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Abstract. In this work, we study the existence, uniqueness and polynomial stability of the pseudo almost
periodic mild solutions of semi-linear diffusion equations with rough coefficients in certain interpolation
spaces. First, we rewrite the equations as abstract parabolic equations. Then, we use the polynomial
stability of the semigroups of the corresponding linear equations to prove the boundedness of the solution
operator for the linear equations in appropriate interpolation spaces. We show that this operator preserves
the pseudo almost periodic property of input functions. We will use the fixed point argument to obtain
the existence and polynomial stability of the pseudo almost periodic mild solutions for the semi-linear
equations. The abstract results will be applied to the semi-linear diffusion equations with rough coefficients
to obtain our desired results.

1. Introduction and Preliminaries

1.1. Introduction
The study of mild solutions of difference and differential equations has been the center of studies of

many mathematicians. Especially, topics related to the existence, uniqueness and asymptotic behaviours of
periodic, almost periodic, pseudo almost periodic mild solutions and their generalizations. These solutions
and their properties have significant applications in many areas such as physics, mathematical biology,
control theory, and others (see for examples [6, 11, 25]). Historically, the notion of pseudo almost periodic
functions was introduced initially by Zhang (see [23, 24]). Then, intensive studies of this concept of solution
and its generalizations to differential and difference equations have been made during recent years (see
for examples [7, 13, 26] and the references therein). All of these works consider the parabolic evolution
equations where the corresponding semigroups are exponential stable.

In the present paper, we will investigate the existence, uniqueness and polynomial stability of pseudo
almost periodic mild solutions to the semi-linear diffusion equations with rough coefficients

u′(t) − b∆u(t) = 1(t,u), (t, x) ∈ R ×Rd, (1)
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where b : Rd
→ C is a measurable function satisfying b ∈ L∞(Rd) and Re b ⩾ δ > 0 for some δ > 0,

1(t,u) = |u(t)|m−1u(t) + F(t) for some fixed m ∈N and F is a given bounded function on R.
We know that the operator−A defined on Lp(Rd) by Au := −b∆u generates a bounded analytic semigroup

(also called ultracontractive semigroup) T(t) := e−tA on Lp(Rd) for all 1 < p < ∞ (for more details see [2,
Section 7.3.2]) such that

(T(t) f )(x) =
∫
Rd

K(t, x, y) f (y)dy, t > 0 and a.e x, y ∈ Rd,

where K(t, x, y) is the heat kernel. The semi-linear equation (1) can be rewritten as

u′(t) + Au(t) = 1(t,u), (t, x) ∈ R ×Rd. (2)

The corresponding linear equation is

u′(t) + Au(t) = F(t), (t, x) ∈ R ×Rd. (3)

In general, we consider these problems on the interpolation spaces to a large class of semi-linear evolution
equations of the form

u′(t) + Au(t) = BG(u)(t), t ∈ R, (4)

where −A is the generator of a C0-semigroup (e−tA)t≥0 on some interpolation spaces and B plays the role
of a ”connection” operator between the various spaces involved. Note that, we have B = Id in the case of
equation (1).

One of the important features in our strategy is Assumption 2.1 on the polynomial estimates of the
operator e−tAB (t > 0). Equations of type (4) associated with e−tA and B satisfying these estimates occur in
many situations such as the equations of fluid dynamic equations and various diffusion equations with
rough coefficients (see [14–16]).

The novelty and difficultly in our study appear from the fact that we allow the zero number to belong
to the spectrum σ(A). This leads to the problem that the semigroup (e−tA)t≥0 is no longer exponential stable.
However, the polynomial estimates of e−tAB (t > 0) are still sufficiently good to allow us to handle the
corresponding linear equation

u′(t) + Au(t) = B f (t), t ∈ R, (5)

where f is a pseudo almost periodic (PAP-) function (see Definition 1.2 for the notion of PAP-functions).
Using the polynomial estimates in Assumption 2.1 of e−tAB (t > 0), we can construct the suitable interpo-
lation spaces and then apply the interpolation theorem to obtain the boundedness of the solution operator
on the spaces of PAP-functions. Namely, we will prove that if f is a PAP-function, then the corresponding
mild solution u(t) of (5) is also a PAP-function (see Theorem 2.8). Then, we use fixed point arguments
to extend this result to the semi-linear equation (4) under an assumption that the Nemytskii operator G
is a locally Lipschitz continuous operator that maps PAP-functions into PAP-functions (see Assumption
3.1). Consequently, we obtain the existence and uniqueness of the pseudo almost periodic mild solution
in the PAP-space to (4) (see Theorem 3.2). Moreover, the interpolation spaces also allow us to prove the
polynomial stability of such pseudo almost periodic mild solutions under Assumption 3.3 of the operators
e−tA, B and Nemytskii operator G (see Theorem 3.4). Finally, we apply our abstract results to the semi-linear
diffusion equations with rough coefficients (see Theorem 4.2).

This paper is organized as follows: Section 2 contains the setting of linear parabolic equations in inter-
polation spaces and the results of the existence and uniqueness of pseudo almost periodic mild solutions to
these equations; in Section 3 we investigate the semi-linear equations: the existence, the uniqueness and the
stability of pseudo almost periodic mild solutions. Lastly, Section 4 give the application of abstract results
to heat equations with rough coefficients (1).
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Notations.
•We denote the norm on Banach space X by ∥ · ∥X and the supremum norm on the Banach space BC(R,X)
by ∥ · ∥∞,X.
• Let Y be an interpolation space we use the notation BC(R,Y) for the space of all time weak-continuous
functions f ∈ L∞(R,Y).

1.2. Preliminaries
We recall the notions of almost periodic (AP-), pseudo almost periodic (PAP-) functions as follows:

Definition 1.1. (AP-function) For a Banach space X, a continuous function f : R → X is called (Bohr) almost
periodic if for each ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a number T with the
property that

∥ f (t + T) − f (t)∥X < ε for each t ∈ R.

The number T above is called an ε-translation number of f . We denote the set of all almost periodic functions
f : R→ X by AP(R,X).

Note that (AP(R,X), ∥ · ∥∞,X) is a Banach space, where ∥ · ∥∞,X is the supremum norm (see [10, Theorem 3.36]).
The properties of the almost periodic functions can be found in [1, 17, 19].

Definition 1.2. (PAP-function) A continuous function f : R → X is called pseudo almost periodic if it can be
decomposed as f = 1+ϕ where 1 ∈ AP(R,X) and ϕ is a bounded continuous function with vanishing mean value i.e

lim
L→∞

1
2L

∫ L

−L
∥ϕ(t)∥Xdt = 0.

We denote the set of all functions with vanishing mean value by PAP0(R,X) and the set of all the pseudo almost
periodic (PAP-) functions by PAP(R,X).

Note that (PAP(R,X), ∥ · ∥∞,X) is a Banach space, where ∥ · ∥∞,X is the supremum norm (see [10, Theorem
5.9]).

We notice that the notion of pseudo almost periodic function is a generalisation of the almost periodic
and asymptotically almost periodic (AAP-) functions (see the definition of AAP- functions in [10, Section
3.3]). Moreover, we have also the extension of this notion to the weighted pseudo almost periodic and
weighted pseudo almost automorphic functions (see for examples [5, 8, 13] and the references therein). We
refer the reader to the books [9] for more details about PAP-functions and PAP-spaces.

We recall the notion of Lorentz spaces as follows (see for example [22]): for 1 < p < ∞ and 1 ≤ q ≤ ∞,
we define the Lorentz space on Ω ⊆ Rd as

Lp,q(Ω) =
{
u ∈ L1

loc(Ω) : ∥u∥p,q < ∞
}
,

where

∥u∥p,q =
(∫

∞

0

(
sµ ({x ∈ Ω : |u(x)| > s})1/p

)q ds
s

)1/q

for 1 ≤ q < ∞

and
∥u∥p,∞ = sup

s>0
sµ({x ∈ Ω : |u(x)| > s})1/p.

We denote by Lp,∞ := Lp
ω called weak-Lp space.

Using real interpolation functor (·, ·)θ,q we have

(Lp0 (Ω),Lp1 (Ω))θ,q = Lp,q(Ω), where 1 < p0 < p < p1 < ∞

and 0 < θ < 1 such that
1
p
=

1 − θ
p0
+
θ
p1

(1 ≤ q ≤ ∞).

We recall the following general interpolation theorem (see [4, Theorem 3.11.2]):
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Theorem 1.3. (General interpolation theorem) Let (X0,X1) and (Y0,Y1) be interpolation couples of quasinormed
spaces. Let T be defined on X0 +X1 such that T : X0 → Y0 as well as T : X1 → Y1 are sublinear with quasi-norm M0
and M1, respectively. Then for any θ ∈ (0, 1) and q ∈ [1,∞] it holds that

T : (X0,X1)θ,q → (Y0,Y1)θ,q

is sublinear with quasi-norm M bounded by
M ≤M1−θ

0 Mθ
1 .

For the convenience we refer the reader to the books [4, 18, 21] which provide the detailed description of
the theory for interpolation spaces and the differential operators.

2. The linear parabolic equations

2.1. The setting of equations on interpolation spaces

Let X, Y1 and Y2 be Banach spaces, (Y1,Y2) be a couple of Banach spaces and Y := (Y1,Y2)θ,∞ be a real
interpolation space for some 0 < θ < 1. We now consider the inhomogeneous linear evolution equation of
the form

u′(t) + Au(t) = B f (t), t ∈ R, (6)

where the unknown u(t) ∈ Y, the operator −A is a generator of a C0-semigroup e−tA on Y1 and Y2, f is a
function from R to X and B is the ”connection” operator between X and Y such that e−tAB ∈ L(X,Yi) for
i = 1, 2 and t ⩾ 0.

Since e−tA is C0-semigroup on Y1 and Y2, we have that e−tA is also C0-semigroup on Y = (Y1,Y2)θ,∞. This
is because that the real interpolation functor (·, ·)θ,∞ (0 < θ < 1) satisfies the dense condition, i.e, Y1 ∩ Y2 is
dense in Y (for more detail see [12, Proposition 3.8 (c)] and [21, Subsection 1.6.2]).

Many practical problems can be written in the form (6). For examples, the linear form of the diffusion
equations with rough coefficients, where B = Id, i.e., the identity operator (see Section 4), the linear
equations of fluid dynamic flows, where B = Pdiv (see [14]) and the control theory, where B is the input
operator of the system (see [3, 20] and the references therein).

We assume that e−tAB satisfies the following polynomial estimates:

Assumption 2.1. Assume that Yi has a Banach pre-dual Zi for i = 1, 2 (that means Yi = Z′i ) such that Z1 ∩ Z2 is
dense in Zi. Let −A be the generator of a C0-semigroup e−tA on Y1 and Y2. Furthermore, suppose that there exist
constants α1, α2 ∈ R with 0 < α2 < 1 < α1 and L > 0 such that∥∥∥e−tABv

∥∥∥
Y1
⩽ Lt−α1∥v∥X , t > 0,∥∥∥e−tABv

∥∥∥
Y2
⩽ Lt−α2∥v∥X , t > 0,

(7)

where the operator B is given in the linear equation (6).

Remark 2.2. (i) The condition that Z1 ∩ Z2 is dense in Zi (i = 1, 2) guarantees the dual and pre-dual equalities
(see Definition 2.3).

(ii) From Assumption 2.1 we can see that the spectrum σ(A) contains 0 and the semigroup e−tA is polynomially
stable. This is a new point comparing with the previous works (see for example [7]) on PAP-functions. In
particular, the semigroups considered in the previous works are both exponentially stable. An example of the
equation associated with the semigroup e−tA validating Assumption 2.1 with B = Id (the identity operator) can
be found in Section 4 of this paper as well as many other examples of the fluid dynamic equations with B = Pdiv
(see for example [14–16]).
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Definition 2.3. Since (Z1,Z2)θ,1 is a predual space of Y = (Y1,Y2)θ,∞, we say that B′ and e−tA′ are the dual operators
of B and e−tA respectively if for each ψ ∈ (Z1,Z2)θ,1, f ∈ X and 1 ∈ Y we have〈

B f , ψ
〉
=

〈
f ,B′ψ

〉
,〈

e−tA1, ψ
〉
=

〈
1, e−tA′ψ

〉
,

where ⟨., .⟩ is the scalar product between the dual spaces.

We recall the definition of mild solutions of the equation (6) on the whole time-line axis (see [15, equation
(7)]):

Definition 2.4. Suppose that the function (−∞, t] ∋ τ 7→
〈
e−(t−τ)AB f (τ), ψ

〉
∈ C is integrable for each ψ ∈

(Z1,Z2)θ,1. A continuous function u : R→ Y is called a mild solution to (6) if u satisfies the integral equation

u(t) =
∫ t

−∞

e−(t−τ)AB f (τ)dτ, t ∈ R, (8)

in the weak sense, i.e., for each ψ ∈ (Z1,Z2)θ,1 we have that

〈
u(t), ψ

〉
=

∫ t

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ, t ∈ R. (9)

We notice that if −A generates a bounded analytic semigroup (e−tA)t≥0 on Y, then the mild solution given
by (8) is also a classical solution (see [1, Proposition 3.1.16]).

2.2. The existence and uniqueness of pseudo almost periodic mild solutions to linear equations
We state and prove the basic estimate in the following lemma:

Lemma 2.5. Suppose that Assumption 2.1 holds. Let B′ and e−tA′ be the dual operators of B and e−tA respectively, X′

be the dual space of X. For all ψ ∈ (Z1,Z2)θ,1, the following assertion holds: the function t 7→
∥∥∥B′e−tA′ψ

∥∥∥
X′ belongs

to L1(0;∞) and∫
∞

0

∥∥∥B′e−tA′ψ
∥∥∥

X′ dt ⩽ L̃∥ψ∥(Z1,Z2)θ,1 (10)

for a positive constant L̃ which does not depend on ψ. Here, the spaces X, Z1 and Z2 are given in Definition 2.1.

Proof. Since Assumption 2.1, we have the following inequalites on the dual spaces∥∥∥B′e−tA′ψ
∥∥∥

X′ ⩽ Lt−α1∥ψ∥Y′1 , t > 0,∥∥∥B′e−tA′ψ
∥∥∥

X′ ⩽ Lt−α2∥ψ∥Y′2 , t > 0,
(11)

where Y′1 and Y′2 are the dual spaces of Y1 and Y2 respectively.
For ψ ∈ Z j, j = 1, 2 we denote by

vψ(t) :=
∥∥∥B′e−tA′ψ

∥∥∥
X′ . (12)

Using inequalities 11 and the fact that the canonical embedding Z j → Y′j is an isometry, we get

vψ(t) ⩽ Ct−α j∥ψ∥Z j for ψ ∈ Z j, j = 1, 2.

Therefore vψ ∈ L1/α j,∞(0,∞) and

∥vψ∥L1/α j ,∞(0,∞) ≤ C j∥ψ∥Z j for ψ ∈ Z j, j = 1, 2. (13)
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These inequalities lead us to define the sublinear operator

T : Z1 + Z2 → L1/α1,∞(0,∞) + L1/α2,∞(0,∞)
ψ 7→ vψ,

where vψ is defined by (12).
The inequalities (13) also yield that the operators

T : Z1 → L1/α1,∞(0,∞) and T : Z2 → L1/α2,∞(0,∞)

are sublinear. Applying Theorem 1.3, we obtain that the operator

T : (Z1,Z2)θ,1 →
(
L1/α1,∞(0,∞),L1/α2,∞(0,∞)

)
θ,1
= L1(0,∞)

is also sublinear. It follows that ∫
∞

0

∥∥∥B′e−tA′ψ
∥∥∥

X′ dt ⩽ L̃∥ψ∥(Z1,Z2)θ,1 ,

where L̃ > 0 is a constant.

As a consequence of Lemma 2.5, we establish in the following lemma the existence and uniqueness of the
mild solution of the linear equation (6).

Lemma 2.6. Suppose that Assumption 2.1 holds. Let f ∈ BC (R,X), ψ ∈ (Z1,Z2)θ,1 and θ ∈ (0; 1) such that
1 = (1 − θ)α1 + θα2. Then the equation (6) admits a unique mild solution u satisfying

∥u (t)∥Y ⩽ L̃∥ f ∥∞,X, t ∈ R, (14)

for the constant L̃ as in (10).

Proof. In this proof and the rest of this paper, we use the weak (or weak∗) version of vector-valued integrals
in the sense of the Pettis integral. By assumption (Z1,Z2)′θ,1 = (Y1,Y2)θ,∞. We denote by ⟨., .⟩ the dual pair
between (Y1,Y2)θ,∞ and (Z1,Z2)θ,1. Then for each ψ ∈ (Z1,Z2)θ,1 we have the following estimates∣∣∣∣∣∣

〈∫ t

−∞

e−(t−τ)AB f (τ)dτ, ψ
〉∣∣∣∣∣∣ ⩽

∫ t

−∞

∣∣∣∣〈e−(t−τ)AB f (τ), ψ
〉∣∣∣∣ dτ

=

∫ t

−∞

∣∣∣∣〈 f (τ),B′e−(t−τ)A′ψ
〉∣∣∣∣ dτ

⩽

∫ t

−∞

∥ f (τ)∥X
∥∥∥B′e−(t−τ)A′ψ

∥∥∥
X′ dτ

⩽ ∥ f ∥∞,X

∫ t

−∞

∥∥∥B′e−(t−τ)A′ψ
∥∥∥

X′ dτ

⩽ L̃∥ f ∥∞,X∥ψ∥(Z1,Z2)θ,1 .

The last inequality holds due to Lemma 10 and the transformation τ 7→ t − τ.

Lemma 2.6 implies that the solution operator S : BC(R,X)→ BC(R,Y) defined by

S( f )(t) :=
∫ t

−∞

e−(t−s)AB f (s)ds, t ∈ R (15)

is a bounded operator and ∥S∥ ≤ L̃ for the constant L̃ appearing in inequality (14).

Lemma 2.7. Suppose that Assumption 2.1 holds. The following assertions hold

i) If f ∈ AP(R,X), then S( f ) ∈ AP(R,Y).
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ii) If f ∈ PAA0(R,X), then S( f ) ∈ PAA0(R,Y).

Proof. i) Since f is almost periodic, we obtain that for all ε > 0 there exists a real number l(ε) > 0 such that
for every a ∈ R, we can find T ∈ [a, a + l(ε)] such that

∥ f (t + T) − f (t)∥X < ε, t ∈ R.

Then, we have

∥S( f )(t + T) − S( f )(t)∥Y =

∥∥∥∥∥∥
∫ t

−∞

e−(t−τ)AB[ f (τ + T) − f (τ)]dτ

∥∥∥∥∥∥
Y

=

∥∥∥∥∥∫ ∞

0
e−τAB[ f (t − τ + T) − f (t − τ)]dτ

∥∥∥∥∥
Y

≤ L̃∥ f (. + T) − f (.)∥∞,X
≤ εL̃.

Therefore, the function S( f )(t) :=
∫ t

−∞
e−(t−τ)AB f (τ)dτ belongs to AP(R,Y).

ii) To prove this assertion we develop the method in [7, Theorem 3.4] by replacing the condition for the
semigroup e−tA from the exponential stability to the polynomial stability.

We need to show that

lim
r→∞

1
2L

∫ L

−L

∥∥∥∥∥∥
∫ t

−∞

e−(s−τ)AB f (τ)dτ

∥∥∥∥∥∥
Y

dt = 0. (16)

This corresponds to prove that

lim
r→∞

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−∞

〈
e−(s−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt = 0, (17)

for all ψ ∈ (Z1,Z2)θ,1 such that ∥ψ∥ := ∥ψ∥(Z1,Z2)θ,1 ≤ 1.
Indeed, for each ψ ∈ (Z1,Z2)θ,1 with ∥ψ∥ := ∥ψ∥(Z1,Z2)θ,1 ≤ 1 we have

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt

=
1

2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫
−L

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt +
1

2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt. (18)

Recall that we proved inequality (10) in Lemma 2.5 that∫
∞

0

∥∥∥B′e−τA′ψ
∥∥∥

X′ dτ ⩽ L̃∥ψ∥(Z1,Z2)θ,1 (19)

for all ψ ∈ (Z1,Z2)θ,1. By changing variable τ := t − τ we get∫ t

−∞

∥∥∥B′e−(t−τ)A′ψ
∥∥∥

X′ dτ ⩽ L̃∥ψ∥(Z1,Z2)θ,1 . (20)

This shows that for each ε > 0, there exists L0(ε) ∈ R depends only on ε satisfying that for all L > L0(ε), we
have ∫

−L

−∞

∥∥∥B′e−(t−τ)A′ψ
∥∥∥

X′ dt ⩽ ε
∥∥∥ψ∥∥∥

(Z1,Z2)θ,1
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for all ψ ∈ (Z1,Z2)θ,1. Hence, for all L > L0(ε) we have

sup
∥ψ∥⩽1

∫
−L

−∞

∥∥∥B′e−(t−τ)A′ψ
∥∥∥

X′ dt ⩽ sup
∥ψ∥⩽1

ε
∥∥∥ψ∥∥∥

(Z1,Z2)θ,1
⩽ ε.

Therefore, we establish that

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫
−L

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt

≤
1

2L

∫ L

−L
sup
∥ψ∥≤1

∫
−L

−∞

∣∣∣∣〈e−(t−τ)AB f (τ), ψ
〉∣∣∣∣ dτdt

=
1

2L

∫ L

−L
sup
∥ψ∥≤1

∫
−L

−∞

∣∣∣∣〈 f (τ),B′e−(t−τ)A′ψ
〉∣∣∣∣ dτdt

≤
1

2L

∫ L

−L
sup
∥ψ∥≤1

∫
−L

−∞

∥ f (τ)∥X
∥∥∥B′e−(t−τ)A′ψ

∥∥∥
X′ dτdt

≤
∥ f ∥∞,X

2L

∫ L

−L
sup
∥ψ∥≤1

∫
−L

−∞

∥∥∥B′e−(t−τ)A′ψ
∥∥∥

X′ dτdt

≤
∥ f ∥∞,X

2L

∫ L

−L
εdt = ε∥ f ∥∞,X. (21)

On the other hand, there exists a sequence (ψn)n∈N in (Z1,Z2)θ,1 such that ∥ψn∥ := ∥ψn∥(Z1,Z2)θ,1 ⩽ 1 and

lim
n→∞

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψn

〉
dτ

∣∣∣∣∣∣ = sup
∥ψ∥⩽1

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ .
We have∣∣∣∣∣∣

∫ t

−L

〈
e−(t−τ)AB f (τ), ψn

〉
dτ

∣∣∣∣∣∣ ⩽
∫ t

−L
∥ f (τ)∥X

∥∥∥B′e−(t−τ)A′ψn

∥∥∥
X′ dτ

⩽ ∥ f ∥∞,X

∫ t

−L

∥∥∥B′e−(t−τ)A′ψn

∥∥∥
X′ dτ

⩽ ∥ f ∥∞,X

∫ t

−∞

∥∥∥B′e−(t−τ)A′ψn

∥∥∥
X′ dτ

⩽ ∥ f ∥∞,XL̃∥ψn∥(Z1,Z2)θ,1 (due to (20))
⩽ L̃∥ f ∥∞,X.

Since L̃∥ f ∥∞,X is integrable on [−L,L], by using the dominated convergence theorem we have

sup
∥ψ∥⩽1

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣
is integrable on [−L,L] and

lim
n→∞

∫ L

−L

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψn

〉
dτ

∣∣∣∣∣∣ =
∫ L

−L
sup
∥ψ∥⩽1

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ . (22)

Therefore, using inequalities (10) and (22) we have the following estimates

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt
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= lim
n→∞

1
2L

∫ L

−L

∣∣∣∣∣∣
∫ t

−L

〈
f (τ),B′e−(t−τ)A′ψn

〉
dτ

∣∣∣∣∣∣ dt (due to (22))

⩽ lim
n→∞

1
2L

∫ L

−L

∫ t

−L

∣∣∣∣〈 f (τ),B′e−(t−τ)A′ψn

〉∣∣∣∣ dτdt

⩽ lim
n→∞

1
2L

∫ L

−L

∫ t

−L
∥ f (τ)∥X

∥∥∥B′e−(t−τ)A′ψn

∥∥∥
X′ dτdt

= lim
n→∞

1
2L

∫ L

−L

∫ t+L

0
∥ f (t − ξ)∥X

∥∥∥B′e−ξA′ψn

∥∥∥
X′ dξdt (where ξ := t − τ)

= lim
n→∞

1
2L

∫ 2L

0

∫ L

ξ−L
∥ f (t − ξ)∥X

∥∥∥B′e−ξA′ψn

∥∥∥
X′ dtdξ

= lim
n→∞

1
2L

∫ 2L

0

∫ L−ξ

−L
∥ f (s)∥X

∥∥∥B′e−ξA′ψn

∥∥∥
X′ dsdξ (where s := t − ξ)

⩽ lim
n→∞

1
2L

∫ 2L

0

∫ L

−L
∥ f (s)∥X

∥∥∥B′e−ξA′ψn

∥∥∥
X′ dsdξ

= lim
n→∞

1
2L

∫ 2L

0

∥∥∥B′e−ξA′ψn

∥∥∥
X′

∫ L

−L
∥ f (s)∥Xdsdξ

⩽ lim
n→∞

1
2L

∫
∞

0

∥∥∥B′e−ξA′ψn

∥∥∥
X′ dξ

∫ L

−L
∥ f (s)∥Xds

⩽ lim
n→∞

L̃∥ψn∥

2L

∫ L

−L
∥ f (s)∥Xds (due to (10))

≤
L̃

2L

∫ L

−L
∥ f (s)∥Xds.

The property f ∈ PAA0(R,X) leads to

lim
L→∞

1
2L

∫ L

−L

∥∥∥ f (s)
∥∥∥

X ds = 0.

Hence, there exists L1 ∈ R such that
1

2L

∫ L

−L

∥∥∥ f (s)
∥∥∥

X ds ⩽ ε,

for all L > L1. Therefore, we have that

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−L

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt ≤ L̃ε, (23)

for all L > L1.
By combining (18), (21) and (23), we get

1
2L

∫ L

−L
sup
∥ψ∥≤1

∣∣∣∣∣∣
∫ t

−∞

〈
e−(t−τ)AB f (τ), ψ

〉
dτ

∣∣∣∣∣∣ dt ≤ ε(∥ f ∥∞,X + L̃),

for all L ≥ max {L0,L1} and all ψ ∈ (Z1,Z2)θ,1 such that ∥ψ∥ ≤ 1. Hence

1
2L

∫ L

−L

∥∥∥∥∥∥
∫ t

−∞

e−(t−τ)AB f (τ)dτ

∥∥∥∥∥∥
Y

dt ≤ ε(∥ f ∥∞,X + L̃).

Therefore,

lim
L→∞

1
2L

∫ L

−L
∥S( f )(t)∥Ydt = 0.
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Using Lemma 2.7 we establish the existence and uniqueness of PAP-mild solution to the linear equation
(6) in the following theorem:

Theorem 2.8. Suppose that Assumption 2.1 holds. We have that if f ∈ PAP(R,X), then S( f ) ∈ PAP(R,Y).
This means that the linear equation (6) has a unique pseudo almost periodic mild solution û ∈ PAP(R,Y) for each
inhomogeneous part f ∈ PAP(R,X). Moreover, û satisfies

∥û(t)∥Y ⩽ L̃∥ f ∥∞,X, t ∈ R, (24)

for the constant L̃ as in (10).

Proof. Since f ∈ PAP(R,X), we put f = 1 + ϕ, where 1 ∈ AP(R,X) and ϕ ∈ PAA0(R,X). We have

S( f )(t) =

∫ t

−∞

e−(t−τ)AB f (τ)dτ

=

∫ t

−∞

e−(t−τ)AB1(τ)dτ +
∫ t

−∞

e−(t−τ)ABϕ(τ)dτ

= S(1)(t) + S(ϕ)(t).

Using Lemma 2.7 we have that S(1) ∈ AP(R,Y) and S(ϕ) ∈ PAA0(R,Y). Therefore, S( f ) ∈ PAP(R,Y) and
Equation (6) has a unique PAP-mild solution û such that (24) by Lemma 2.6.

3. Solutions to semi-linear equations

3.1. The existence and uniqueness

In this section we consider the semi-linear evolution equations

u′ (t) + Au (t) = BG (u) (t) , t ∈ R, (25)

where the nonlinear part (also called the Nemytskii operator) G maps from BC(R,Y) into BC(R,X) and A,
X, Y are the operator and the interpolation spaces similarly as defined in the linear equations (6).

A function u ∈ C(R,Y) is said to be a mild solution to (25) if it satisfies the integral equation (see [15,
equation (17)]):

u(t) =
∫ t

−∞

e−(t−τ)ABG (u) (τ) dτ. (26)

To establish the existence and uniqueness of the PAP-mild solution for the semi-linear equation (25), we
need the following assumptions on the Nemytskii operator G:

Assumption 3.1. We assume that the operator G : BC (R,Y) → BC (R,X) maps pseudo almost periodic functions
to pseudo almost periodic functions and there is a positive constant C such that the following estimate holds

∥G(u) − G(v)∥∞,X ⩽ C ∥u − v∥∞,Y

for u, v ∈ B(0, ρ) =
{
w ∈ BC(R,Y) : ∥w∥∞,Y ⩽ ρ

}
.

The following theorem shows the existence and uniqueness of the PAP-mild solution to equation (25) in a
small ball of the Banach space PAP(R,Y).

Theorem 3.2. Suppose that e−tAB satisfies the polynomial estimates as in Assumption 2.1 and Assumption 3.1 holds
for Nemytskii operator G with C and ∥G(0)∥∞,X being small enough. Then there exists a unique pseudo almost periodic
mild solution û ∈ PAP(R,Y) to the semi-linear equation (25).
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Proof. We denote by BPAP(0, ρ) := {v ∈ PAP(R,Y) | ∥v∥∞,Y ≤ ρ} the ball centered at 0 with radius ρ > 0 in the
space PAP(R,Y).

For each v ∈ BPAP(0, ρ) we consider the linear equation

u′(t) + Au(t) = BG(v)(t) (27)

Using Theorem 2.8, the above equation has a unique PAP-mild solution defined by

u(t) =
∫ t

−∞

e−(t−τ)ABG(v)(τ)dτ, t ∈ R, (28)

and we can define the solution operator (see (15)) as

S(G(v))(t) := u(t). (29)

Then, we define the mapping Φ by

v 7−→ S (G (v)) .

Next, we prove that Φmaps BPAP(0, ρ) into itself and is a contraction mapping on B(0, ρ). Indeed, we have

Φ(v)(t) = S(G(v))(t) =
∫ t

−∞

e−(t−τ)ABG(v)(τ)dτ.

Since G(v) belongs to PAP(R,X) for u ∈ PAP(R,Y), from Theorem 2.8 it follows that S(G(u)) ∈ PAP(R,Y).
Therefore, Φmaps PAP(R,Y) into itself. Moreover, applying Lemma 2.6 and using Assumption 3.1 we can
estimate that

∥Φ(v)∥∞,Y ⩽ L̃∥G(v)∥∞,X = L̃∥G(0) + G(v) − G(0)∥∞,X
⩽ L̃

(
∥G(0)∥∞,X + C∥v∥∞,Y

)
⩽ L̃(∥G(0)∥∞,X + Cρ) < ρ,

for C and ∥G(0)∥∞,X small enough. Therefore, Φmaps from BPAP(0, ρ) into itself.
We now show that Φ is a contraction mapping. Indeed, let u and v belong to the ball B(0, ρ). Applying

again Lemma 2.6 and Assumption 3.1 we can estimate that

∥Φ(u) −Φ(v)∥∞,Y ⩽ L̃ ∥G(u) − G(v)∥∞,X
⩽ L̃C ∥u − v∥∞,Y ,

for all u, v ∈ BPAP(0, ρ). Hence, Φ is a contraction mapping for the small enough constant C.
Then, the contraction principle yields the existence of a unique fixed point û ∈ BPAP(0, ρ) of Φ. By

definition of Φwe have that û is PAP-mild solution of the semi-linear equation (26).
In order to prove the uniqueness, we assume that u, v ∈ PAP(R,Y) are two PAP-mild solutions to (26)

such that ∥u∥∞,Y ⩽ ρ and ∥v∥∞,Y ⩽ ρ. Then, using Lemma 2.6 and Assumption 3.1 we have

∥u − v∥∞,Y = ∥S (G (u) − G (v))∥∞,Y
⩽ L̃ ∥G (u) − G (v)∥∞,Y
⩽ L̃C ∥u − v∥∞,Y .

Since L̃C < 1 for C small enough, we have the uniqueness of PAP-mild solution û in the ball BPAP(0, ρ).
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3.2. Stability of the solutions
In this section, we extend the results of polynomial stability of the mild solutions of the fluid dynamic

equations obtained in [16] to the semi-linear equation (25) on the abstract interpolation spaces. In particular,
we need some further abstract assumptions on the operator e−tAB and the Nemytskii operator G as in
Assumption 3.3 below to establish the stability of the PAP-mild solution obtained in the previous section.

Assumption 3.3. We assume that:

i) There exist positive numbers 0 < β1 < 1 < β2 and Banach spaces T,Q1,Q2,K1,K2 such that Ki is a pre-dual
space of Qi, K1 ∩ K2 is dense in Ki for i = 1, 2, e−tA is a C0-semigroup on Q1 and Q2 and we have the following
polynomial estimates∥∥∥e−tABψ

∥∥∥
Q1
⩽ M̃t−β1

∥∥∥ψ∥∥∥
T , t > 0,∥∥∥e−tABψ

∥∥∥
Q2
⩽ M̃t−β2

∥∥∥ψ∥∥∥
T , t > 0,

(30)

for some constant M̃ > 0 independent of t and ψ.
ii) Putting Q := (Q1,Q2)θ̃,∞, where 0 < θ̃ < 1 satisfied (1 − θ̃)β1 + θ̃β2 = 1, there exist positive constants

0 < γ < 1 and C1 > 0 such that∥∥∥e−tAψ
∥∥∥

Q ≤ C1t−γ∥ψ∥Y, t > 0. (31)

iii) For the radius ρ as in Assumption 3.1 there exists C2 > 0 such that the Nemytskii operator G satisfies

∥G(v1) − G(v2)∥∞,T ≤ C2∥v1 − v2∥∞,Q,

for all v1, v2 ∈ B(0, ρ) ∩ BC(R,Q) =
{
v ∈ BC(R,Y) ∩ BC(R,Q) : ∥v∥∞,Y ≤ ρ

}
.

Now we extend [16, Theorem 2.5] to state and prove the polynomial stability of the PAP-mild solution
obtained in Theorem 3.2 in the following theorem:

Theorem 3.4. Assume that e−tAB satisfies polynomial estimates as in Assumption 2.1, G satisfies Assumption 3.1
and e−tA, B, G satisfy Assumption 3.3 with C2 being small enough. Let û ∈ PAP(R,Y) be the pseudo almost periodic
mild solution of (26) obtained in Theorem 3.2. Then, û is polynomial stable in the sense that: for any bounded mild
solution u ∈ BC(R,Y) of the semi-linear equation (26), if ∥û∥∞,Y and ∥u(0) − û(0)∥Y are sufficiently small, then

∥u(t) − û(t)∥Q ⩽ Dt−γ for all t > 0, (32)

where D is a positive constant independent of u and û.

Proof. For t > 0 we can rewrite u(t) and û(t) as follows:

u(t) = e−tAu(0) +
∫ t

0
e−(t−τ)ABG(u)(τ)dτ,

û(t) = e−tAû(0) +
∫ t

0
e−(t−τ)ABG(û)(τ)dτ,

where

u(0) =
∫ 0

−∞

eτABG(u)(τ)dτ and û(0) =
∫ 0

−∞

eτABG(û)(τ)dτ.

By putting v = u − û we obtain that v satisfies the integral equation

v(t) = e−tA(u(0) − û(0)) +
∫ t

0
e−(t−τ)AB(G(u)(τ) − G(û)(τ))dτ. (33)
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We set M := {v ∈ BC(R+,Y) : sup
t∈R+

tγ ∥v(t)∥Q < ∞} endowed with the norm

∥v∥M := ∥v∥BC(R+,Y) + sup
t∈R+

tγ ∥v(t)∥Q.

Putting u(0) := u0 and û(0) := û0 we now prove that if ∥û∥∞,Y (hence ∥û∥BC(R+,Y)) and ∥u0 − û0∥Y are small
enough, then equation (33) has a unique solution on a small ball of M. Indeed, for v ∈M, we consider the
mapping

Φ(v)(t) := e−tA(u0 − û0) +
∫ t

0
e−(t−τ)AB (G(v + û)(τ) − G(û)(τ)) dτ.

Setting B(0, ρ) := {v ∈ M : ∥v∥M ⩽ ρ} we prove that for sufficiently small ∥û∥∞,Y, ∥û0 − u0∥Y and C2, the
map Φ acts from B(0, ρ) to itself and is a contraction mapping. Clearly, Φ(v) ∈ BC(R+,Y) for v ∈ BC(R+,Y).
Moreover

tγΦ(v)(t) = tγe−tA(u0 − û0) + tγ
∫ t

0
e−(t−τ)AB (G(v + û)(τ) − G(û)(τ)) dτ

= tγe−tA(u0 − û0) + tγ
∫ t

0
e−τAB (G(v(t − τ) + û(t − τ)) − G(û(t − τ))) dτ

= tγe−tA(u0 − û0) + tγ
∫ t

0
F(τ)dτ ,

where
F(τ) := e−τAB (G(v(t − τ) + û(t − τ)) − G(û(t − τ))) .

By inequality (31) in Assumption 3.3 ii) we have∥∥∥tγe−tA(u0 − û0)
∥∥∥

Q = tγ
∥∥∥e−tA(u0 − û0)

∥∥∥
Q ≤ C1∥u0 − û0∥Y. (34)

By Assumption 3.3 i), we have (K1,K2)′
θ̃,1
= (Q1,Q2)θ̃,∞ = Q. We denote by ⟨., .⟩ the dual pair between Q

and (K1,K2)′
θ̃,1

. The for each ψ ∈ (K1,K2)θ̃,1 we have∣∣∣∣∣∣
〈∫ t

0
F(τ)dτ, ψ

〉∣∣∣∣∣∣ ⩽
∫ t

0

∣∣∣〈F(τ), ψ
〉∣∣∣ dτ

⩽

∫ t/2

0

∣∣∣〈F(τ), ψ
〉∣∣∣ dτ + ∫ t

t/2

∣∣∣〈F(τ), ψ
〉∣∣∣ dτ . (35)

Since inequalities in (30) in Assumption 3.3 i), we have the following inequalities on the dual spaces∥∥∥B′e−tA′ψ
∥∥∥

T′ ⩽ M̃t−β1
∥∥∥ψ∥∥∥

Q′1
, t > 0,∥∥∥B′e−tA′ψ

∥∥∥
T′ ⩽ M̃t−β2

∥∥∥ψ∥∥∥
Q′2
, t > 0,

(36)

Therefore, by the same way as in the proof of Lemma 7, we can establish that∫
∞

0

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ ⩽ Ñ
∥∥∥ψ∥∥∥

(K1,K2)θ̃,1
.

Since ∥û∥∞,Y is small enough and ∥v∥∞,Y < ρ we can consider ∥û∥∞,Y < ρ small enough such that
∥v + û∥∞,Y ⩽ ρ. By using the Lipschitz property of G in Assumption 3.3 iii) the first integral in (35) can be
estimated as∫ t/2

0

∣∣∣〈F(τ), ψ
〉∣∣∣ dτ ⩽

∫ t/2

0
∥G(v(t − τ) + û(t − τ)) − G(û(t − τ))∥T

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ
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⩽

∫ t/2

0
C2 ∥v(t − τ)∥Q

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ

⩽
( t

2

)−γ
C2 ∥v∥M

∫
∞

0

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ

⩽ Ñ2γt−γC2 ∥v∥M
∥∥∥ψ∥∥∥

(K1,K2)θ̃,1
. (37)

By (36) and the fact that the canonical embedding Ki → Q′i (i = 1, 2) is an isometry we have that∥∥∥B′e−τA′ψ
∥∥∥

T′ ⩽ M̃τ−β1
∥∥∥ψ∥∥∥

K1
,∥∥∥B′e−τA′ψ

∥∥∥
T′ ⩽ M̃τ−β2

∥∥∥ψ∥∥∥
K2

(38)

for τ > 0. By applying Theorem 1.3 with noting that (1 − θ̃)β1 + θ̃β2 = 1 and (T′,T′)θ̃,1 = T′ we obtain that∥∥∥B′e−τA′ψ
∥∥∥

T′ < C′τ−1
∥ψ∥(K1,K2)θ̃,1 (39)

for some constant C′ > 0.
Now the second integral in (35) can be estimated as follows:∫ t

t/2

∣∣∣〈F(τ), ψ
〉∣∣∣ dτ ⩽

∫ t

t/2
∥G(v(t − τ) + û(t − τ)) − G(û(t − τ))∥T

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ

⩽ C2 ∥v∥M

∫ t

t/2
(t − τ)−γ

∥∥∥B′e−τA′ψ
∥∥∥

T′ dτ

⩽ C′C2 ∥v∥M

(∫ t

t/2
(t − τ)−γτ−1dτ

) ∥∥∥ψ∥∥∥
(K1,K2)θ̃,1

⩽ C′C2 ∥v∥M
2
t

∫ t

t/2
(t − τ)−γdτ

∥∥∥ψ∥∥∥
(K1,K2)θ̃,1

⩽
C′2γ

1 − γ
t−γC2 ∥v∥M

∥∥∥ψ∥∥∥
(K1,K2)θ̃,1

. (40)

By combining inequalities (37) and (40), we obtain that∥∥∥∥∥∥
∫ t

0
e−τAB(G(v(t − τ) + û(t − τ)) − G(û(t − τ)))dτ

∥∥∥∥∥∥
Q

⩽

(
C′

1 − γ
+ Ñ

)
2γt−γC2 ∥v∥M (41)

for all t > 0.
Combining now (34) and (41) we obtain that

∥Φ(v)∥M ⩽ C1∥u0 − û0∥Y +D′C2 ∥v∥M

for D′ =
(

C′
1−γ + Ñ

)
2γ > 0. Therefore if ∥u0 − û0∥Y, ∥û∥∞,Y and C2 are small enough, the mapping Φ acts the

ball B(0, ρ) into itself.
Similarly as above, we have the following estimate

∥Φ(v1) −Φ(v2)∥M ⩽ 2D′C2 ∥v1 − v2∥M .

Therefore, Φ is a contraction mapping for sufficiently small ∥u0 − û0∥Y, ∥û∥∞,Y and C2. As the fixed point
of Φ, the function v = u − û belongs to M. Inequality (32) hence follows, and we obtain the stability of the
small solution û. The proof is completed.
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4. Heat equations with rough coefficients

In this section we will apply the abstract results obtained in the previous sections to the semi-linear
diffusion equations with rough coefficients. Consider a measurable function b : Rd

→ C satisfying b ∈
L∞(Rd) and such that Re b ⩾ δ > 0 for some δ > 0. Consider the semi-linear diffusion equations with rough
coefficients

u′(t) − b∆u(t) = 1(t,u), (t, x) ∈ R ×Rd, (42)

where d ⩾ 2, 1(t,u) = |u(t)|m−1u(t) + F(t) for some fixed constant m ∈ N,m ⩾ 2 and a given bounded (on R)
function F.

We know that the operator−A defined on Lp(Rd) by Au := −b∆u generates a bounded analytic semigroup
(also called ultracontractive semigroup) T(t) := e−tA on Lp(Rd) for all 1 < p < ∞ (for more details see [2,
Section 7.3.2]) such that

(T(t) f )(x) =
∫
Rd

K(t, x, y) f (y)dy, t > 0 and a.e x, y ∈ Rd,

where K(t, x, y) is the heat kernel which verifies the following Gaussian estimate (see [2, Section 7.4]):

|K(t, x, y)| ≤
M
td/2

e−
a|x−y|2

bt , x, y ∈ Rd, (43)

for some constants M, a, b > 0. The semi-linear equation (42) can be rewritten as

u′(t) + Au(t) = 1(t,u), (t, x) ∈ R ×Rd. (44)

The corresponding linear equation is

u′(t) + Au(t) = F(t), (t, x) ∈ R ×Rd. (45)

The Gaussian estimate (43) of the heat kernel K(t, x, y) allows us to verify the Lp
− Lq smoothing properties

of the ultracontractive semigroup e−tA as follows:

∥e−tAx∥Lq(Rd) ≤ Ct−
d
2

(
1
p−

1
q

)
∥x∥Lp(Rd) where 1 < p ≤ q < +∞. (46)

We establish the Lp,r
− Lq,r-smoothing estimates of e−tA in the following lemma.

Lemma 4.1. Let 1 < q < ∞ and 1 ≤ r ≤ +∞. Then, for 1 < p ≤ q < +∞ the following inequality holds

∥e−tAx∥Lq,r(Rd) ≤ Ct−
d
2

(
1
p−

1
q

)
∥x∥Lp,r(Rd). (47)

Proof. For 1 < p < q there exist the numbers 1 < p1 < p < p2 < q, p < p2 = q1 < q < q2 and 0 < θ̂ < 1 such that

1
p
=

1 − θ̂
p1
+
θ̂
p2

and
1
q
=

1 − θ̂
q1
+
θ̂
q2
.

For example we can choose

θ̂ =
1
2
, p1 =

p(p + q)
2q

, p2 = r1 =
p + q

2
, q2 =

q(p + q)
2p

.

We have that
(Lp1 (Rd),Lp2 (Rd))θ̂,r = Lp,r(Rd) and (Lq1 (Rd),Lq2 (Rd))θ̂,r = Lq,r.

Therefore, by using inequality (46) and applying Theorem 1.3 we obtain that

∥e−tAx∥Lq,r(Rd) ≤

(
Ct−

d
2

(
1
p−

1
q

))1−θ̂ (
Ct−

d
2

(
1
p−

1
q

))θ̂
∥x∥Lp,r(Rd) = Ct−

d
2

(
1
p−

1
q

)
∥x∥Lp,r(Rd).

Our proof is completed.
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As a consequence of Inequality (47) we have that e−tAB, where B = Id (the identity operator) satisfies
Assumption 2.1 and the dual operators B′ = Id and e−tA′ verify Assumption 3.3. Indeed, we choose the
interpolation spaces X, Y1 and Y2 as follows:

X := L
d(m−1)

2m ,∞(Rd) = L
d(m−1)

d(m−1)−2m ,1(Rd)′, Y1 := L
2d(m−1)

5−m ,∞(Rd), Y2 := L
2d(m−1)

m+3 ,∞(Rd),

where m, d are choosen such that

m
4m − 1

> d ⩾ 3 and 5 > m >
d

d − 2
.

We choose θ = 1/2, then
(Y1,Y2) 1

2 ,∞
= L

d(m−1)
2 ,∞(Rd) = Y.

The preduals Z1 and Z2 of Y1 and Y2 are given by

Z1 = L
2d(m−1)

(2d+1)(m−1)−4 ,1(Rd) and Z2 = L
2d(m−1)

(2d−1)(m−1)−4 ,1(Rd)

respectively.
Using the inequality (47), we have that

∥e−tAψ∥Y1 ≤ Lt−
5
4 ∥ψ∥X,

∥e−tAψ∥Y2 ≤ Lt−
3
4 ∥ψ∥X.

Hence, e−tAB = e−tA satisfies the estimates in Assumption 2.1 with α1 =
5
4 , α2 =

3
4 and θ = 1

2 .
Now we have

2m
d(m − 1)

=
2

d(m − 1)
+

2 j
d(m − 1)

+
2(m − 1 − j)

d(m − 1)
.

Therefore, for all u, v ∈ B(0, ρ) =
{
v ∈ BC(R,Y) : ∥v∥∞,Y ≤ ρ

}
and t ∈ R by using weak Hölder inequality we

obtain that ∥∥∥|u(t)|m−1u(t) − |v(t)|m−1v(t)
∥∥∥

X ≤

m−1∑
j=0

∥∥∥|u(t) − v(t)||u(t)| j|v(t)|m−1− j
∥∥∥

X

≤ ∥|v(t)|m−1
∥ d

2 ,∞
∥u(t) − v(t)∥Y + ∥|u(t)|m−1

∥ d
2 ,∞
∥u(t) − v(t)∥Y

+

m−2∑
j=1

∥|u(t)| j∥ d(m−1)
2 j ,∞∥|v(t)|m−1− j

∥ d(m−1)
2(m−1− j) ,∞

∥u(t) − v(t)∥Y

≤ ∥v(t)∥m−1
d(m−1)

2 ,∞
∥u(t) − v(t)∥Y + ∥u(t)∥m−1

d(m−1)
2 ,∞
∥u(t) − v(t)∥Y

+

m−2∑
j=1

∥u(t)∥ j
d(m−1)

2 ,∞
∥v(t)∥m−1− j

d(m−1)
2 ,∞
∥u(t) − v(t)∥Y

=

m−1∑
j=0

∥u(t)∥ j
Y∥v(t)∥m−1− j

Y ∥u(t) − v(t)∥Y

≤ mρm−1
∥u(t) − v(t)∥Y ,

where ∥ · ∥ d(m−1)
2 j ,∞, ∥ · ∥ d(m−1)

2(m−1− j) ,∞
are denoted the norms on L

d(m−1)
2 j ,∞(Rd) and L

d(m−1)
2(m−1− j) ,∞(Rd) respectively. Hence

1(t,u) = |u(t)|m−1u(t) + F(t) satisfies the Lipschitz condition in Assumption 3.1 with C = mρm−1. The
boundeness of ∥1(t, 0)∥∞,X holds due to the boundedness of F.

Now, fix any number r > d(m−1)
2 . Since 1 < r

r−1 <
dr

d(r−1)−2r , we can choose real numbers q1 and q2 such that

1 < q1 <
r

r − 1
< q2 <

dr
d(r − 1) − 2r

,
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and there exists θ̃ ∈ (0; 1) such that r−1
r =

1−θ̃
q1
+ θ̃

q2
. Therefore, we can determine the spaces Q1, Q2, K1, K2, Q

and T in Assumption 3.3 i) as follows:

T := L
dr

d+2r ,∞(Rd) = L
dr

d(r−1)−2r ,1(Rd)′,

Q1 := L
q1

q1−1 ,∞(Rd), K1 := Lq1,1(Rd),

Q2 := L
q2

q2−1 ,∞(Rd), K2 := Lq2,1(Rd),

Q = (Q1,Q2)θ̃,∞ = Lr,∞(Rd).

Using the inequality (47), we have that ∥∥∥e−tAψ
∥∥∥

Q1
≤ M̃e−β1∥ψ∥T,∥∥∥e−tAψ

∥∥∥
Q2
≤ M̃e−β2∥ψ∥T,

where β j ( j = 1, 2) are chosen as

β j =
d
2

(
1
q j
−

d(r − 1) − 2r
dr

)
.

Therefore, we have that 0 < β2 < 1 < β1 and 1 = (1 − θ̃)β1 + θ̃β2.

We choose γ = 1
m−1 −

d
2r > 0 and by using again the inequality (47) we have∥∥∥e−tAψ

∥∥∥
Q ≤ Ct−γ∥ψ∥Y.

Therefore, e−tAB = e−tA and e−tA satisfy the estimates in Assumption 3.3 i) and ii) respectively.
Lastly, we have

d + 2r
dr

=
1
r
+

2 j
d(m − 1)

+
2(m − 1 − j)

d(m − 1)
.

Therefore, for all u, v ∈ B(0, ρ) ∩ BC(R,Q) =
{
v ∈ BC(R,Y) ∩ BC(R,Q) : ∥v∥∞,Y ≤ ρ

}
by using weak Hölder

inequality we obtain that∥∥∥|u(t)|m−1u(t) − |v(t)|m−1v(t)
∥∥∥

T ≤

m−1∑
j=0

∥∥∥|u(t) − v(t)||u(t)| j|v(t)|m−1− j
∥∥∥

T

≤

∥∥∥|v(t)|m−1
∥∥∥ d

2 ,∞
∥u(t) − v(t)∥Q + ∥|u(t)|m−1

∥ d
2 ,∞
∥u(t) − v(t)∥Q

+

m−2∑
j=1

∥|u(t)| j∥ d(m−1)
2 j ,∞∥|v(t)|m−1− j

∥ d(m−1)
2(m−1− j) ,∞

∥u(t) − v(t)∥Q

≤ ∥|v(t)|m−1
∥ d

2 ,∞
∥u(t) − v(t)∥Q + ∥|u(t)|m−1

∥ d
2 ,∞
∥u(t) − v(t)∥Q

+

m−2∑
j=1

∥u(t)∥ j
d(m−1)

2 ,∞
∥v(t)∥m−1− j

d(m−1)
2 ,∞
∥u(t) − v(t)∥Q

=

m−1∑
j=0

∥u(t)∥ j
Y∥v(t)∥m−1− j

Y ∥u(t) − v(t)∥Q

≤ mρm−1
∥u(t) − v(t)∥Q.

Hence, 1(t,u) = |u(t)|m−1u(t) + F(t) satisfies the Lipschitz condition for G in Assumption 3.3 iii) with C2 =
mρm−1.

Applying the abstract results obtained in Theorem 2.8, Theorem 3.2 and Theorem 3.4 in the previous
sections, we obtain the existence, uniqueness and stability for the pseudo almost periodic mild solution of
equations (44) and (45) in the following theorem:
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Theorem 4.2. Let X = L
d(m−1)

2m ,∞(Rd), Y = L
d(m−1)

2 ,∞(Rd) (where d ≥ 2,m ⩾ 2, m ∈ N) and F ∈ PAP(R,Y), then the
following assertions hold.

(i) The linear equation (45) has a unique pseudo almost periodic mild solution u ∈ PAP(R,Y) such that

∥u(t)∥Y ≤ L̃∥F∥∞,X, t > 0

where L̃ is a positive constant.

(ii) If ∥F∥∞,X and ρ > 0 are small enough, then the semi-linear equation (44) has a unique pseudo almost periodic
mild solution û in the small ball BPAP(0, ρ) of the Banach space PAP(R,Y).

(iii) The above solution û is polynomial stable in the sense that for any other solution u ∈ BC(R,Y) of (44), if ∥û∥∞,Y
and ∥u(0) − û(0)∥Y are small enough, then we have

∥u(t) − û(t)∥Lr,∞(Rd) ⩽
C

t
1

m−1−
d
2r

, t > 0,

where r > d(m−1)
2 .

Remark 4.3. Our abstract results can be also applied to the fluid dynamic equations as in [14, 16].
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