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Abstract. In this paper, we present geodesic pseudo-linear function and pseudo-affine operator defined
on Hadamard manifolds involving Clarke sub-differential and study some characterizations of the function
mentioned above. We consider a nonsmooth pseudo-linear vector optimization problem and generalized
vector variational inequality problems on Hadamard manifolds and establish relationships between so-
lutions to these considered problems. Moreover, a set-valued gap function investigates for a nonsmooth
pseudo-linear vector optimization problem. A numerical example is constructed to evaluate the result of
this paper.

1. Introduction

In the optimization theory, the convexity and its generalizations play a vital role to get an optimal
solution. Mangasarian [20] has generalized the convex and concave functions, which are known as pseudo-
convex and pseudo-concave functions, respectively. Kortanek and Evans [15] investigated the properties of
the functions, namely pseudo-linear functions, which are both pseudo-convex and pseudo-concave. While
from the last two decades, the convexity and its generalizations have studied on Riemannian or Hadamard
manifolds. A manifold is not a linear space in this setting the linear space and line segment replaced by
a Riemannian manifold and a geodesic, respectively. Rapcsak [8] and Udriste [24] presented the concept
of geodesic convexity on Riemannian manifolds. Barnani [2] proposed the geodesic convexity in terms of
Clarke sub-differentiable on Hadamard manifolds.

The variational inequality works as a powerful tool in the study of the optimization problem. It
provides the necessary and sufficient conditions for a solution to the optimization problem in the presence
of convexity. Firstly, it presented by Hartman and Stampacchia [10] in their seminal paper. Since variational
inequality has various applications in basic sciences, economics and management sciences so that it becomes
much popular among researchers. Giannessi [9] extended the classical Stampacchia variational inequality
for vector-valued functions. Thence lots of research works happened in this area by numerous authors (see,
for example, [14, 16–18, 23, 25]) and references therein.
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* Corresponding author: Babli Kumari
Email addresses: anurag_jais123@yahoo.com, anurag@iitism.ac.in (Anurag Jayswal), bablichoudhary69@yahoo.com (Babli

Kumari)



A. Jayswal, B. Kumari / Filomat 38:31 (2024), 10879–10891 10880

Last few years, variational inequalities and its generalization have been studied from Euclidean spaces
to Riemannian or Hadamard manifolds. Nemeth [21] considered the variational inequalities and derived
the existence and uniqueness results for their solutions on Hadamard manifolds. Zhou and Huang [26]
obtained the relationships between a solution of a vector variational inequality and a vector optimization
problem on Hadamard manifolds under differentiable geodesic convex function. Moreover, various authors
established the research works related to the variational inequalities on Hadamard manifolds for details
refer to [1, 5, 6, 13, 19].

Inspire from the above-described works the main consequence of this paper is to study the nonsmooth
pseudo-linear vector optimization problem on Hadamard manifolds. The work plan for this paper is
organized as follows. Section 2 contains the basic concepts, notations, known definitions and results, which
helps to investigate the results of this paper. We introduce the notion of geodesic pseudo-linearity and
pseudo-affiness on Hadamard manifolds in terms of Clarke sub-differential and study the properties for
a class of pseudo-linear function and pseudo-affine operator in Section 3. Further, Section 4 contains two
subsections, in the first subsection, we consider a nonsmooth pseudo-linear vector optimization problem
and generalized vector variational inequality problems on Hadamard manifolds. And we also establish
relationships among considered problems. On the other subsection, we investigate a set-valued gap
function for a nonsmooth pseudo-linear vector optimization problem. Ultimately, in Section 5, we conclude
the results of this paper.

2. Notations and preliminaries

We start with some basic concepts, notations about Riemannian manifolds which will use to prove the
results of this paper. LetM be an m-dimensional Riemannian manifold endowed with Riemannian metric
1. Assume that TxM is the m-dimensional tangent space at x ∈ M. The collection of all tangent space
is called the tangent bundle of M, i.e., TM =

⋃
x∈M TxM. Let ⟨., .⟩ be a scalar product on TxM and the

corresponding norm denoted by ∥.∥. We denote the length of piecewise smooth curve Ωx,z : [a, b] → M

connecting two points x to z by L(Ωx,z) =
∫ b

a ∥Ω̇x,z(t)∥dt. The Riemannian distance d(x, z) = inf{L(Ωx,z) :
Ωx,z is a piecewise smooth curve joining the points x to z}. We define the open ball with radius ϵ > 0
centred at the point z as, B(z, ϵ) = {x ∈ M : d(x, z) < ϵ} . Let ∇ be the Levi-Civita connection associated to
M. For any two points x, z ∈ M, a curve Ωx,z : [0, 1] → M joining x to z is said to be a geodesic if
Ωx,z(0) = x, Ωx,z(1) = z and ∇Ω̇x,z

Ω̇x,z = 0 on [0, 1]. The exponential map expx : TxM→M at x is defined by
expx(w) = Ωw(1, x) for each w ∈ TxM, where Ω(·) = Ωw(·, x) is the geodesic starting x with velocity w, that
is, Ω(0) = x and Ω̇(0) = w. It is easy to see that expx(tw) = Ωw(t, x) for each real number t. The exponential
map has inverse exp−1

x :M→ TxM, i.e., w = exp−1
x z.

A Hadamard manifold M is a complete simply connected Riemannian manifold with non-positive
sectional curvature. IfM is a Hadamard manifold, then expx : TxM → M is a diffeomorphism for every
x ∈ M and if x, z ∈ M, then there exists a unique minimal geodesic joining x to z. In the present paper,
throughout we assume thatM is a Hadamard manifold.
For x, z ∈ Rq, the following ordering for vectors in Rq will be adopted:

(i) x ≤q z⇔ x − z ∈ −Rq
+\{0},

(ii) x ≰q z⇔ x − z < −Rq
+\{0},

where Rq
+ = {x ∈ Rq

|xi ≥ 0, i = 1, . . . , q}.

Definition 2.1. [24] A subset S ofM is said to be geodesic convex set if for any points x, z ∈ S, the geodesic joining
x to z is contained in S, that is, if Ωx,z : [0, 1] → S is a geodesic such that Ωx,z(0) = x and Ωx,z(1) = z, then
Ωx,z(t) = expxtexp−1

x z ∈ S, ∀ t ∈ [0, 1].

Definition 2.2. [3] Let S ⊂ M be an open geodesic convex set. A function h : S → R is said to be locally Lipschitz
on S if for all y ∈ S, there exists a l ≥ 0 such that

|h(x) − h(z)| ≤ ld(x, z), ∀ x, z ∈ B(y, ϵ),

where l is called the Lipschitz constant of h in the neighbourhood of y.
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Definition 2.3. [3] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
The generalized directional derivative ho(z; v) of h at z ∈ S in the direction v ∈ TzM, is defined as

ho(z; v) = lim
x→z

sup
t↓0

h(expxt(d expz)exp−1
z xv) − h(x)

t
,

where (d expz)exp−1
z x : Texp−1

z x(TzM) ≃ TzM→ TxM is the differential of exponential mapping at exp−1
z x.

Definition 2.4. [3] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then Clarke sub-differential (or generalized gradient) of h at z ∈ S, denoted by ∂ch(z) is defined by

∂ch(z) = {ζ ∈ TzM : ho(z; v) ≥ ⟨ζ, v⟩, ∀ v ∈ TzM}.

Definition 2.5. [5] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then the function h is said to be geodesic pseudo-convex if for all x, z ∈ M,

∃ µ ∈ ∂ch(x) : ⟨µ, exp−1
x z⟩ ≥ 0⇒ h(z) ≥ h(x),

equivalently,
h(z) < h(x)⇒ ⟨µ, exp−1

x z⟩ < 0, ∀ µ ∈ ∂ch(x).

Definition 2.6. [5] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then the function h is said to be geodesic quasi-convex if for all x, z ∈ M,

h(z) ≤ h(x)⇒ ⟨µ, exp−1
x z⟩ ≤ 0, ∀ µ ∈ ∂ch(x),

equivalently,
∃ µ ∈ ∂ch(x) : ⟨µ, exp−1

x z⟩ > 0⇒ h(z) > h(x).

Lemma 2.7. [5] Let S ⊂ M be an open geodesic convex set. Let h : S → R be a locally Lipschitz and geodesic
pseudo-convex function on S. Then h is geodesic quasi-convex function on S.

Definition 2.8. [5] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then ∂ch is said to be pseudo-monotone on S, if for all x, z ∈ S and µ ∈ ∂ch(x),

⟨µ, exp−1
x z⟩ ≥ 0⇒ ⟨υ, exp−1

z x⟩ ≤ 0, ∀ υ ∈ ∂ch(z).

Lemma 2.9. (Mean Value Theorem) [2] Let S ⊂ M be an open geodesic convex set and h : S → R be a locally
Lipschitz function on S. Then, for all x, z ∈ S there exist t0 ∈ (0, 1) and µ0 ∈ ∂ch(Ωx,z(t0)) such that

f (x) − f (z) = ⟨µ0, Ω̇x,z(t0)⟩,

where Ωx,z(t) = expx(texp−1
x z), for all t ∈ [0, 1].

Proposition 2.10. [12] LetM and N be two Hadamard manifold, F : N →M be continuously differentiable near
x and h :M→ R be Lipschitz near F(x). Then 1 = hoF is Lipschitz near x and we have

∂1(x) ⊆ dF(x) o ∂h(F(x)).

If dF(x) : TxN → TF(x)M is onto, then the equality holds.
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3. Geodesic pseudo-linearity and pseudo-affiness

In this section, we define the pseudo-linear function and pseudo-affine operator in terms of Clarke
sub-differential on Hadamard manifold and discuss some of its characterizations.

Definition 3.1. Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then the function h is said to be geodesic pseudo-linear at x ∈ S, if for all z ∈ S,

∃ µ ∈ ∂ch(x) : ⟨µ, exp−1
x z⟩ ≥ 0⇒ h(z) ≥ h(x),

and

∃ µ ∈ ∂ch(x) : ⟨µ, exp−1
x z⟩ ≤ 0⇒ h(z) ≤ h(x).

A function h is said to be geodesic pseudo-linear if it is both geodesic pseudo-convex and geodesic
pseudo-concave.

Example 3.2. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by 1(x) = x−2.
Clearly, M is a Hadamard manifold and the tangent space TxM at x ∈ M is equal to R. The geodesic curve
Ω : R →M satisfying Ω(0) = x ∈ M and Ω̇(0) = w ∈ TxM is given by Ω(t) = xe(w/x)t. Thus, expx(tw) = xe(w/x)t

and is followed by exp−1
x z = x ln

(
z
x

)
. Let S = {x|x = et, t ∈ [0, 1]} ⊂ M be a geodesic convex set. We consider the

function h(x) = |x−
√

2|+ x−
√

2 and obtain ∂ch(
√

2) = [0, 4]. Evidently, the function h is a geodesic pseudo-linear
function at x =

√
2 on S.

Definition 3.3. Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S.
Then ∂ch is said to be pseudo-affine on S, if for all x, z ∈ S and µ ∈ ∂ch(x),

⟨µ, exp−1
x z⟩ ≥ 0⇒ ⟨υ, exp−1

z x⟩ ≤ 0, ∀ υ ∈ ∂ch(z),
and

⟨µ, exp−1
x z⟩ ≤ 0⇒ ⟨υ, exp−1

z x⟩ ≥ 0, ∀ υ ∈ ∂ch(z).

A set ∂ch is said to be a pseudo-affine if ∂ch and −∂ch are both pseudo-monotone.

Theorem 3.4. Let S ⊂ M be an open geodesic convex set. If h : S → R is a locally Lipschitz and geodesic pseudo-
linear function on S, then h(x) = h(z) if and only if there exists µ ∈ ∂ch(x) such that ⟨µ, exp−1

x z⟩ = 0, ∀ x, z ∈ S.

Proof. Assume that for any x, z ∈ S, there exists µ ∈ ∂ch(x) such that

⟨µ, exp−1
x z⟩ = 0.

By the definition of geodesic pseudo-linearity of h, we obtain

h(x) = h(z).

Conversely, for any x, z ∈ S, we assume that h(x) = h(z). We have to prove that there exists µ ∈ ∂ch(x)
such that ⟨µ, exp−1

x z⟩ = 0. Firstly, we will show that

h(Ωx,z(t)) = h(x), ∀ t ∈ [0, 1].

It is obvious, when t = 0 and t = 1. Now, we will prove it for t ∈ (0, 1). If h(Ωx,z(t)) > h(x), then by a geodesic
pseudo-convexity of h, we have

⟨µ′, exp−1
Ωx,z(t)x⟩ < 0, ∀ µ′ ∈ ∂ch(Ωx,z(t)). (1)

Since, exp−1
Ωx,z(t)z = −tΩ̇x,z(t) and exp−1

Ωx,z(t)x = (1 − t)Ω̇x,z(t), we obtain

exp−1
Ωx,z(t)x = −

(1 − t)
t

exp−1
Ωx,z(t)z. (2)
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By using the relation (2) in inequality (1), we get

⟨µ′, exp−1
Ωx,z(t)z⟩ > 0, ∀ µ′ ∈ ∂ch(Ωx,z(t)).

From the geodesic pseudo-convexity of h and Lemma 2.7, we have

h(z) > h(Ωx,z(t)),

which contradicts the fact h(Ωx,z(t)) > h(x) = h(z).
Again, if h(Ωx,z(t)) < h(x), proceeding as above, we get

h(x) = h(z) < h(Ωx,z(t)).

Hence, for all t ∈ [0, 1], h(Ωx,z(t)) = h(x).
Now, we consider a geodesic βx,Ωx,z(t) : [0, 1] → S joining the points x and Ωx,z(t), can be reparametrized
in terms of a geodesic Ωx,z as βx,Ωx,z(t)(s) = Ωx,z(st), ∀ s ∈ [0, 1]. By Lemma 2.9, there exist t̄ ∈ (0, 1) and
µt̄ ∈ ∂ch(βx,Ωx,z(t)(t̄)) such that

0 = h(x) − h(Ωx,z(t)) = ⟨µt̄, β̇x,Ωx,z(t)(t̄)⟩ = t⟨µt̄, Ω̇x,z(b)⟩,

where b = t̄t and β̇x,Ωx,z(t)(t̄) = tΩ̇x,z(b).
Hence,

⟨µt̄, Ω̇x,z(b)⟩ = 0, for some µt̄ ∈ ∂ch(βx,Ωx,z(t)(t̄)). (3)

Since exp−1
Ωx,z(b)z = −bΩ̇x,z(b) and exp−1

Ωx,z(b)z = −bexp−1
x z, we obtain Ω̇x,z(b) = exp−1

x z and thus from (3), we have

⟨µt̄, exp−1
x z⟩ = 0. (4)

Without loss of generality, we may assume that limt̄→0 µt̄ = µ, since βx,Ωx,z(t)(t̄) → x as t̄ → 0, from (4), it
follows that there exists µ ∈ ∂ch(x) such that

⟨µ, exp−1
x z⟩ = 0.

This completes the proof.

Theorem 3.5. Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz on S. Then the
function h is a geodesic pseudo-linear on S, if and only if there exists a function P : S × S → R++ such that for all
x, z ∈ S and for some µ ∈ ∂ch(x),

h(z) = h(x) +P(x, z)⟨µ, exp−1
x z⟩, (5)

where R++ denotes the set of all positive real numbers.

Proof. Let h be a geodesic pseudo-linear function on S. We construct a function P : S × S → R++ such that
for all x, z ∈ S and for some µ ∈ ∂ch(x),

h(z) = h(x) +P(x, z)⟨µ, exp−1
x z⟩.

If ⟨µ, exp−1
x z⟩ = 0, for some µ ∈ ∂ch(x) and for any x, z ∈ S, we define P(x, z) = 1. By Theorem 3.4, we get

h(z) = h(x) and thus, (5) holds.
Now, if ⟨µ, exp−1

x z⟩ , 0, then again by Theorem 3.4, we obtain h(z) , h(x) and we can define

P(x, z) =
h(z) − h(x)
⟨µ, exp−1

x z⟩
. (6)
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It remain to show P(x, z) > 0, for all x, z ∈ S.
If h(z) > h(x), then by geodesic pseudo-concavity of h, we have

⟨µ, exp−1
x z⟩ > 0, ∀ µ ∈ ∂ch(x).

Thus, from the equation (6), we get P(x, z) > 0, for all x, z ∈ S.
Similarly, if h(z) < h(x), then by using the geodesic pseudo-convexity of h, we obtain the result.

Conversely, assume that for any x, z ∈ S, there exists a functionP : S×S → R++ such that for all x, z ∈ S,
there exists µ ∈ ∂ch(x) such that (5) holds.
If for some µ ∈ ∂ch(x) and for any x, z ∈ S, ⟨µ, exp−1

x z⟩ ≥ 0, from inequality (5), it follows that

h(z) − h(x) = P(x, z)⟨µ, exp−1
x z⟩ ≥ 0,

and hence, the function h is a geodesic pseudo-convex on S.
Similarly, if ⟨µ, exp−1

x z⟩ ≤ 0, for some µ ∈ ∂ch(x) and for any x, z ∈ S, from inequality (5), it follows that
function h is geodesic pseudo-concave on S.

Theorem 3.6. Let S ⊂ M be an open geodesic convex set. Let h : S → R be a locally Lipschitz and geodesic
pseudo-linear function onS. Suppose that F : R→ R is a differential and onto function with dF(ρ) > 0 or dF(ρ) < 0,
for all ρ ∈ R. Then the composite function 1 = Foh is also geodesic pseudo-linear on S.

Proof. Let 1(x) = (Foh)(x), for all x ∈ S and let dF(ρ) > 0, for all ρ ∈ R. By Proposition 2.10, we get

1o(x; exp−1
x z) = dF(h(x)) ho(x; exp−1

x z).

Thus for all ζ ∈ ∂c1(x), we have

⟨ζ, exp−1
x z⟩ ≥ 0⇒ ⟨dF(h(x))µ, exp−1

x z⟩ ≥ 0, ∀ µ ∈ ∂ch(x),

⟨ζ, exp−1
x z⟩ ≤ 0⇒ ⟨dF(h(x))µ, exp−1

x z⟩ ≤ 0, ∀ µ ∈ ∂ch(x).

Since dF(ρ) > 0, for all ρ ∈ R. Then,

⟨ζ, exp−1
x z⟩ ≥ 0⇒ ⟨µ, exp−1

x z⟩ ≥ 0, ∀ µ ∈ ∂ch(x),

⟨ζ, exp−1
x z⟩ ≤ 0⇒ ⟨µ, exp−1

x z⟩ ≤ 0, ∀ µ ∈ ∂ch(x).

Using the geodesic pseudo-linearity of h, it follows that

h(z) ≥ h(x),

h(z) ≤ h(x).

Since F is strictly increasing, we get
1(z) ≥ 1(x),

1(z) ≤ 1(x)).

Similarly, the result follows when dF(ρ) < 0, for all ρ ∈ R.
Hence, 1 is a geodesic pseudo-linear function on S.

Proposition 3.7. Let S ⊂ M be an open geodesic convex set. Let h : S → R is a locally Lipschitz and geodesic
pseudo-linear function on S. Assume that x ∈ S be arbitrary. Then for any µ, µ∗ ∈ ∂ch(x) there exists ρ > 0 such
that µ∗ = ρµ.
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Proof. If µ = 0, then for any z ∈ S, we have

⟨µ, exp−1
x z⟩ = 0, hence h(z) = h(x).

Consequently, h is a constant function on S. It means ∂ch(x) = {0}, so that µ = µ∗ = 0 and we can take ρ = 1.
The same argument is valid if µ∗ = 0.
Now, if µ , 0 and µ∗ , 0. Assume that there does not exist any ρ > 0 such that µ∗ = ρµ. Then there exists
w ∈ TxM such that

⟨µ, w⟩ ≥ 0 and ⟨µ∗, w⟩ ≤ 0.

Since S is open, we can choose t > 0, such that

z0 = expxtw ∈ S.

Thus, ⟨µ, exp−1
x z0⟩ ≥ 0 and ⟨µ∗, exp−1

x z0⟩ ≤ 0. So, z0 belongs to the open set

U = S ∩ {z ∈ S : ⟨µ, exp−1
x z⟩ ≥ 0} ∩ {z ∈ S : ⟨µ∗, exp−1

x z⟩ ≤ 0}.

Hence,U is non-empty. For all z ∈ U, one has

⟨µ, exp−1
x z⟩ ≥ 0⇒ h(z) ≥ h(x),

⟨µ∗, exp−1
x z⟩ ≤ 0⇒ h(z) ≤ h(x).

Hence, h is constant on U. But this means that ∂ch(z) = {0} for all z ∈ U. Since z ∈ S and h is geodesic
pseudo-linear function on S, it follows that h is constant every where on S. Hence, ∂ch(x) = {0}, which is a
contradiction to our assumption.

Theorem 3.8. Let S ⊂ M be an open geodesic convex set and h : S → R be a locally Lipschitz function on S. Then
∂ch is pseudo-affine on S if and only if, for all x, z ∈ S, µ ∈ ∂ch(x) and υ ∈ ∂ch(z),

⟨µ, exp−1
x z⟩ = 0⇒ ⟨υ, exp−1

z x⟩ = 0. (7)

Proof. Let ∂ch be a pseudo-affine. Assume that ⟨µ, exp−1
x z⟩ = 0. Then pseudo-monotonicity of ∂ch and −∂ch,

implies
⟨υ, exp−1

z x⟩ ≤ 0 and ⟨−υ, exp−1
z x⟩ ≤ 0,

and thus
⟨υ, exp−1

z x⟩ = 0.

Conversely, assume that ∂ch is not pseudo-monotone. Then there exist x, z ∈ S, µ ∈ ∂ch(x) and υ ∈ ∂ch(z)

⟨µ, exp−1
x z⟩ ≥ 0 and ⟨υ, exp−1

z x⟩ > 0,

equivalently,
⟨µ, Ω̇xz(0)⟩ ≥ 0 and ⟨υ, Ω̇zx(0)⟩ > 0.

Letψ : [0, 1]→ R be a continuous function defined byψ(t) = ⟨µ̄, Ω̇xz(t)⟩, where µ̄ ∈ ∂ch(Ωxz(t)) with t ∈ [0, 1].
Then, we have ψ(0) ≥ 0 and ψ(1) = ⟨υ, Ω̇xz(1)⟩ = ⟨υ, −Ω̇zx(0)⟩ < 0 and by continuity there exists t∗ ∈ [0, 1]
such that ψ(t∗) = 0, that is,

⟨µ∗, Ω̇xz(t∗)⟩ = 0, for some µ∗ ∈ ∂ch(Ωxz(t∗)).
Since exp−1

Ωxz(t∗)z = −t∗Ω̇xz(t∗), we get

⟨µ∗, exp−1
Ωxz(t∗)z⟩ = 0, for some µ∗ ∈ ∂ch(Ωxz(t∗)),

which in view of relation (7), implies that

⟨υ, exp−1
z Ωxz(t∗)⟩ = 0, for some υ ∈ ∂ch(z).

Since exp−1
z Ωxz(t∗) = (1 − t∗)exp−1

z x, we have

⟨υ, exp−1
z x⟩ = 0, for some υ ∈ ∂ch(z),

which is a contradiction. Thus ∂ch is pseudo-monotone. In a similar manner, we can be established that
−∂ch is pseudo-monotone.
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4. Nonsmooth pseudo-linear vector optimization problem

In this section, we consider a nonsmooth pseudo-linear vector optimization problem (NPVOP) on
Hadamard manifold:

(NPVOP) Min h(x) = (h1(x), . . . , hq(x)),
s.t. x ∈ S,

where hi : S → R, i ∈ I = {1, . . . , q} are locally Lipschitz and geodesic pseudo-linear functions on an open
geodesic convex set S then there exist proportional functions Pi : S × S → R++, i ∈ I.

Remark 4.1. (i) In virtue of Theorem 3.5, for some µi ∈ ∂chi(x), i ∈ I

hi(z) − hi(x) = Pi(x, z)⟨µi, exp−1
x z⟩, ∀ i ∈ I,

or, h(z) − h(x) =
(
⟨P1(x, z)µ1, exp−1

x z⟩, . . . , ⟨Pq(x, z)µq, exp−1
x z⟩
)
. (8)

(ii) A set of Clarke sub-differential of h at any point x ∈ S is ∂ch(x) = ∂ch1(x) × . . . × ∂chq(x).

Definition 4.2. A point x ∈ S is said to be an efficient solution to the problem (NPVOP), if there exists no z ∈ S
such that h(z) ≤q h(x).

4.1. Generalized nonsmooth vector variational inequalities
We present the following generalized nonsmooth Stampacchia and Minty vector variational inequalities

(GNSVVI) and (GNMVVI), respectively on Hadamard manifold:

(GNSVVI): Find x ∈ S such that for all z ∈ S, there exists µi ∈ ∂chi(x), i ∈ I such that(
⟨P1(x, z)µ1, exp−1

x z⟩, . . . , ⟨Pq(x, z)µq, exp−1
x z⟩
)
≰q 0.

(GNMVVI): Find x ∈ S such that for all z ∈ S and υi ∈ ∂chi(z), i ∈ I,(
⟨P1(z, x)υ1, exp−1

z x⟩, . . . , ⟨Pq(z, x)υq, exp−1
z x⟩
)
≱q 0.

Remark 4.3. (i) IfPi(x, z) = 1, i ∈ I, then (GNSVVI) and (GNMVVI) reduce to (SVVI) and (MVVI), respectively
considered by Chen and Fang [5].
(ii) IfM = Rn, then exp−1

x y = y − x and function is differential, we obtain (GNSVVI) becomes vector variational
inequality presented by Yang [25].
(iii) IfM = Rn, then exp−1

x y = y−x andPi(x, z) = 1, i ∈ I. In this particular situation, (GNSVVI) and (GNMVVI)
converts in vector variational inequalities studied by Lee [18].

Now, we shall present the equivalence between the solution of (NPVOP) and (GNSVVI) as well as the
relationship between the solution of (NPVOP) and (GNMVVI).

Theorem 4.4. Let hi : S → R, i ∈ I be locally Lipschitz and geodesic pseudo-linear functions on an open geodesic
convex set S. Assume that for any µi, µ∗i ∈ ∂chi(x0) there exists ρi > 0, i ∈ I. Then x0

∈ S is an efficient solution to
the problem (NPVOP) if and only if x0

∈ S is a solution to the problem (GNSVVI).

Proof. Let x0
∈ S be an efficient solution to the problem (NPVOP), but it is not a solution to the problem

(GNSVVI), then there exist z ∈ S and µi ∈ ∂chi(x0), i ∈ I such that(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
≤q 0. (9)

Since each hi, i ∈ I is geodesic pseudo-linear function, by Theorem 3.5 there exists proportional function
Pi(x0, z) such that for some µi ∈ ∂chi(x0), we have

h(z) − h(x0) =
(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
,
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the above inequality along with inequality (9), yields

h(z) − h(x0) ≤q 0,

which contradicts the fact that x0
∈ S is an efficient solution to the problem (NVOP).

Conversely, suppose that x0 is a solution to the problem (GNSVVI), but it is not an efficient solution to
the problem (NPVOP). Then there exists z ∈ S such that

h(z) − h(x0) ≤q 0.

Since each hi, i ∈ I is geodesic pseudo-linear function, by Theorem 3.5 there exists proportional function
Pi(x0, z) such that for some µ∗i ∈ ∂chi(x0), we get(

⟨P1(x0, z)µ∗1, exp−1
x0 z⟩, . . . , ⟨Pq(x0, z)µ∗q, exp−1

x0 z⟩
)
≤q 0.

By using Proposition 3.7, for µi ∈ ∂chi(x0), i ∈ I, there exists ρi > 0, i ∈ I such that µ∗i = ρiµi, i ∈ I. Thus, we
obtain (

⟨P1(x0, z)ρ1µ1, exp−1
x0 z⟩, . . . , ⟨Pq(x0, z)ρqµq, exp−1

x0 z⟩
)
≤q 0.

Since ρi > 0, i ∈ I, it follows that for µi ∈ ∂chi(x0), i ∈ I, one has(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
≤q 0,

which contradicts our assumption that x0
∈ S is a solution to the problem (GNSVVI). This completes the

proof.

Now, we present a numerical example to illustrate Theorem 4.4.

Example 4.5. Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian metric defined by 1(x) = x−2.
Clearly, M is a Hadamard manifold and the tangent space TxM at x ∈ M is equal to R. The geodesic curve
Ω : R →M satisfying Ω(0) = x ∈ M and Ω̇(0) = w ∈ TxM is given by Ω(t) = xe(w/x)t. Thus, expx(tw) = xe(w/x)t

and is followed by exp−1
x z = x ln

(
z
x

)
.

Consider the following a nonsmooth pseudo-linear vector optimization problem:

(NPVOP1) Min h(x) = (h1(x), h2(x)),
s.t. x ∈ M, where

h1(x) =
{
−4(x−1)

x , if 0 < x < 1,
4(x−1)

x , if x ≥ 1
and h2(x) = x3

− x.

It is manifest that h is geodesic pseudo-linear function with respect to proportional functionP(x, z) = (P1(x, z), P2(x, z)) =(
4|z−x|

xz ln (z) ,
z3
−x3
−z+x

x ln (z)

)
with ln(z) , 0.

Moreover, we have ∂ch1(1) = [−4, 4] and ∂ch2(1) = {2}. Clearly, (µ∗1, µ1) = (2, 1) ∈ ∂ch1(1) and (µ∗2, µ2) = (2, 2) ∈
∂ch2(1), there exists (ρ1, ρ2) = (2, 1) > 0, it satisfies the condition µ∗i = ρiµi, i = 1, 2.
Then, obviously x0 = 1 is an efficient solution to the problem (NPVOP1). Further, for x0 = 1 and for all z ∈ M, there
exist µ1 = 1 ∈ ∂ch1(1) and µ2 = 2 ∈ ∂ch2(1) such that

(GNSVVI1) (
〈
P1(x0, z)µ1, exp−1

x0 z⟩, ⟨P2(x0, z)µ2, exp−1
x0 z⟩
)

=
(4|z − 1|

z
, 2(z3

− z)
)
≰2 0.

Thus, x0 = 1 is a solution to the problem (GNSVVI1).
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Theorem 4.6. Let hi : S → R, i ∈ I be locally Lipschitz and geodesic pseudo-linear functions on an open geodesic
convex set S. If x0

∈ S is an efficient solution to the problem (NPVOP), then it is also a solution to the problem
(GNMVVI).

Proof. Let x0
∈ S be an efficient solution to the problem (NPVOP) but not a solution to the problem

(GNMVVI). Then there exist z ∈ S and υi ∈ ∂chi(z), i ∈ I such that(
⟨P1(z, x0)υ1, exp−1

z x0
⟩, . . . , ⟨Pq(z, x0)υq, exp−1

z x0
⟩

)
≥q 0. (10)

Since each hi, i ∈ I is geodesic pseudo-linear functions, by Theorem 3.5 there exists proportional function
Pi(z, x0) such that for some υi ∈ ∂chi(z), we get

h(x0) − h(z) =
(
⟨P1(z, x0)υ1, exp−1

z x0
⟩, . . . , ⟨Pq(z, x0)υq, exp−1

z x0
⟩

)
,

the above inequality along with inequality (10), yields

h(x0) − h(z) ≥q 0,

which leads to contradiction that x0
∈ S is an efficient solution to the problem (NPVOP). This completes

the proof.

Now, we take an assumption if the proportional function Pi(x0, z), i ∈ I is independent of the index i and
have the same value P̄(x0, z), then we shall show that the following equivalence relation between a solution
to the problem (NPVOP) and (SVVI) considered in [5] .

Theorem 4.7. Let hi : S → R, i ∈ I be locally Lipschitz and geodesic pseudo-linear functions on an open geodesic
convex set S. Assume that for any µi, µ∗i ∈ ∂chi(x0) there exists ρi > 0, i ∈ I. Then x0

∈ S is an efficient solution to
the problem (NPVOP) if and only if x0

∈ S is a solution to the problem (SVVI).

Proof. Assume that x0
∈ S is an efficient solution to the problem (NVOP) but it is not a solution to the

problem (SVVI). Then there exist z ∈ S and µi ∈ ∂chi(x0), i ∈ I such that(
⟨µ1, exp−1

x0 z⟩, . . . , ⟨µq, exp−1
x0 z⟩
)
≤q 0.

On multiplying the above inequality by P̄(x0, z) > 0, it follows that there exists µi ∈ ∂chi(x0), i ∈ I such that(
⟨P̄(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨P̄(x0, z)µq, exp−1
x0 z⟩
)
≤q 0.

Applying the assumption in proportional functions Pi(x0, z), i ∈ I have the same value P̄(x0, z) in equality
(8), it follows that

h(z) − h(x0) ≤q 0,

which shows that x0 is not an efficient solution to the problem (NVOP).
Conversely, suppose that x0

∈ S is a solution to the problem but it is not an efficient solution to the
problem (NVOP). Then there exists z ∈ S such that

h(z) − h(x0) ≤q 0. (11)

Since each hi, i ∈ I is geodesic pseudo-linear function, by Theorem 3.5 there exists proportional function
Pi(x0, z) such that for some µ∗i ∈ ∂chi(x0), we get

h(z) − h(x0) =
(
⟨P1(x0, z)µ∗1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µ∗q, exp−1
x0 z⟩
)
. (12)

By combining (11) and (12), we obtain(
⟨P1(x0, z)µ∗1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µ∗q, exp−1
x0 z⟩
)
≤q 0.
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Using Proposition 3.7, there exists ρi > 0, µi ∈ ∂chi(x0), i ∈ I such that µ∗i = ρiµi, i ∈ I, we get(
⟨P1(x0, z)ρ1µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)ρqµq, exp−1
x0 z⟩
)
≤q 0.

Since Pi(x0, z) > 0 and ρi > 0, i ∈ I, it follows that there exists µi ∈ ∂chi(x0), i ∈ I such that(
⟨µ1, exp−1

x0 z⟩, . . . , ⟨µq, exp−1
x0 z⟩
)
≤q 0,

which shows that x0 is not a solution to the problem (SVVI). This contradiction leads to the result.

4.2. Gap function for nonsmooth pseudo-linear vector optimization problem
The gap function concept for convex programming problem discussed by Hearn [11] and later studied

by Soleimani-damaneh [22] for nonsmooth convex optimization problems. Chen et. al [7] and Caristi et. al
[4] investigated the set-valued gap function for smooth and nonsmooth convex multiobjective optimization
problem, respectively. Along the lines of him, we have defined the gap function for nonsmooth pseudo-
linear vector optimization problem (NPVOP) on Hadamard manifold.

Definition 4.8. The gap function for problem (NPVOP) is a set-valued functionΨ : S → 2R
q defined as follows:

Ψ(x) = max
z∈S
{⟨Pi(x, z)µi, exp−1

x z⟩, µi ∈ ∂chi(x), ∀ i ∈ I}.

Theorem 4.9. LetΨ(x) ≰q 0, for all x ∈ S. Further, 0 ∈ Ψ(x0) if and only if x0
∈ S solves (NPVOP).

Proof. Let z = x, then ⟨Pi(x, z)µi, exp−1
x z⟩ = 0, µi ∈ ∂chi(x), ∀ i ∈ I.

⇒ max
z∈S
{⟨Pi(x, z)µi, exp−1

x z⟩, µi ∈ ∂chi(x), ∀ i ∈ I} = Ψ(x) ≰q 0.

Now, let us assume that 0 ∈ Ψ(x0). Then,

max
z∈S
{⟨Pi(x0, z)µi, exp−1

x0 z⟩, µi ∈ ∂chi(x), ∀ i ∈ I} = 0.

Hence, there does not exist z ∈ S, satisfying(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
≤q 0.

Since each hi, i ∈ I is geodesic pseudo-linear function, by Theorem 3.5 there exists proportional function
Pi(x0, z) such that for some µi ∈ ∂chi(x0), we get

h(z) − h(x0) =
(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
.

It follows that there does not exist z ∈ S such that

h(z) ≤q h(x0).

Thus, x0 is an efficient solution to the problem (NPVOP).
Conversely, we proceed by contradiction, let x0 does not solve (NPVOP), then there exists z ∈ S such

that
h(z) ≤q h(x0),

that is,
h(z) − h(x0) ≤q 0.

Since each hi, i ∈ I is geodesic pseudo-linear function, by Theorem 3.5 there exists proportional function
Pi(x0, z) and for any µi ∈ ∂chi(x0), we get

h(z) − h(x0) =
(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
.

Thus,
(
⟨P1(x0, z)µ1, exp−1

x0 z⟩, . . . , ⟨Pq(x0, z)µq, exp−1
x0 z⟩
)
≤q 0, implies that

0 < Ψ(x0).

Hence, the proof is complete.
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5. Conclusions

This paper have concerned with a geodesic pseudo-linear function on Hadamard manifolds. We derived
the several properties of a geodesic pseudo-linear function and also defined the pseudo-affiness operator.
Besides, we have considered a nonsmooth pseudo-linear vector optimization problem and generalized
vector variational inequality problems on Hadamard manifolds and investigated the relations between
solutions of these problems. Additionally, we have studied the gap function for a nonsmooth pseudo-linear
vector optimization problem. In future, the author will study bi-function vector variational inequality under
geodesic pseudo-linear function on Hadamard manifolds.
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Appendix

Let α(s) be a geodesic joining Ωxz(t) and z satisfying α(0) = Ωxz(t) and α(1) = z.

That is, α(s) = Ωxz(t − st), ∀ s ∈ [0, 1]

α̇(s) = −tΩ̇xz(t − st).
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In particular, α̇(0) = −tΩ̇xz(t) (a)
It is well know that the geodesic starting at Ωxz(t) and join with z can also be expressed as

α(s) = expΩxz(t)(s exp−1
Ωxz(t)z), ∀ s ∈ [0, 1]

and α̇(0) = exp−1
Ωxz(t)z (b)

From relation (a) and (b), we obtain
exp−1
Ωxz(t)z = −tΩ̇xz(t)

Similarly, assume that β(s) is a geodesic joining Ωxz(t) and x satisfying α(0) = Ωxz(t) and α(1) = x.

That is, β(s) = Ωxz(t + s(1 − t)), ∀ s ∈ [0, 1]

β̇(s) = (1 − t)Ω̇xz(t + s(1 − t)).

In particular, β̇(0) = (1 − t)Ω̇xz(t) (c)
It is well know that the geodesic starting at Ωxz(t) and join with x can also be expressed as

β(s) = expΩxz(t)(s exp−1
Ωxz(t)x), ∀ s ∈ [0, 1]

and β̇(0) = exp−1
Ωxz(t)x (d)

From relation (c) and (d), we obtain
exp−1
Ωxz(t)x = (1 − t)Ω̇xz(t)


