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Extremal problems for a polynomial and its polar derivative
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Abstract. If P(z) := zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≥ 1, then for |δ| ≥ k, Govil and Kumar

(
Appl. Anal. Discrete Math. 13 (2019) 711-720

)
proved

max
|z|=1
|DδP(z)| ≥ (|δ| − k)

{ n + s
1 + kn +

(kn−s
|an−s| − |a0|)

(1 + kn)(kn−s|an−s| + |a0|)

}
max
|z|=1
|P(z)|.

In a recent work, Mir
(
Ramanujan J. 56 (2021) 1061-1071

)
strengthened and generalised the inequality above

and proved, under the same hypothesis, that

max
|z|=1
|DδP(z)| ≥

n
1 + kn

{
(|δ| − k) max

|z|=1
|P(z)| +

(
|δ| +

1
kn−1

)
mk

}
+ (|δ| − k)

{ s
1 + kn +

(kn−s
|an−s| − |a0| −mk)

(1 + kn)(kn−s|an−s| + |a0| −mk)

}
×

{
max
|z|=1
|P(z)| −

mk

kn

}
,

where mk = min|z|=k |P(z)|.
In this study, we generalize as well as improve upon the above inequalities and related results.

1. Introduction

Studying the extremal problems of the functions of a complex variable and generalizing the classical
polynomial inequalities are topical in geometric function theory. Numerous inequalities of majorization
between polynomials with complex coefficients form an essential part of the classical content of geometric
function theory. These classical and fundamental inequalities are nowadays a widely studied topic and
are equally important in modern papers that are devoted to developing techniques to generalize various
well-known inequalities for polynomials and other analytic functions in approximation theory. The unit
disk in the complex plane serves as the prototype of a bounded domain for studying the extremal properties
of polynomials and their derivatives. If one is interested in how “big” a polynomial or its derivative can
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be in the unit disk, then, because of the maximum modulus principle, it suffices to study the values on the
boundary. In this paper, we shall establish some new lower bounds for the polar derivative of a polynomial
on the unit disk and desire to look for better and improved bounds than those available in the literature.
For an arbitrary entire function f , let || f || = max|z|=1 | f (z)|, the uniform-norm of f on the unit disk |z| = 1. Let

P(z) :=
n∑

v=0
avzv be an algebraic polynomial of degree n in the complex plane and P′(z) is its derivative. One of

the most known classical inequality with important applications in approximation theory is the Bernstein

inequality (for reference, see [3]) for complex polynomials, namely if P(z) =
n∑

v=0
avzv is a polynomial of

degree n, then

||P′(z)|| ≤ n||P(z)||. (1)

Equality holds in (1) if and only if P(z) has all its zeros at the origin. One may easily notice that an
improvement in (1) is implied by the restriction on the zeros of P(z). It turns out that some control over
the location of zeros in P(z) is necessary in order to have any prospect of an improved lower bound. Turán
in [23] took this into account and came up with a lower bound estimate for the size of the derivative of a
polynomial on the unit disk in relation to the size of the polynomial when its zeros are restricted. In fact,
Turán proved that if P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

||P′(z)|| ≥
n
2
||P(z)||. (2)

Inequality (2) was refined by Aziz and Dawood [1] and proved under the same hypothesis that

||P′(z)|| ≥
n
2

{
||P(z)|| +min

|z|=1
|P(z)|

}
. (3)

Equality in (2) and (3) holds for any polynomial which has all its zeros on |z| = 1. Over the years, the
inequalities (2) and (3) have been generalized and extended in several directions; see, for example ([6]-[10],
[12], [14]-[20]). For a polynomial P(z) of degree n having all its zeros in |z| ≤ k, k ≥ 1, Govil [6], proved that

||P′(z)|| ≥
n

1 + kn ||P(z)||. (4)

Equality in (4) holds for P(z) = zn + kn, one would expect that if we exclude the class of polynomials having
all zeros on |z| = k, then it may be possible to improve the bound in (4). In this direction, it was shown by

Govil [7] that if P(z) =
n∑

v=0
avzv is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

||P′(z)|| ≥
n

1 + kn

{
||P(z)|| +min

|z|=k
|P(z)|

}
. (5)

Turán-type inequalities have appeared in the literature in more generalized forms in which the underlying
polynomial is replaced by more general classes of functions. One such generalization is the move from the
domain of ordinary derivatives of polynomials to their polar derivatives. Let us explain the idea of the
polar derivative involved before moving on to our primary findings. For a polynomial P(z) of degree n, we
define

DδP(z) := nP(z) + (δ − z)P′(z),

the polar derivative of P(z) with respect to the point δ (see [11]). The polynomial DδP(z) is of degree at most
n − 1 and it generalizes the ordinary derivative in the sense that

lim
δ→∞

{DδP(z)
δ

}
:= P′(z),
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uniformly with respect to z for |z| ≤ R, R > 0.
Various authors have produced a large number of different versions and generalizations of the aforemen-
tioned inequalities by introducing restrictions on the multiplicity of zero at z = 0, the modulus of largest
root of P(z), restrictions on coefficients etc. In many of these generalizations, different options for P(z), δ
and other parameters are compared with the polar derivative DδP(z). For more information on the polar
derivative of polynomials, one can consult the comprehensive books of Gardner et al. [5], Marden [11],
Milovanović et al. [13] or Rahman and Schmeisser [22].
In 1998, Aziz and Rather [2] established the polar derivative analogue of (4) by proving that if P(z) is a
polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every δ ∈ Cwith |δ| ≥ k,

||DδP(z)|| ≥ n
(
|δ| − k
1 + kn

)
||P(z)||. (6)

In the same paper, Aziz and Rather extended the inequality (3) to the polar derivative of a polynomial. In
fact, they proved that if P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then for any complex
number δ with |δ| ≥ 1,

||DδP(z)|| ≥
n
2

{
(|δ| − 1)||P(z)|| + (|δ| + 1) min

|z|=1
|P(z)|

}
. (7)

The corresponding polar derivative analogue of (5) and a refinement of (6) was given by Dewan et al. [4].
They proved that if P(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex
number δ with |δ| ≥ k,

||DδP(z)|| ≥
n

1 + kn

{
(|δ| − k)||P(z)|| +

(
|δ| +

1
kn−1

)
min
|z|=k
|P(z)|

}
. (8)

Recently, Kumar and Dhankhar [10] obtained a generalization of (4) and they proved that if P(z) = zs(a0 +
a1z + a2z2 + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

||P′(z)|| ≥
(

n
1 + kn−s +

n(kn
|an−s| − ks

|a0|)(k − 1)
2(1 + kn−s)(kn|an−s| + ks+1|a0|)

)
||P(z)||. (9)

Equality in (9) holds for P(z) = zn + kn.
As a polar derivative analogue to (9), Kumar and Dhankhar in the same paper proved that if P(z) =
zs(a0 + a1z + a2z2 + ... + an−szn−s), 0 ≤ s ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,
then for any complex number δ with |δ| ≥ k,

||DδP(z)|| ≥
(

n(|δ| − k)
1 + kn−s +

n(|δ| − k)(kn
|an−s| − ks

|a0|)(k − 1)
2(1 + kn−s)(kn|an−s| + ks+1|a0|)

)
||P(z)||. (10)

In 2019, Govil and Kumar [8] established the following generalization and strengthening of (6). More
precisely, they proved the following result.

Theorem 1.1. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for every δ ∈ C with |δ| ≥ k,

||DδP(z)|| ≥ (|δ| − k)
{ n + s

1 + kn +
(kn−s
|an−s| − |a0|)

(1 + kn)(kn−s|an−s| + |a0|)

}
||P(z)||. (11)

Dividing both sides of (11) by |δ| and let |δ| → ∞, we have the following refinement and generalization of
(4).

Theorem 1.2. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then

||P′(z)|| ≥
{ n + s

1 + kn +
(kn−s
|an−s| − |a0|)

(1 + kn)(kn−s|an−s| + |a0|)

}
||P(z)||. (12)
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Very recently, Mir [17] generalized and sharpened both the above Theorems 1.1 and 1.2 in the form of the
following results.

Theorem 1.3. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for any complex number δ with |δ| ≥ k,

||DδP(z)|| ≥
n

1 + kn

{
(|δ| − k)||P(z)|| +

(
|δ| +

1
kn−1

)
mk

}
+ (|δ| − k)

{ s
1 + kn +

(kn−s
|an−s| − |a0| −mk)

(1 + kn)(kn−s|an−s| + |a0| −mk)

}
×

{
||P(z)|| −

mk

kn

}
, (13)

where mk = min|z|=k |P(z)|.

Dividing both sides of inequality (13) by |δ| and let |δ| → ∞, we get the following refinement of Theorem
1.2.

Theorem 1.4. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then

||P′(z)|| ≥
n

1 + kn

(
||P(z)|| +mk

)
+

{ s
1 + kn +

(kn−s
|an−s| − |a0| −mk)

(1 + kn)(kn−s|an−s| + |a0| −mk)

}(
||P(z)|| −

mk

kn

)
, (14)

where mk = min|z|=k |P(z)|.

The research on the estimation of various norms of derivatives and the underlying polynomial has been
active in recent years; there are many research papers published in a variety of journals each year, and
different approaches have been taken for different purposes. The present article is concerned with extending
the aforementioned inequalities by establishing norm estimates for the derivative and polar derivative of a
polynomial under certain constraints for its zeros.

2. The Main Result and its Applications

In this note, we further generalize and sharpen (13) and (14). Besides, the obtained inequality gives
generalizations and refinements of (8)-(12) as well.

Theorem 2.1. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for any complex number δ with |δ| ≥ k and 0 ≤ l ≤ 1,

||DδP(z)||

≥
n (|δ| − k)
1 + kn−s

[(
1 +

(k − 1)
2

Wk(s, l)
)
||P(z)|| +

1
2kn

(
kn−s
− 1 − (k − 1)Wk(s, l)

)
lmk

]
+ n

(
|δ| + k)

2kn

)
lmk + (|δ| − k)Vk(s, l)

(
1 +

(k − 1)
2

Wk(s, l)
)(
||P(z)|| −

1
kn lmk

)
, (15)

where

Vk(s, l) =
{ s

1 + kn−s +
(kn−s
|an−s| − |a0| − lmk)

(1 + kn−s)(kn−s|an−s| + |a0| − lmk)

}
,

Wk(s, l) =
kn
|an−s| − ks

|a0| − lmk

kn|an−s| + ks+1|a0| − lmk

and mk = min|z|=k |P(z)|.
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Dividing both sides of inequality (15) by |δ| and let |δ| → ∞, we get the following result.

Corollary 2.2. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for 0 ≤ l ≤ 1,

||P′(z)||

≥
n

1 + kn−s

[(
1 +

(k − 1)
2

Wk(s, l)
)
||P(z)|| +

1
kn

(
kn−s
−

(k − 1)
2

Wk(s, l)
)
lmk

]
+ Vk(s, l)

(
1 +

(k − 1)
2

Wk(s, l)
)(
||P(z)|| −

1
kn lmk

)
, (16)

where Vk(s, l), Wk(s, l) and mk are as defined in Theorem 2.1.

If we take l = 0 in (15) and (16), we get the following results:

Corollary 2.3. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for any complex number δ with |δ| ≥ k,

||DδP(z)|| ≥
{n (|δ| − k)

1 + kn−s + (|δ| − k)Vk(s)
}(

1 +
(k − 1)

2
Wk(s)

)
||P(z)||, (17)

where

Vk(s) =
{ s

1 + kn−s +
(kn−s
|an−s| − |a0|)

(1 + kn−s)(kn−s|an−s| + |a0|)

}
and

Wk(s) =
kn
|an−s| − ks

|a0|

kn|an−s| + ks+1|a0|
.

Corollary 2.4. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then

||P′(z)|| ≥
{ n

1 + kn−s + Vk(s)
}(

1 +
(k − 1)

2
Wk(s)

)
||P(z)||, (18)

where Vk(s) and Wk(s) are as defined in Corollary 2.3.

Remark 2.5. It may be remarked that, in general for any polynomial of degree n of the form P(z) = zs(a0 + a1z+ ...+
an−szn−s), 0 ≤ s ≤ n, having all its zeros in |z| ≤ k, k ≥ 1, the inequalities (15) and (16) would give improvements
over the bounds obtained from the inequalities (13) and (14) respectively, excepting the case when P(z) has all its
zeros on |z| = k. For the class of polynomials having a zero on |z| = k and k , 1, the inequalities (17) and (18) will
give bounds that are sharper than obtainable from the inequalities (10) and (9) respectively. One can also observe that
for the class of polynomials having all their zeros in |z| ≤ k, the inequalities (17) and (18) respectively improves the
inequalities (11) and (12) considerably when kn−s

|an−s| − |a0| , 0 and k > 1.

Remark 2.6. Recall that the polynomial P(z) has all its zeros in |z| ≤ k, k ≥ 1, with s-fold zeros at the origin. If P(z)
has all its zeros at the origin, that is, if we suppose s = n, then clearly Wk(s, l) = −1

k < 0, and in this case there is no
significant improvements of (15) and (16) over (13) and (14) respectively. We now suppose that 0 ≤ s < n, and for
this we show that Wk(s, l) ≥ 0. To prove this, we show that

ks
|a0| + lmk ≤ kn

|an−s|, 0 ≤ s < n and 0 ≤ l ≤ 1. (19)

We can write

P(z) = zsh(z),
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where h(z) = a0 + a1z + a2z2 + ... + an−szn−s, has all its zeros in |z| ≤ k, k ≥ 1, with h(0) , 0. If h(z) has a zero on
|z| = k, then P(z) has a zero on |z| = k, and mk = min|z|=k |P(z)| = 0, and in this case Theorem 2.1 reduces to Corollary
2.3 and Corollary 2.2 reduces to Corollary 2.4. Henceforth, we suppose that h(z) has all its zeros in |z| < k, k ≥ 1, so
that mk > 0. Now mk ≤ |P(z)| for |z| = k, therefore, if λ is any complex number with |λ| < 1, then

|λmk(z/k)s
| = |λ|mk|z/k|s < |P(z)| for |z| = k.

It follows by Rouché’s theorem that all the zeros of

P(z) + λmk(z/k)s = zs
(
(a0 + λmk/ks) + a1z + a2z2 + ... + an−szn−s

)
lie in |z| < k, with a zero of order s, 0 ≤ s < n at the origin. If z1, z2, ..., zn−s, are the zeros of

(a0 + λmk/ks) + a1z + a2z2 + ... + an−szn−s,

then |zv| < k, v = 1, 2, ...,n − s, and hence∣∣∣∣∣a0 + λmk/ks

an−s

∣∣∣∣∣ = |z1z2...zn−s| < kn−s. (20)

If in (20), we choose the argument of λ suitably, so that

|a0 + λmk/ks
| = |a0| + |λ|mk/ks,

we get

|a0| + |λ|mk/ks
≤ kn−s

|an−s|. (21)

For λ with |λ| = 1 , the above inequality follows by continuity. The inequality (19) follows by letting |λ| = l in (21).
By using (19), it easily follows that

kn
|an−s| − ks

|a0| − lmk

kn|an−s| + ks+1|a0| − lmk
=Wk(s, l) ≥ 0.

By using this fact, one can easily see that (15) and (16) improves the bounds of (13) and (14) respectively when k , 1.
Also, by Lemma 3.6, we have |an−s| ≥ mk/kn, which further implies that

||P(z)|| = max
|z|=1
|P(z)| ≥ |an−s| ≥ mk/kn

≥ lmk/kn, 0 ≤ l ≤ 1.

Using this and the fact that for |δ| ≥ k and k ≥ 1, one can easily check that

ψ(x) =
n (|δ| − k)
1 + kn−s

[ (
1 +

k − 1
2

x
)
||P(z)|| +

1
2kn

(
kn−s
− 1 − (k − 1)x

)
lmk

]
+ (|δ| − k)Vk(s, l)

(
1 +

(k − 1)
2

x
)(
||P(z)|| −

1
kn lmk

)
is an increasing function of x. Thus from Theorem 2.1, we get the following refinement as well as generalization of
(10).

Corollary 2.7. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in
|z| ≤ k, k ≥ 1, then for any complex number δ with |δ| ≥ k and 0 ≤ l ≤ 1,

||DδP(z)|| ≥
n (|δ| − k)
1 + kn−s

[
||P(z)|| +

(kn−s
− 1)

2kn lmk

]
+ n

(
|δ| + k

2kn

)
lmk + (|δ| − k)Vk(s, l)

(
||P(z)|| −

1
kn lmk

)
, (22)

where Vk(s, l), Wk(s, l) and mk are as defined in Theorem 2.1.

If we divide both sides of inequality (22) by |δ| and let |δ| → ∞, we get a refinement of inequality (9).
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3. Auxiliary Results

For the proof of the theorem, we shall make use of the following lemmas. The first lemma is a simple
deduction from the Maximum Modulus Principle (see [21]).

Lemma 3.1. If P(z) is a polynomial of degree at most n, then for R ≥ 1,

max
|z|=R
|P(z)| ≤ Rn

||P(z)||.

The following lemma is due to Mir et al. [20].

Lemma 3.2. If P(z) =
∑n

v=0 avzv is a polynomial of degree n which does not vanish in |z| < 1, then for R ≥ 1 and
0 ≤ l ≤ 1, we have

max
|z|=R
|P(z)| ≤

(
(1 + Rn)(|a0| + R|an| − lm1)

(1 + R)(|a0| + |an| − lm1)

)
||P(z)||

−

(
(1 + Rn)(|a0| + R|an| − lm1)

(1 + R)(|a0| + |an| − lm1)
− 1

)
lm1, (23)

where m1 = min|z|=1 |P(z)|.
Equality in (23) holds for P(z) = a+bzn

2 , |a| = |b| = 1.

Lemma 3.3. If P(z) = zs(a0 + a1z + a2z2 + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all its zeros
in |z| ≤ k, k ≥ 1, then

max
|z|=k
|P(z)| ≥

2kn

1 + kn−s

{(
1 +

k − 1
2

Wk(s, l)
)
||P(z)||

+
1

2kn

[
kn−s
− 1 − (k − 1)Wk(s, l)

]
lmk

}
, (24)

where Wk(s, l) and mk are as defined in Theorem 2.1. Equality in (24) holds for P(z) = zn + kn.

Proof of Lemma 3.3. Let T(z) = P(kz). Since P(z) has all its zeros in |z| ≤ k, k ≥ 1, the polynomial T(z)
has all its zeros in |z| ≤ 1. Let H(z) = znT

(
1
z

)
be the reciprocal polynomial of T(z), then H(z) is a polynomial

of degree n− s having no zeros in |z| < 1. Hence applying (23) of Lemma 3.2 to the polynomial H(z), we get
for k ≥ 1 and 0 ≤ l ≤ 1,

max
|z|=k
|H(z)| ≤

(1 + kn−s)(kn
|an−s| + ks+1

|a0| − lm∗)
(1 + k)(kn|an−s| + ks|a0| − lm∗)

||H(z)||

−

(
(1 + kn−s)(kn

|an−s| + ks+1
|a0| − lm∗)

(1 + k)(kn|an−s| + ks|a0| − lm∗)
− 1

)
lm∗, (25)

where m∗ = min|z|=1 |H(z)|.
Since |H(z)| = |T(z)| on |z| = 1, therefore,

m∗ = min
|z|=1
|H(z)| = min

|z|=1

∣∣∣∣∣∣znP
(

k
z

)∣∣∣∣∣∣ = min
|z|=k
|P(z)| = mk,

max
|z|=1
|H(z)| = max

|z|=1
|T(z)| = max

|z|=k
|P(z)|

and

max
|z|=k
|H(z)| = max

|z|=k

∣∣∣∣∣∣znP
(

k
z

)∣∣∣∣∣∣ = kn max
|z|=1
|P(z)| = kn

||P(z)||.



A. Mir, A. Hussain / Filomat 38:31 (2024), 10867–10878 10874

The above when substituted in (25) gives

max
|z|=k
|P(z)| ≥

(
(1 + k)(kn

|an−s| + ks
|a0| − lmk)

(1 + kn−s)(kn|an−s| + ks|a0| − lmk)

)
kn
||P(z)||

+

(
1 −

(1 + k)(kn
|an−s| + ks

|a0| − lmk)
(1 + kn−s)(kn|an−s| + ks+1|a0| − lmk)

)
lmk. (26)

Using the fact that

(1 + k)(kn
|an−s| + ks

|a0| − lmk)
(1 + kn−s)(kn|an−s| + ks+1|a0| − lmk)

=
2

1 + kn−s +
(kn
|an−s| − ks

|a0| − lmk)(k − 1)
(1 + kn−s)(kn|an−s| + ks+1|a0| − lmk)

,

in (26), we get

max
|z|=k
|P(z)| ≥

2kn

1 + kn−s

{(
1 +

k − 1
2

Wk(s, l)
)
||P(z)||

+
1

2kn

[
kn−s
− 1 − (k − 1)Wk(s, l)

]
lmk

}
,

which is (24) and this completes the proof of Lemma 3.3.

The following lemma is due to Govil and Kumar [8].

Lemma 3.4. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in |z| ≤ 1,
then for any complex number δ with |δ| ≥ 1,

||DδP(z)|| ≥ (|δ| − 1)
{n + s

2
+

(|an−s| − |a0|)
2(|an−s| + |a0|)

}
||P(z)||. ‘

Lemma 3.5. If P(z) = zs(a0 + a1z + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all zeros in |z| ≤ 1,
then for any complex number δ with |δ| ≥ 1 and 0 ≤ l ≤ 1,

||DδP(z)| | ≥
n
2

(
(|δ| − 1)||P(z)|| + (|δ| + 1)lm1

)
+

(
|δ| − 1

2

) {
s +
|an−s| − lm1 − |a0|

|an−s| − lm1 + |a0|

}
(||P(z)|| − lm1) ,

where m1 = min|z|=1 |P(z)|.

Proof of Lemma 3.5. Recall that P(z) = zs(a0 + a1z+ ...+ an−szn−s), 0 ≤ s ≤ n, has all its zeros in |z| ≤ 1. If
the polynomial h(z) = a0 + a1z + ... + an−szn−s has a zero on |z| = 1, then m1 = min|z|=1 |P(z)| = 0 and the result
follows by Lemma 3.4 in this case. Henceforth, we assume that all the zeros of P(z) = zsh(z) lie in |z| < 1, so
that m1 > 0. Therefore, we have m1 ≤ |P(z)| for |z| = 1. This implies for any complex number γ with |γ| < 1,
that

m1|γzn
| < |P(z)| for |z| = 1.

Since all the zeros of P(z) lie in |z| < 1, it follows by Rouché’s theorem that all the zeros of

P(z) − γm1zn = zs
(
a0 + a1z + ... + (an−s − γm1)zn−s

)
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also lie in |z| < 1. Hence, by Lemma 3.4, we get for |δ| ≥ 1 and |z| = 1,

∣∣∣Dδ(P(z) − γm1zn)
∣∣∣ ≥ (|δ| − 1)

{n + s
2
+

(|an−s − γm1| − |a0|)
2(|an−s − γm1| + |a0|)

}
× |P(z) − γm1zn

|. (27)

For every γ ∈ C, we have

|an−s − γm1| ≥ |an−s| − |γ|m1,

and since the function x−|a0 |

x+|a0 |
is a non-decreasing function of x, it follows from (27) that for every γ with

|γ| < 1 and |z| = 1,

∣∣∣DδP(z) − γδnm1zn−1
∣∣∣ ≥ (|δ| − 1)

{n + s
2
+

(|an−s| − |γ|m1 − |a0|)
2(|an−s| − |γ|m1 + |a0|)

}
× |P(z) − γm1zn

|. (28)

It is a simple deduction of Laguerre theorem (see [11], p.52) on the polar derivative of a polynomial that for
any δ with |δ| ≥ 1, the polynomial

Dδ(P(z) − γm1zn) = DδP(z) − γδnm1zn−1

has all its zeros in |z| < 1. This implies that

|DδP(z)| ≥ m1n|δ||z|n−1 for |z| ≥ 1. (29)

Now choosing the argument of γ suitably on the left hand side of (28) such that∣∣∣DδP(z) − γδnm1zn−1
∣∣∣ = |DδP(z)| − |γ||δ|nm1 for |z| = 1,

which is possible by (29), we get

|DδP(z)| −m1n|γ||δ| ≥ (|δ| − 1)
{n + s

2
+

(|an−s| − |γ|m1 − |a0|)
2(|an−s| − |γ|m1 + |a0|)

}
×

(
||P(z)|| − |γ|m1|

)
for |z| = 1. (30)

For γ with |γ| = 1 , the above inequality follows by continuity. Putting |γ| = l in (30), we get for |z| = 1,

||DδP(z)| | ≥
n
2

(
(|δ| − 1)||P(z)|| + (|δ| + 1)lm1

)
+

(
|δ| − 1

2

) {
s +
|an−s| − lm1 − |a0|

|an−s| − lm1 + |a0|

}
(||P(z)|| − lm1) ,

and the proof of Lemma 3.5 is thus completed.

Lemma 3.6. If P(z) = zs(a0 + a1z + a2z2 + ... + an−szn−s), 0 ≤ s ≤ n, is a polynomial of degree n having all its zeros
in |z| ≤ k, k > 0, then

|an−s| ≥
mk

kn ,

where mk = min|z|=k |P(z)|.
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Proof of Lemma 3.6. Since P(z) = zs(a0 + a1z+ a2z2 + ...+ an−szn−s) has all its zeros in 0 < |z| ≤ k, therefore, the
reciprocal polynomial

Q(z) = znP
(

1
z

)
= a0zn−s + a1zn−s−1 + ... + an−s does not vanish in |z| < 1/k. We can assume without loss of

generality that Q(z) has no zeros on |z| = 1/k, for otherwise the result holds trivially. Since Q(z) is analytic
in |z| ≤ 1/k, and has no zeros in |z| ≤ 1/k, by the Minimum Modulus Principle,

min
|z|= 1

k

|Q(z)| ≤ |Q(z)| for |z| ≤ 1/k,

which implies

1
kn min
|z|=k
|P(z)| ≤ |Q(z)| for |z| ≤ 1/k,

which in particular implies

mk

kn ≤ |Q(0)| = |an−s|,

which completes the proof of Lemma 3.6.

4. Proof of Main Result

Proof of Theorem 2.1. By hypothesis P(z) has all its zeros in |z| ≤ k, k ≥ 1, therefore, all the zeros of the
polynomial J(z) = P(kz) lie in |z| ≤ 1. Since J(z) is a polynomial of degree n and having all zeros in |z| ≤ 1,
therefore applying Lemma 3.5 to the polynomial J(z) and noting that |δ|k ≥ 1, we get for |z| = 1,∣∣∣∣D δ

k
J(z)

∣∣∣∣ ≥ n
2

{ (
|δ|
k
− 1

)
||J(z)|| +

(
|δ|
k
+ 1

)
lm∗

}
+

(
|δ|
k
− 1

) { s
2
+

(kn−s
|an−s| − |a0| − lm∗)

2(kn−s|an−s| + |a0| − lm∗)

}
× (||J(z)|| − lm∗) , (31)

where m∗ = min|z|=1 |J(z)| = min|z|=1 |P(kz)| = min|z|=k |P(z)| = mk.
The above inequality (31) is equivalent to

||nP(kz) +
(
δ
k
− z

)
kP′(kz)||

≥
n
2

{ (
|δ| − k

k

)
||P(kz)|| +

(
|δ| + k

k

)
lmk

}
+

(
|δ| − k

k

) { s
2
+

(kn−s
|an−s| − |a0| − lmk)

2(kn−s|an−s| + |a0| − lmk)

}
(||P(kz)|| − lmk) .

The last inequality yields

max
|z|=k
|DδP(z)| ≥

n
2

{ (
|δ| − k

k

)
max
|z|=k
|P(z)| +

(
|δ| + k

k

)
lmk

}
+

(
|δ| − k

k

) { s
2
+

(kn−s
|an−s| − |a0| − lmk)

2(kn−s|an−s| + |a0| − lmk)

}
×

(
max
|z|=k
|P(z)| − lmk

)
. (32)
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Since DδP(z) is a polynomial of degree at most n − 1, we have by Lemma 3.1 for R = k ≥ 1,

max
|z|=k
|DδP(z)| ≤ kn−1

||DδP(z)||,

which gives by using the inequality (32) and Lemma 3.3, that

kn−1
||DδP(z)|| ≥ max

|z|=k
|DδP(z)|

≥
n
2

(
|δ| − k

k

)
2kn

1 + kn−s

{(
1 +

k − 1
2

Wk(s, l)
)
||P(z)||

+
1

2kn

[
kn−s
− 1 − (k − 1)Wk(s, l)

]
lmk

}
+ n

(
|δ| + k

2k

)
lmk

+

(
|δ| − k

k

) { s
2
+

(kn−s
|an−s| − |a0| − lmk)

2(kn−s|an−s| + |a0| − lmk)

}
×

[
2kn

1 + kn−s

{(
1 +

k − 1
2

Wk(s, l)
)
||P(z)||

+
1

2kn

[
kn−s
− 1 − (k − 1)Wk(s, l)

]
lmk

}
− lmk

]
, (33)

where

Wk(s, l) =
kn
|an−s| − ks

|a0| − lmk

kn|an−s| + ks+1|a0| − lmk
.

Inequality (33) after simplification is equivalent to

||DδP(z)||

≥
n (|δ| − k)
1 + kn−s

[(
1 +

(k − 1)
2

Wk(s, l)
)
||P(z)|| +

1
2kn

(
kn−s
− 1 − (k − 1)Wk(s, l)

)
lmk

]
+ n

(
|δ| + k)

2kn

)
lmk + (|δ| − k)Vk(s, l)

(
1 +

(k − 1)
2

Wk(s, l)
)(
||P(z)|| −

1
kn lmk

)
,

which is exactly (15), where

Vk(s, l) =
{ s

1 + kn−s +
(kn−s
|an−s| − |a0| − lmk)

1 + kn−s(kn−s|an−s| + |a0| − lmk)

}
.

This completes the proof of Theorem 2.1.
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