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Abstract. The Tachibana number tp(M) of a closed n-dimensional Riemannian manifold (M, 1) is defined as
the dimension of the vector space of conformally Killing p-forms, for 1 ≤ p ≤ n − 1, on (M, 1). In this paper,
we will prove vanishing and estimate propositions for Tachibana numbers tp(M) of closed n-dimensional
Riemannian manifolds, serving as analogues to the vanishing and estimate theorems for their Betti numbers
bp(M).

1. Introduction

The Tachibana number tp(M) of a closed n-dimensional Riemannian manifold (M, 1) is defined as the
dimension of the vector space over the field of real numbersR of conformally Killing p-forms (1 ≤ p ≤ n−1)
on (M, 1), see [25, 28].

The idea is based on the following concept: the known Betti number bp(M), 0 < p < n, is also equal to the
dimension of the vector space over R of harmonic p-forms defined on (M, 1). At the same time, Tachibana
numbers possess certain duality property tp(M) = tn−p(M), which is similar to the Poincare duality for Betti
numbers bp(M) = bn−p(M) of a closed n-dimensional Riemannian manifold (M, 1).

We recall here that conformal Killing p-forms, or equivalently, conformal Killing-Yano tensors of degree
p on an n-dimensional (1 ≤ p ≤ n − 1) Riemannian manifold (M, 1) were defined by Tachibana and his
student Kashiwada approximately sixty years ago (see [12, 31]) as a natural generalization of conformally
Killing vector fields, or in other words, infinitesimal conformal transformations (see [34, pp. 47–48]).

Conformal Killing p-forms have been extensively studied by many geometers (see, for example, [1,
10, 11, 15, 27, 29], etc.). These studies were motivated by the various applications of these forms (see,
for example, [4, 23, 26], [8, pp. 414, 426], etc.). In particular, Benn and Charlton demonstrated that
conformal Killing-Yano tensors (of any degree p) give rise to Dirac symmetry operators on spin manifolds
of arbitrary dimension and signature (see [4]). A significant focus of these studies was on the conditions
for the vanishing of conformal Killing forms on closed Riemannian manifolds (see [12, 15, 31]).

In this paper, we will prove vanishing and estimate propositions for Tachibana numbers tp(M) of closed
n-dimensional Riemannian manifolds as analogues to the vanishing and estimate theorems of Betti numbers
bp(M) for any 1 ≤ p ≤ n − 1 (see, for example, [34, pp. 70–73], [19, p. 351], [32]).
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2. Conformal Killing forms and Tachibana numbers

2.1 Let (M, 1) be an n-dimensional (n ≥ 2) connected Riemannian manifold with the Levi-Civita connection
∇, andΛpM be the bundle of differential p-forms over (M, 1) for p = 1, 2, . . . ,n−1. Bourguignon in [6] proved
the existence of a basis {D1,D2,D3} in the space of natural (with respect to isometric diffeomorphisms) first-
order differential operators on the space C∞(ΛpM) with values in the space of homogeneous tensors on
(M, 1). The first operator, D1, is the exterior derivative d : C∞(ΛpM)→ C∞(Λp+1M), and the second operator,
D2, is the codifferential δ : C∞(Λp+1M)→ C∞(ΛpM). In contrast, the third basis operator, D3, was not given
explicitly for p > 1. When p = 1, it was mentioned (see [6], Appendix) that the kernel of D3 is formed by the
infinitesimal conformal transformations of (M, 1). In our papers [23] and [22], we utilized some classical
theorems of Weyl about the representation theory of the orthogonal group O(n,R) and showed that the
third operator D3 takes the form

D3 = ∇ −
1

p + 1
d −

1
n − p + 1

1 ∧ δ (1)

where the symbol ∧ denotes the alternating procedure which given by the formula

(1 ∧ δω)(X0,X1, . . . ,Xp) =
p∑

a=2

(−1)a1(X0,Xa)δω(X1, . . . ,Xa−1,Xa+1 . . . ,Xp)

for any vector fields X0,X1, . . . ,Xp ∈ C∞(TM). We proved that the kernel of D3 consists of conformal Killing
p-forms (see, for example, [4, 14, 22, 23]). At the same time, the equation D3 ω = 0 is called the conformal
Killing-Yano equation (see, for example, [4]).

The formal adjoint operator D∗3 for D3 has the form (for details, see [24])

D∗3 = ∇
∗
−

1
p + 1

δ −
1

n − p + 1
d ◦ trace1,

then

D∗3D3 =
p

p + 1

(
∇
∗
∇ −

1
p + 1

δd −
1

n − p + 1
d δ

)
. (2)

We named D∗3D3 as the Tachibana operator (see, for example, [27]). The operator D∗3D3 is an elliptic and
self-adjoint operator defined on differential p-formsω ∈ C∞(ΛpM) for p = 1, . . . ,n−1, and its kernel consists
of conformal Killing p-forms if (M, 1) is a closed Riemannian manifold (see [4, 13, 27]). Therefore, if (M, 1)
is a closed Riemannian manifold, then the dimension of the vector space of conformal Killing p-forms is
tp(M) = dimR ker D∗3D3 < ∞. We recall that tp(M) was referred to as the Tachibana number in [25, 28],
by analogy with the Betti number bp(M) = dimR (ker D1 ∩ ker D2) of a closed manifold (M, 1). In addition,
we can also conclude that tp(M) = tn−p(M), since the conformal Killing-Yano equation is invariant under
Hodge duality (see [4, 15]). Moreover, any tp(M) is a conformal invariant of (M, 1), since if ω ∈ C∞(ΛpM) is
a conformal Killing form, then ω̄ = e(p+1) fω is a conformal Killing p-form with respect to the conformally
equivalent metric 1̄ = e2 f1 (see [4, 15]).
Remark 1 For p = 1 the operator D∗3D3 is the Ahlfors Laplacian (see [7, 20]) and if (M, 1) is a closed manifold,
then its kernel consists of infinitesimal conformal transformations.

2.2 We proved in [29] that the Tachibana number tp(Sn) = (n+2)!
(p+1)!(n−p+1)! for a unit n-dimensional sphere Sn in

Euclidean space Rn+1, and at the same time, tp(Rn/Γ) = n!
p!(n−p)! for 1 ≤ p ≤ n − 1. Moreover, it is known (see

[2]) that any Hamiltonian form on a Kähler manifold defines a conformally Killing 2-form. Utilizing the
global classification of Kähler manifolds that admit a Hamiltonian 2-form (see [3]), it is possible to compile
a list of Kähler manifolds with t2(M) > 1. In addition, if (M, 1) is a four-dimensional closed Riemannian
manifold with a zero Ricci tensor and a nonzero first Betti number b1(M), then t1(M) = t3(M) = 4 and
t2(M) = 6 (see our Corollary 4.3).



J. Mikeš et al. / Filomat 38:31 (2024), 10913–10918 10915

3. Curvature and Tachibana numbers

3.1 In any coordinate neighborhood U on (M, 1) with local coordinate system {x1, . . . , xn
} the metric 1

can be given by its components 1i j = 1(∂i, ∂ j), were ∂i = ∂/∂xi and i, j, k, · · · = 1, . . . ,n. We denote by Ric the
Ricci tensor for the metric 1 of a manifold (M, 1). We construct this tensor by formulas Ri j = Rikl j1

kl for the
components Rikl j = Rm(∂i, ∂k, ∂l, ∂ j) of the Riemann curvature tensor Rm. We also denote by s = 1i jRi j the
scalar curvature of the metric 1 for (1i j) = (1i j)−1.

Let us consider the quadratic form Fp : ΛpM ×ΛpM→ R defined by the equality (see [34, p. 33])

Fp(ω) = Ri jω
i
i2...ipω

ji2...ip −
p − 1

2
Ri jklω

i j
i3...ip
ωkli3...ip , (3)

where ωi1...ip =: 1i1 j1 . . . 1ip jp ω j1... jp for the local components ωi1i2...ip = ω(∂i1 , . . . , ∂ip ) of ω ∈ ΛpM. In turn, Kora
proved the identity (see [15])

Fp(ω) = F n−p(∗ω), (4)

where ∗ : ΛpM→ Λn−pM is the Hodge star operator (see [34, pp. 5-6], [19, p. 162]).
Paper [12] tells us that there are no nonparallel conformally Killing p-forms (p ≤ n/2) on any n-

dimensional closed Riemannian manifold (M, 1) if the quadratic form Fp : ΛpM × ΛpM→ R is nonpositive
everywhere on (M, 1). Furthermore, there are no nonzero conformally Killing p-forms (p ≤ n/2) on any
n-dimensional closed Riemannian manifold (M, 1) if the quadratic form Fp : ΛpM × ΛpM → R is negative
everywhere on (M, 1). In turn, Kora, using (4), generalized this result as follows: if a conformal Killing
p-form ω satisfies Fp(ω) ≤ 0 for any 1 ≤ p ≤ n− 1, then it is parallel. Especially, if Fp(ω) is negative definite,
then there exists no conformal Killing p-form other than the zero form. In particular, tp(Hn) = 0 for the real
closed hyperbolic spaceHn.

3.2 The Riemann curvature tensor Rm of (M, 1) naturally induces two self-adjoint curvature operators: R̂
acts on the space of two-forms Λ2(TxM) at an arbitrary point x ∈M via

R̂(ω)i j = Ri jklω
kl, (5)

and
◦

R acts on the space S2
0(TxM) of trace-free symmetric two-tensors via

◦

R(φ)i j = Rikl jφ
kl. (6)

Following the terminology of Kashiwada and Nishikawa (see [13] and [18]), we call the symmetric bilinear

form
◦

R in (6) the curvature operator of the second kind, to distinguish it from the curvature operator R̂
defined in (5), which Nishikawa called the curvature operator of the first kind.

We can interpret R̂ as the symmetric bilinear form R̂ :Λ2(TxM)×Λ2(TxM)→ R. Then at an arbitrary point
x ∈M we choose orthogonal unit vectors X,Y ∈ TxM, then by direct calculation we obtain 1(R̂(X∧Y),X∧Y) =
4 sec(X,Y) (see [13]). Then it is easy to see that if R̂ ≤ 0 (resp., R̂ < 0) as a symmetric bilinear form onΛ2(TxM),
then the sectional curvature of (M, 1) is non-positive (resp., negative). In this case, the Ricci curvature and
scalar curvature also are non-positive (resp., negative).

On the other hand, we can interpret
◦

R as the symmetric bilinear form
◦

R : S2
0(TxM) × S2

0(TxM) → R. In

this case, by direct calculation we obtain 1(
◦

R(X ⊙ Y),X ⊙ Y) = 2 sec(X,Y), where ⊙ denotes the symmetric

product (see [13]). Then it is easy to see that if
◦

R ≤ 0 (resp.,
◦

R < 0) as a symmetric bilinear form on S2
0M,

then the sectional curvature of (M, 1) is non-positive (resp., negative). In this case, the Ricci curvature and
scalar curvature also are non-positive (resp., negative).

The geometry and topology of manifolds with non-negative or positive operators of both the first
and second kinds have long fascinated scholars in global Riemannian geometry (see [19, Chapters 7-9],
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[5, 13, 16, 18, 21], etc.). In turn, in [30], we provided the classification of connected, complete, locally
irreducible Riemannian manifolds with a nonpositive curvature operator of the first kind that admit L2-
integrable conformal Killing forms. Furthermore, we proved that if the curvature operator of the first
kind (respectively, second kind) is negative, then a closed manifold (M, 1) admits no nonzero conformally
Killing p-forms, and consequently, tp(M) = 0 for p = 1, 2, . . . ,n− 1 (see [25, 26, 29]). These theorems serve as
analogues to the two vanishing theorems for the Betti numbers of closed Riemannian manifolds (see [34,
pp. 70-73], [19, p. 351], [17, 32]).

4. Tachibana numbers of a manifold with nonpositive curvature operator of the second kind

4.1 In this section we generalize our result and results of Kashiwada and Kora in the form of the following
theorem.

Theorem 4.1. Let (M, 1) be an n-dimensional closed connected Riemannian manifold with nonpositive curvature
operator of the second kind. Then, it is either a compact Euclidean space form or tp(M) = 0 for p = 1, 2, . . . ,n − 1.

Proof. For an arbitrary ω ∈ C∞(ΛpM) the following integral formula holds (see formula (8) from [27]):

p + 1
p

∫
M
1(D∗3D3ω,ω)dvol1 + p

∫
M
Fp(ω)dvol1 =∫

M

(
p

p + 1
∥dω∥2 +

n − p
n − p + 1

∥δω∥2
)

dvol1 ≤ 0,

where ∥dω∥2 = 1(dω, dω) and ∥δω∥2 = 1(δω, δω).
Let ω be a conformal Killing p-form, then D∗3D3ω = 0 and, therefore, it satisfies the integral equation

p
∫

M
Fp(ω)dvol1 =

∫
M

(
p

p + 1
∥dω∥2 +

n − p
n − p + 1

∥δω∥2
)

dvol1 ≥ 0. (7)

In turn, Tachibana and Ogiue rewrote the quadratic form Fp(ω) as (see [32])

Fp(ω) =
1
6
1(
◦

R(φ̄), φ̄) +
2p(n − 2p)

3n
Ri jω

i
i2...ipω

ji2...ip +
2p2

3n2 s ∥ω∥2, (8)

where φ̄ := φ[i1i2...ip] is the symmetric trace less two-tensor with local components

φ
[i1i2...ip]
jk =

p∑
a=1

(
ωi1i2...ia−1 jia+1...ip 1kia + ωi1i2...ia−1kia+1...ip 1 jia

)
−

2p
n
1 jkωi1i2...ip

for each set of values of indices [i1i2 . . . ip] such that 1 ≤ i1 < i2 < · · · < ip ≤ n. Next, if we assume that (M, 1)
has a non-positive curvature operator of the second kind, thenFp(ω) ≤ 0 for n ≥ 2p. Furthermore, using (4),
we conclude that the inequality Fp(ω) ≤ 0 holds for any p = 1, 2, . . . ,n − 1.

In this case, from (7) we obtain Fp(ω) = 0,∇ω = 0 and hence ∥ω∥2 = const for any p = 1, 2, . . . ,n − 1. In

this case, from (8) we derive the identity s · ∥ω∥2 = 0 for ω ∈ C∞(ΛpM), since
◦

R, Ric and s are non-positive.
If there is at least one point x ∈M at which s(x) < 0, then ωmust be equal to zero at the point x ∈M. In this
case ω is equal to zero everywhere on (M, 1), since ∥ω∥2 = const. As a result, we can conclude that the p-th
Tachibana number tp(M) = 0 for any p = 1, 2, . . . ,n − 1. Consequently, (M, 1) admits no non-zero conformal
Killing p-forms for all 1 ≤ p ≤ n − 1. Otherwise, we have s =

∑
i, j sec(ei, e j) = 0, where sec(ei, e j) ≤ 0 and

e1, . . . , en is any orthonormal basis of TxM at an arbitrary point x ∈ M. Then (M, 1) is a manifold with zero
sectional curvature. This is equivalent to saying that the Riemannian curvature tensor vanishes. Therefore,
(M, 1) is a closed connected flat Riemannian manifold and, hence, is isometric to a quotientRn/Γ, where Γ is
a group of isometries acting freely and properly discontinuously (see [33, pp. 68-69]). These manifolds are
known as compact Euclidean space forms (see also [33, pp. 105; 125]). Our theorem has been proven.
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Remark 3 For the harmonic p-form ω ∈ C∞(ΛpM), the integral formula, similar to formula (7), has the form
(see [34, p. 70]):

p
∫

M
Fp(ω)dvol1 = −

∫
M
∥∇ω∥2dvol1 ≤ 0. (9)

Therefore, by using equations (8) and (9), it is straightforward to prove the following proposition (cf.
[17]): Let (M, 1) be an n-dimensional closed connected Riemannian manifold with a nonnegative curvature
operator of the second kind. Then, it is either a compact Euclidean space form or bp(M) = 0 for all
p = 1, 2, . . . ,n − 1.

4.2 In addition, the following corollary is true.

Corollary 4.2. Let (M, 1) be an n-dimensional closed connected Riemannian manifold with nonpositive curvature
operator of the second kind. If its Tachibana number tp(M) , 0 for some 1 ≤ p ≤ n − 1, then it is the boundary of a
compact Riemannian manifold.

Proof. Let us consider an n-dimensional closed Riemannian manifold (M, 1) with a non-negative curvature
operator of the second kind and tp(M) , 0 for some p , 0,n. In this case, from equation (7) and (8), we
derive the identity s · ∥ω∥2 = 0 for a non-zero conformal Killing form ω ∈ C∞(ΛpM). Then s = 0 everywhere
on (M, 1), and consequently, the sectional curvature of (M, 1) also identically vanishes everywhere on (M, 1).
Thus, (M, 1) is a flat manifold (see also [31]). At the same time, as proven in [9], every closed, connected
and flat Riemannian manifold is the boundary of a compact manifold. As a result, our first corollary has
been proven.

Remark 4 By using equations (8) and (9), it is straightforward to prove the following proposition: Let (M, 1)
be an n-dimensional closed and connected Riemannian manifold with nonnegative curvature operator of
the second kind. If its Betti number bp(M) , 0 for some 1 ≤ p ≤ n − 1, then it is the boundary of a compact
Riemannian manifold.

And finally, we formulate and prove our last proposition.

Corollary 4.3. Let (M, 1) be a four-dimensional closed Riemannian manifold with zero Ricci tensor and nonzero first
Betti number b1(M), then t1(M) = t3(M) = 4 and t2(M) = 6.

Proof. It is well known (see [35]) that every closed four-dimensional Riemannian manifold with zero Ricci
tensor and nonzero first Betti number is flat or in other words, is an n-dimensional Euclidean space form.
Moreover, if (M, 1) is an n-dimensional Euclidean space form, then tp(M) = n!

p!(n−p)! for 1 ≤ p ≤ n − 1
(see [28]). This proposition follows from the fact that we may choose a local coordinate system x1, . . . , xn

in which ∇kωi1...ip := ∂kωi1...ip = 0 (see [33, pp. 44-45]) , [30, p. 212]). In particular, a parallel form is a
conformal Killing form. Then the Tachibana number estimate follows from the fact that a parallel form is
completely determined by its value at a point. Then t1(M) = t3(M) = 4 and t2(M) = 6 if (M, 1) is a closed
four-dimensional Euclidean space form. Our second corollary has been proven.

Remark 5 Based on the property of parallelism, if a form is parallel, its value at any point on the manifold
can be obtained from its value at a specific point through parallel transport. Thus, knowing the form at one
point allows the entire form on the manifold to be completely reconstructed. This property has important
implications in Riemannian geometry and global analysis, as it allows for the simplification of studying the
geometric and analytical properties of manifolds by using local data of the form to gain information about
its global properties.
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