)

4. Define ψ f : S→ H by ψ f (x) := f (φ(x)x), x ∈ S. Then we have

2 f (x) = C f (x, x) + ψ f (x) + A f (x) for all x ∈ S. (17)
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5. The map ψ f is a solution of (3) such that

ψ f (xy) − ψ f (φ(x)y) = C f (x, y) − C f (φ2(x), y) + A f (φ(x)x), x, y ∈ S.

Remark 3.4. In Lemma 3.3, the maps ψ f and A f satisfy

(ψ f + A) ◦ φ = ψ f − A f . (18)

Indeed, if we replace x by φ(x) in (17) and subtract (17) from the obtained result, we get

2 f (x) − 2 f ◦ φ(x) = [C f (x, x) − C f (φ(x), φ(x))] + [ψ f (x) − ψ f ◦ φ(x)]
+ [A f (x) − A f ◦ φ(x)], x ∈ S.

By the definition of A f and the assumption (16) on C f we conclude that

2A f (x) = ψ f (x) − ψ f ◦ φ(x) + A f (x) − A f ◦ φ(x), x ∈ S,

which is equivalently ψ f − ψ f ◦ φ = A f + A f ◦ φ and hence we obtain (18).

4. Main results

The following lemma, that will be encountered in the process of solving (5), (6), (7) and (8), is inspired
from [5, Lemma 4].

Lemma 4.1. Let K,L : S→ H be maps such that K(xn) = n2K(x) and L(xn) = nL(x) for all n = 1, 2, · · · and x ∈ S,
and let C ∈ H be a constant. If

K(x) + L(x) = C for all x ∈ S, (19)

then K = L = C = 0.

Proof. Replacing x by x2 in (19), we get

4K(x) + 2L(x) = C. (20)

Multiplying (19) by 4 and subtracting the obtained result from (20), we obtain

2L(x) = 3C, x ∈ S. (21)

Replacing x by x2 in (21), we get

4L(x) = 3C. (22)

Subtracting (21) from (22), we obtain 2L ≡ 0, which yields that L ≡ 0 (because H is a uniquely 2-divisible).
This implies that

K(x) = C, x ∈ S. (23)

Replacing x by x3 in (23), we obtain 9K(x) = C. Subtracting (23) from the last equality, we see that 23K ≡ 0,
then K ≡ 0 and hence C = 0.

Now, we are in a position to present our main result.
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Theorem 4.2. The solutions f , 1 : S→ H of (4) are the maps of the form

f (x) = Q(x, x) + ψ(x) + A(x) + c and 1(x) = 2Q(x, x) + 2ψ(x), x ∈ S,

where c ∈ H is a constant, Q : S × S→ H is a bi-additive map such that

Q(φ(y), x) = −Q(x, y) for all x, y ∈ S, (24)

A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized additive Cauchy
equation (3) such that (ψ + A) ◦ φ = ψ − A and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Proof. Let f , 1 : S → H be a solution of (4). From Lemma 3.2, we have f + f ◦ φ − 1 is a constant, say, 2c.
Then, 1 = f + f ◦ φ − 2c and hence the equation (4) becomes

f (xy) + f (φ(y)x) = 2 f (x) + f (y) + f ◦ φ(y) − 2c, x, y ∈ S.

This yields that

K(xy) + K(φ(y)x) = 2K(x) + K(y) + K ◦ φ(y), x, y ∈ S,

where K(x) := f (x) − c for all x ∈ S. In view of Lemma 3.3, we find with the notations Q :=
1
2

CK, ψ :=
1
2
ψK and A :=

1
2

AK, that

K(x) = Q(x, x) + ψ(x) + A(x), x ∈ S. (25)

According to Lemma 3.3 and Remark 3.4, we have Q : S×S→ H is a bi-additive map such that Q(φ(y), x) =
−Q(x, y) for all x, y ∈ S, A : S→ H is an additive map and ψ : S→ H is an arbitrary solution of (3) such that

(ψ + A) ◦ φ = ψ − A, (26)

and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

From the definition of K and (25), we find that

f (x) = Q(x, x) + ψ(x) + A(x) + c, x ∈ S.

Since 1 = f + f ◦ φ − 2c, we deduce, by using (26) and (24), that

1(x) = 2Q(x, x) + 2ψ(x), x ∈ S.

The proof of the converse implication is a simple calculation that we omit.

In the following corollary, we give the central solutions of the functional equation (4) on semigroups.

Corollary 4.3. The central solutions f , 1 : S→ H of (4) are the maps of the form

f (x) = Q(x, x) + A(x) + c and 1(x) = 2Q(x, x) + A(x) + A ◦ φ(x), x ∈ S, (27)

where c ∈ H is a constant, Q : S × S→ H is a symmetric, bi-additive map such that

Q(x, φ(y)) = −Q(x, y),

for all x, y ∈ S, and where A : S→ H is an additive map.
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Proof. It is easy to check that any pair of maps of the form (27) is a central solution of (4). Conversely, we
adopt the proof of Theorem 4.2. Assume that the pair { f , 1} is a central solution of (4). From Lemma 3.3
(5) and the definition of CK and ψK where K := f − c, we deduce that CK is symmetric and ψK is additive.
Hence, from the proof of Theorem 4.2 we find, with

Q :=
1
2

Ck, a :=
1
2
ψK and b :=

1
2

AK,

that

f (x) = Q(x, x) + a(x) + b(x) + c and 1(x) = 2Q(x, x) + 2a(x), x ∈ S,

where c ∈ H is a constant, Q : S × S → H is a symmetric, bi-additive map such that Q(x, φ(y)) = −Q(x, y),
for all x, y ∈ S, and where a, b : S→ H are two additive maps such that

(a + b) ◦ φ = a − b. (28)

We put A := a + b. It is clear that A : S → H is an additive map. So, by using (28), we conclude that
A ◦ φ = a − b and hence

2a = A + A ◦ φ.

This implies that the pair { f , 1} has the form (27).

As another consequence of Theorem 4.2, we describe the solutions of the quadratic type equation (5),
namely,

f (xy) + f (φ(y)x) = 2 f (x) + 2 f ◦ ϕ(y), x, y ∈ S.

Corollary 4.4. The solutions f : S→ H of (5) are the maps of the form

f (x) = Q(x, x) + ψ(x) + A(x), x ∈ S, (29)

where Q : S × S→ H is a bi-additive map such that

Q(φ(y), x) = −Q(x, y) , Q(ϕ(x), ϕ(x)) = Q(x, x)

for all x, y ∈ S, A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized
additive Cauchy equation (3) such that

(ψ + A) ◦ φ = ψ − A , (ψ + A) ◦ ϕ = ψ

and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Proof. It is elementary to show that any map of the form (29) is a solution of (5). Conversely, assume that
f : S → H satisfies (5). Applying Theorem 4.2 with 1 = 2 f ◦ ϕ and the fact that H is uniquely 2-divisible,
we get{

f (x) = Q(x, x) + ψ(x) + A(x) + c
f ◦ ϕ(x) = Q(x, x) + ψ(x) , x ∈ S. (30)

On the other hand, we have

f ◦ ϕ(x) = Q(ϕ(x), ϕ(x)) + ψ ◦ ϕ(x) + A ◦ ϕ(x) + c, x ∈ S. (31)
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From (30) and (31), we conclude that

[Q(x, x) −Q(ϕ(x), ϕ(x))] + [ψ(x) − ψ ◦ ϕ(x) − A ◦ ϕ(x)] = c

for all x ∈ S. If we use Lemma 4.1 with C = c

K(x) := Q(x, x) −Q(ϕ(x), ϕ(x)) and L(x) := ψ(x) − ψ ◦ ϕ(x) − A ◦ ϕ(x), x ∈ S,

we obtain

Q(ϕ(x), ϕ(x)) = Q(x, x) , (ψ + A) ◦ ϕ = ψ,

and c = 0. From Remark 3.4 we have (ψ + A) ◦ φ = ψ − A and hence f has the form (29).

The next two corollaries give the general solution of (6) and (7).

Corollary 4.5. The solutions f : S→ H of (6) are the maps of the form

f (x) = Q(x, x) + ψ(x) + A(x), x ∈ S,

where Q : S × S→ H is a bi-additive map such that

Q(φ(y), x) = −Q(x, y) and Q(ϕ(x), ϕ(x)) = Q(x, x),

for all x, y ∈ S, A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized
additive Cauchy equation (3) such that

(ψ + A) ◦ φ = ψ − A , (ψ + A) ◦ ϕ = ψ + A

and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Proof. Applying Theorem 4.2 with 1 = f ◦ ϕ + f ◦ φ, we obtain

2Q(x, x) + 2ψ(x) = f ◦ ϕ(x) + f ◦ φ(x)
= Q(x, x) +Q(ϕ(x), ϕ(x)) + ψ ◦ ϕ(x) + ψ ◦ φ(x)
+ A ◦ ϕ(x) + A ◦ φ(x) + 2c.

This is equivalent to

[Q(x, x) −Q(ϕ(x), ϕ(x))] + [2ψ(x) − ψ ◦ ϕ(x) − ψ ◦ φ(x)]
− [A ◦ ϕ(x) + A ◦ φ(x)] = 2c.

According to Lemma 4.1, as in the proof of Corollary 4.4, we get 2c = 0 and hence c = 0, Q(ϕ(x), ϕ(x)) =
Q(x, x) for all x ∈ S and

2ψ − ψ ◦ ϕ = ψ ◦ φ + A ◦ ϕ + A ◦ φ. (32)

Since (ψ+A)◦φ = ψ−A, (32) becomesψ−ψ◦ϕ = A◦ϕ−A,which completes the proof of the first direction.
The converse statement is easy to show.

Corollary 4.6. The solutions f : S→ H of (7) are the maps of the form

f (x) = Q(x, x) + ψ(x) + A(x), x ∈ S, (33)

where Q : S × S→ H is a bi-additive map such that

Q(φ(y), x) = −Q(x, y) and Q(ϕ(x), ϕ(x)) = Q(x, x),
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for all x, y ∈ S, A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized
additive Cauchy equation (3) such that

(ψ + A) ◦ φ = ψ − A , (ψ + A) ◦ ϕ = ψ − A

and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Proof. We apply Theorem 4.2 with 1 = f + f ◦ ϕ, we deduce that

2Q(x, x) + 2ψ(x) = f (x) + f ◦ ϕ(x)
= Q(x, x) +Q(ϕ(x), ϕ(x)) + ψ(x) + ψ ◦ ϕ(x)
+ A(x) + A ◦ ϕ(x) + 2c,

or equivalently

[Q(x, x) −Q(ϕ(x), ϕ(x))] + [ψ(x) − ψ ◦ ϕ(x) − A(x) − A ◦ ϕ(x)] = 2c.

According to Lemma 4.1, as in the proof of Corollary 4.4, we infer that Q(ϕ(x), ϕ(x)) = Q(x, x) for all x ∈ S,
ψ − ψ ◦ ϕ = A + A ◦ ϕ and c = 0. Hence f has the form (33). Conversely, it is elementary to show that the
form (33) of f is a solution of (7).

The following corollary describes the solutions of the functional equation (8), that is

f (xy) + f (φ(y)x) = 2 f (x) + α, x, y ∈ S,

where α ∈ H is a constant.

Corollary 4.7. Let α ∈ H be a constant.

1. If α , 0, then the equation (8) has no solution.
2. If α = 0, the solutions f : S→ H of (8) are the maps of the form

f (x) = A(x) + c, x ∈ S,

where c ∈ H is a constant and A : S→ H is an additive map such that A ◦ φ = −A.

Proof. Let f : S→ H be a solution of (8). Assume first that α , 0, then by applying Theorem 4.2 with 1 = α
we find, by using Lemma 4.1, that

2Q(x, x) = 2ψ(x) = α = 0,

for all x ∈ S, which contradicts our assumption on α. Hence, the equation (8) has no solution for α , 0.
Assume now that α = 0. If we apply Theorem 4.2 with 1 = 0, we deduce, from Lemma 4.1 and the fact that
H is uniquely 2-divisible, that

Q(x, x) = ψ(x) = 0, x ∈ S.

Hence, from Theorem 4.2, we have f (x) = A(x) + c for all x ∈ S, where c ∈ H is a constant and A : S→ H is
an additive map such that A ◦ φ = −A.

Now we turn to study the alienation phenomenon between two linear functional equations with an
endomorphism, namely Jensen’s type equation

f (xy) + f (φ(y)x) = 2 f (x), x, y ∈ S, (34)
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and the variant of the quadratic equation

h(xy) + h(φ(y)x) = 2h(x) + 2h(y), x, y ∈ S. (35)

This comes from solving the functional equation

f (xy) + f (φ(y)x) + h(xy) + h(φ(y)x) = 2 f (x) + 2h(x) + 2h(y), x, y ∈ S, (36)

where f , h : S→ H are unknown maps.

Corollary 4.8. The solutions f , 1 : S→ H of the functional equation (36) are the maps of the form

f (x) = A(x) + c and h(x) = Q(x, x) + ψ(x), x ∈ S, (37)

where c ∈ H is a constant, Q : S × S → H is a bi-additive map such that Q(φ(y), x) = −Q(x, y) for all x, y ∈ S,
A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized additive Cauchy
equation (3) such that (ψ + A) ◦ φ = ψ − A and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Proof. We apply Theorem 4.2 with the pair ( f , 1) replaced by ( f + h, 2h). Then, we find that{
f (x) + h(x) = Q(x, x) + ψ(x) + A(x) + c

2h(x) = 2Q(x, x) + 2ψ(x) , x ∈ S, (38)

where c ∈ H is a constant, Q : S × S→ H is a bi-additive map such that Q(φ(y), x) = −Q(x, y) for all x, y ∈ S,
A : S → H is an additive map, and where ψ : S → H is an arbitrary solution of the symmetrized additive
Cauchy equation (3) such that (ψ + A) ◦ φ = ψ − A and

ψ(xy) − ψ(φ(x)y) = Q(x, y) −Q(φ2(x), y) + A(φ(x)x), x ∈ S.

Since H is a uniquely 2-divisible abelian group, the system (38) shows that the pair f , h has the form (37).
This completes the proof of the first direction. Conversely, any pair of maps of the form (37) is a solution of
(36).

Remark 4.9. If φ is an involutive automorphism, then the Jensen type equation (34) and the quadratic type equation
(35) are strongly alien in the sense of Dhombres.

Indeed, assume that the pair { f , h} satisfies (36). Since φ : S→ S is an involutive automorphism, we deduce from
Corollary 4.8 that

f (x) = A(x) + c and h(x) = Q(x, x) + ψ(x), x ∈ S,

where c ∈ H is a constant, Q : S × S → H is a bi-additive map such that Q(φ(y), x) = −Q(x, y) for all x, y ∈ S,
A : S→ H is an additive map such that A◦φ = −A, and whereψ : S→ H is an arbitrary solution of the symmetrized
additive Cauchy equation (3) such that ψ ◦ φ = ψ and ψ ∈ N(S,H, φ). So, according to Corollary 4.7 and [11,
Theorem 5.2], we conclude that f and h are solutions of (34) and (35), respectively.

The converse is obvious, and this proves that the equations (34) and (35) are strongly alien in the sense of Dhombres.
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