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Abstract. The geometrical eigenproblem (G-eigenproblem) is validated as an extension of the classical
eigenproblem of a linear operator within Euclidean vector space. It is homogeneous and invariant, making
it efficient and advantageous for tensors describing real phenomena, regardless of the representation, while
determining their eigenspaces. The G-eigenproblem in Riemannian space will be defined not only for
covariant tensors but also for mixed and contravariant ones. Achievements will be discussed and related
to higher-order unit tensors.

1. Introduction

Higher Order Tensor Spectral Analysis (HOTSA) has been approved as a highly applicable and valuable
theory in various fields, including image processing [9, 20, 25], data analysis [8, 13, 14], physics [7, 21], and
stability theory of nonlinear autonomous systems [12, 24]. The core concept involves generalizing the
classical eigenproblem Ax = λx, from the matrix to the tensor framework. Tensors are commonly treated as
multidimensional arrays or multilinear operators in vector space with Euclidean metric. Only the researches
presented in [1, 2, 22, 23] consider eigenproblems of tensors as multilinear operators in non-Euclidean vector
spaces.

The generalizations are motivated and approached in different ways, leading to diverse definitions.
They all involve a real m-th order totally symmetric covariant tensor A in n-dimensional space, and its
contraction with a rank-one tensor zm−1 = z ⊗ z ⊗ . . . ⊗ z of order (m − 1) produced by a vector z, i.e. an
incomplete action of the tensor, A(·, z, z, . . . , z). However, the resulting expression Azm−1 is compared to
various objects depending on the specific generalization.

The following are generalizations consistent with this research:
• Z-eigenvalue problem [3, 4, 16, 18, 21, 24]
• Generalized tensor eigenvalue problem [5, 6, 10, 11, 15, 26]
• D-eigenvalue problem [17, 19, 21, 27]
• Geometrical eigenproblem [23].

These are listed together with the main references that provide comprehensive insights into the topic.
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This work is a continuation of the research presented in [23], building upon the foundational notions
introduced in the previous study. The main aim is to further discuss the geometrical eigenproblem concern-
ing different types of tensors, and to position it in relation to the other listed eigenproblems. A comparative
overview of the listed eigenproblems is provided, with a focus on highlighting both the shared concepts
and the distinct differences between them. Specifically, the geometrical eigenproblem is a generalization
of the Z-eigenproblem, it also encompasses the D-eigenproblem, and it is a special case of the generalized
tensor eigenvalue problem.

A key contribution of this work is the confirmation that the framework of the geometrical eigenproblem
can be adjusted to involve tensors of a more general type than totally symmetric covariant ones. This
adjustment broadens the scope of the geometrical eigenproblem, making it applicable to a wider range of
mathematical and physical contexts.

Furthermore, the work includes specific observations on higher-order unit tensors, which are integral
to the discussion of the geometrical eigenproblem. In the course of observing geometrical eigenproblem of
even order, a particular tensor has been identified that shares many analogous properties with the identity
mapping/unit matrix/Kronecker delta tensor. It is therefore justified to refer to it as the higher-order unit
tensor or the higher-order Kronecker delta tensor. These observations provide additional insights into
the structure of the geometrical eigenproblem, contribute to its global consideration over a Riemannian
manifold, and enable the use of tensor analysis.

This research reveals several open questions and potential directions for further work.

2. Various eigenproblems in flat space

Eigenproblems in flat space have been discussed and explored extensively over the last two decades.
These efforts have resulted in significant developments in theory, the discovery of new application domains,
and the development of innovative solving procedures and algorithms. Only the details that are of current
interest are presented here. A comprehensive theory can be found in the book [21] and the references
therein.

2.1. Z-eigenvalue problem
It is defined generally and covers a wide range of applications, with many solving techniques having

been developed. It concerns a tensor in a flat vector space, meaning that all objects are treated equally, with
no distinction between covariant and contravariant nature. The resulting vector Azm−1 is required to be
proportional to the initial vector, with an additional condition of normality:{

Azm−1 = λz
zTz = 1. (1)

Real solutions are of greater interest and are referred to as Z-eigenvalueλ and Z-eigenvector z, but the occur-
rence of complex solutions is possible, in which case they are referred to as E-eigenvalue and E-eigenvector.
The Z-eigenvalue problem depends on the representation (on the chosen base in the vector space), but
the corresponding Z-eigenvalues do not (they are invariant with respect to orthogonal transformations),
and the corresponding Z-eigenvectors have practical significance. It is of interest to observe Z-spectra
σZ(A) = {λ | Azm−1 = λz} and Z-spectral radius ρZ(A) = max

λ∈σZ(A)
|λ|. Inclusion sets specify localization of the

Z-eigenvalues, making them very useful in solving procedures. However, the definition does not satisfy
the homogeneity property, which means that eigenspaces cannot be considered.

2.2. Generalized tensor eigenvalue problem
It has in focus two higher order tensors in the same n-dimensional vector space,A of order m and B of

order m′. The problem under consideration is defined by:{
Azm−1 = λBzm′−1

Bzm′ = 1, (2)
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with the assumption that both tensorsA andB are regular, meaning thatAzm−1 = 0 andBzm′−1 = 0 have no
nonzero complex solutions. The requirement Bzm′ = 1 is optional, and may be omitted. The solutions are
referred to as B-eigenvalue λ and B-eigenvector z. The generalized tensor eigenvalue problem is a vector
equation, and it is invariant if tensors are treated as multilinear transformations. Hence, B-spectra σB(A)
and B-spectral radius ρB(A) are determined in analogously with the Z-eigenproblem. In the case m = m′ the
eigenproblem (2) is homogeneous and one-dimensional B-eigenspaces are determined as invariant subset
spanned by B-eigenvectors, Sλ = {αz |α ∈ R}.

2.3. D-eigenvalue problem

It is defined in accordance with the particular problem of spin-echo signal attenuation in an anisotropic
biological medium (brain or neural tissue). The signal attenuation is determined by a totally symmetric
fourth order diffusion kurtosis tensor,W, and a diffusion tensorD (of second order, symmetric and positive
definite) which describes structure of the tissue. The D-eigenvalue problem is given by:{

Wz3 = λDz
Dz2 = 1 (3)

The D-eigenvalues λ and D-eigenvectors z of the diffusion kurtosis tensor are important parameters in
medical imaging and in diagnosing neurological conditions through MRI-based techniques.

3. Eigenproblem in Riemannian space

Due to the invariance of the Z-eigenvalues and the widespread applicability of the Z-eigenproblem, it has
been adjusted to non-Euclidean vector spaces. The geometrical eigenproblem also enables the observation
over Riannian manifolds.

The content is consistent with the findings in [23]. After the briefly presented basics, the theory
is expanded by exploring the characteristic polynomial of tensor and various equivalent forms of the
geometric eigenproblem suitable for both local and global analysis and solving. As the framework of the
geometrical eigenproblem is well established, it allows definition of geometrical eigenvalues, eigenvectors
and eigencovectors of a higher order tensor of any type. Unit tensor of (higher) even order as a multilinear
operator will be discussed.

3.1. Geometrical eigenproblem of covariant totally symmetric tensor

The geometrical eigenproblem is developed as an invariant and homogeneous extension of the Z-
eigenproblem, extending from a flat vector space toward a Riemannian manifold (M, 1). It is the only
definition that distinguishes objects by nature, whether they are covariant or contravariant.

A framework for the geometrical eigenproblem, which will be the default in the sequel, consists of:
• an n-dimensional Riemannian manifold (M, 1) with the tangent bundle TM and the cotangent bundle

T∗M;
• the metric tensor field 1 ∈ T 0

2 (M) having the corresponding inverse metric tensor field 1−1
∈ T

2
0 (M);

• a collection of the symmetric bilinear forms - the metric 1 defines at each point x ∈ M the scalar
product 1 : TxM × TxM → R, (u, v) 7→ ⟨u, v⟩ = 1uv = 1i juiv j where 1i j(x) are the components of the
metric tensor at the point x;

• a collection of norms - a vector v ∈ TxM has the norm ∥v∥ =
√
⟨v, v⟩, i.e. ∥v∥2 = 1v2 = 1i jviv j;

• natural isomorphism between the tangent and cotangent bundle - for a vector field z ∈ T 1
0 (M) the

contraction z♭ = 1z produces corresponding covector field z♭ ∈ T 0
1 (M);

• musical isomorphism between tensor bundles - lowering (♭) and raising (♯) indices of a tensor field
by contraction with 1 and contraction with 1−1 , respectively.

Geometrical eigenproblem is defined globally, over the manifold.



J. Stojanov / Filomat 38:32 (2024), 11367–11375 11370

Definition 3.1. The geometrical eigenproblem (G-eigenproblem) for an m-th order totally symmetric covariant tensor
fieldA ∈ T 0

m(M) is defined by :
A
♯zm−1 = λ ∥z∥m−2 z,

whereA♯ = 1−1
A, or equivalently

Azm−1 = λ ∥z∥m−2 z♭. (4)

Since the tensor field depends on the points of the manifold, solving the geometrical eigenproblem
requires a local consideration. Let a point x ∈M be covered by a local chart where a tangent vector z on the
manifold M at the point x has the coordinates z = (z1, z2, . . . , zn), the metric tensor has components 1i j (and
its inverse 1i j), and the tensorA has the components Ai1i2···im , where i1, i2 · · · im ∈ {1, 2, · · · ,n}. The multilinear
mapping determined by the tensor at a point x ∈M,

A : TxM ⊗ . . . ⊗ TxM→ R, A(v1, . . . , vm) = Ai1i2···im vi1
1 · · · v

im
m ∈ R

has the associated endomorphism

A
♯ : TxM→ TxM, A♯(v) = 1−1

Avm−1 =
(
1ii1 Ai1i2···im vi2 · · · vim

)
.

The coordinate representation of the geometrical eigenproblem (4) within a Riemannian space
(
TxM, 1(x)

)
can be expressed in the covectorial form

Ai1i2···im zi2 · · · zim = λ ∥z∥m−2
1i1 jz j, (5)

or in the vectorial form

1i1 jAi1i2···im zi2 · · · zim = λ ∥z∥m−2 z j. (6)

Definition 3.2. The real solutions λ and z to the geometrical eigenproblem (5) and (6) are respectively called G-
eigenvalue and associated G-eigenvector. The pair (λ, z) is referred to as G-eigenpair or G-eigendata of the tensorA
at the point x.

Spectra and spectral radius are defined analogously with the Z-case. In the even case (m = 2l), the
geometrical eigenproblem is homogeneous, while in the odd case it is positively homogeneous, with
eigenvalues occurring in pairs of mutually opposite values. Consequently, eigenspaces exist and are
spanned by G-eigenvectors. Since the geometrical eigenproblem is homogeneous, it can be supplemented
with a normalizing condition and further reduced to:{

Azm−1 = λz♭

∥z∥2 = 1.
(7)

By choosing a local representation such that the metric is Euclidean, the geometrical eigenproblem ob-
viously reduces to the Z-eigenproblem (1). The equivalence of the Z-eigenproblem and the geometrical
eigenproblem in the appropriate local representation directly leads to the concept of the E-characteristic
polynomial.

Definition 3.3. An univariate polynomial in λ is the E-characteristic polynomial of the tensor A in a Riemannian
space with a metric tensor 1 if it is the resultant of the following homogeneous polynomial system:

• m-even: Azm−1
− λ ∥z∥m−2 z♭ = 0;

• m-odd:
{
Azm−1

− λtm−2z♭ = 0,
∥z∥2 − t2 = 0.
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A real number is a zero of the E-characteristic polynomial if and only if it is a G-eigenvalue of the geo-
metrical eigenproblem. The theory of resultants within algebraic geometry confirms the existence of the
G-eigenvalues. The fundamental properties concerning invariance and homogeneity of the geometrical
eigenproblem are omitted for brevity. They are exposed in [23], where the correspondence between the
geometrical and the Z- eigenproblem is also given in detail.

There is a full analogy between (3) and (7). The diffusion tensor D represent the spatial feature, so it
is reasonable to treat (R3,D) as a Riemannian space. Therefore, D-eigenproblem is a proper geometrical
eigenproblem of the fourth order diffusion kurtosis tensorW in the Riemannian space (S,D), where S ⊂ R3

is an open domain.
The tensor equation that defines the geometrical eigenproblem, whether considered locally or globally,

has several useful and favorable equivalent forms. These are presented in the following theorem, which is
aligned with the previous notation.

Theorem 3.4. Let A be an even order (m = 2l) totally symmetric tensor field in a Riemannian manifold (M, 1).
Then:

1. The geometrical eigenproblem considered locally at a point (5) and (6), is equivalent with the two following
homogeneous polynomial systems:

1i1 j (Ai1i2···im − λ1i1i2 · · · 1im−1im
)

zi2 · · · zim = 0, (8)

(
Ai1i2···im − λ1i1i2 · · · 1im−1im

)
zi2 · · · zim = 0, (9)

2. The geometrical eigenproblem (4) has the following equivalent coordinate-independent forms:

a) global vector equation(
A
♯
− λU

)
zm−1 = 0, (10)

b) global covector equation

(A− λ ♭U) zm−1 = 0, (11)

whereU ∈ T 1
m−1(M) is the tensor field obtained by the tensor product of the Kronecker delta tensor1) δ ∈ T 1

1 (M)
and multiple metric tensor fields 1, and ♭U = 1U, and the components are U j

i2···im
= δ j

i2
1i3i4 · · · 1im−1im and

(♭U)i1i2···im = 1i1i2 · · · 1im−1im .

3. The E-characteristic polynomial of the geometrical eigenproblem at a point is the resultant of the homogeneous
polynomial systems (8) and (9).

Proof. The proof relies on the local expression of the righthand side term

∥z∥m−2 =
(
1i jziz j

)m−2
= 1i3i4 zi3 zi4 · · · 1im−1im zim−1 zim = 1i3i4 · · · 1im−1im zi3 zi4 · · · zim−1 zim . (12)

The substitution into (6) yields

1i1 jAi1i2···im zi2 · · · zim − λz j1i3i4 · · · 1im−1im zi3 zi4 · · · zim−1 zim = 0.

The fact z j = δ j
i2

zi2 further produces

1i1 jAi1i2···im zi2 · · · zim − λδ j
i2
1i3i4 · · · 1im−1im zi2 zi3 · · · zim = 0. (13)

1)Kronecker delta tensor is a constant tensor field over the manifold
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By replacing δ j
i2
= 1i1 j1i1i2 into (13), one obtains (8). Associated coordinate-independent form of (13) is(

A
♯
− λU

)
(·, z, . . . , z) = 0, i.e. the relation (10).

The substitution of (12) into (5) gives

Ai1i2···im zi2 · · · zim − λ1i1 jz j1i3i4 · · · 1im−1im zi3 zi4 · · · zim−1 zim1ii2 zi2 = 0.

By use of the equality 1i1 jz j = 1i1i2 zi2 , the previous equation transforms to (9), whose coordinate-independent
form is (A− λ♭U) (·, z, . . . , z) = 0, i.e. the relation (11).

The third statement of the theorem is direct consequence of the first one.

The distinguished tensor fields U and ♭U are additionally considered in the last subsection. The
smoothness of the solutions is not considered at this stage of the research; therefore, the equations (10)
and (11) cannot be referred to as vector and covector field equations. Tensor analysis can be applied to the
equations (11) and (10), providing insights into the global solution to the geometrical eigenproblem. It is of
interest to explore under what conditions the G-eigendata form scalar and vector fields over the manifold.

Relation (11) confirms that the geometrical eigenproblem is a specific case of generalized tensor eigen-
value problem (2) with B = ♭U.

3.2. Geometrical eigenproblem of contravariant and mixed tensors
A tensorA of any type in Riemannian space has a unique associate covariant tensor, denoted ♭A, and

obtained by the multiple contraction of the tensor products with the metric tensor. For example, ifA ∈ T 3
2 ,

then ♭A = 111A is covariant tensor of the fifth order. Hence, all further content refers to a tensor A of
any (higher) order and any type, and its corresponding ♭A. (If A is covariant, then ♭A = A.) Due to the
natural isomorphism between tangent and cotangent bundles of a Riemannian manifold, the geometrical
eigenproblem has a flexible approach to dual objects.

Definition 3.5. LetA be a tensor in a Riemannian space with metric 1, such that ♭A is totally symmetric. If (λ, z)
is a G-eigenpair of the tensor ♭A, then:

• the covector ω = z♭ = 1z is called a G-eigencovector of the tensor ♭A.

• the scalarλ is called a G-eigenvalue, and z andω are called the corresponding G-eigenvector and G-eigencovector
of the tensorA.

Therefore, if (λ, z, ω) is a G-eigendata of the tensorA, one can write:

• for the covariant tensor: Azm−1 = λω and Azm = λ

• for the contravariant tensor: Aωm−1 = λz and Aωm = λ

• for the tensor that is p times contravariant and m − p times covariant: Azm−p−1ωp = λz and
Azm−pωp−1 = λω and Azm−pωp = λ.

The geometrical eigenproblem also extends to cases where ♭A is not totally symmetric. The following
definition is consistent with the notion of the k-mode Z-eigenvalues in flat space as presented in [16], and
generalizes it.

Definition 3.6. The k-mode geometrical eigenproblem of an arbitrary tensor A of order m and any type in a
Riemannian space with metric tensor 1 is given by:

(♭A)i1i2···im zi1 · · · zik−1 zik+1 · · · zim = λ ∥z∥m−2 za1aik . (14)

The solution to this problem is the k-mode G-eigendata that consists of the k-mode G-eigenvalue λ and the k-mode
G-eigenvector z. The corresponding covectorω = 1z is the k-mode G-eigencovector. If (λ, z) is the k-mode G-eigendata
for all modes k ∈ {1, 2, . . . ,m}, then (λ, z) is called the G-eigendata of the tensorA.
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3.3. On the higher order unit tensor

This consideration is motivated by the analogy between the classical eigenproblem related with matrices
and the relation (10). To increase the consistency of the subsection, detailed definition of the tensor fieldU
mentioned in Theorem 3.4 is provided.

Definition 3.7. Let (M, 1) be a Riemannian manifold, and m = 2l for l ≥ 1. The tensor fields of the m-th order
obtained by the tensor products of the Kronecker delta tensor and the metric tensor field 1, will be denoted as follows:

U = δ ⊗ 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
l−1

, U ∈ T
1
m−1(M),

♭U = 1 ⊗ · · · ⊗ 1︸      ︷︷      ︸
l

, ♭U ∈ Tm(M).

The tensor field U and its corresponding flat tensor field ♭U smoothly depend on the points of the
Riemaniann manifold. The components of the associated tensors at a point x ∈M are:

Ui
i2···im = δ

i
i21i3i4 · . . . · 1im−1im and (♭U)i1i2···im = 1i1i2 · . . . · 1im−1im .

The multilinear mapping and the associated endomorphism determined at a point x ∈ M by the tensor
fields ♭U andU are given by:

♭U : TxM ⊗ . . . ⊗ TxM→ R, ♭U(v1, . . . , vm) = 1i1i2 vi1
1 vi2

2 · . . . · 1im−1im vim−1
m−1vim

m ∈ R (15)

and

U : TxM→ TxM, U(v) =Uvm−1 =U(·, v, . . . , v) = δi
i2 vi2 · 1i3i4 vi3 vi4 · . . . · 1im−1im vim−1 vim = ∥v∥m−2

· v. (16)

Important features of the tensor field U and its associated covariant ♭U are outlined in the following
theorem, consistent with the previous notation.

Theorem 3.8. Let (M, 1) be a Riemannian manifold with the tensor fieldU of even order m = 2l, l > 1. Then:

1. The tensor ♭U is not totally symmetric, but it is symmetric in pairs.

2. The multilinear mapping ♭U is a multilpe scalar product:

♭U(v1, v2, . . . , vm) = ⟨v1, v2⟩ · · · ⟨vm−1, vm⟩.

For a single argument it produces powered norm,

♭U(v, v, . . . , v) =Uvm = ∥v∥m

3. The restriction of the endomorphism U on the unit sphere S = {v | ∥v∥ = 1} ⊂ Tx(M) coincides with the
identical mapping I : S→ S, I(v) = (δi

jv
j) = v.

4. The tensorsU and ♭U have the G-eigenvalue λ = 1 and all vectors are corresponding G-eigenvectors.

5. In the local representation where the metric is Euclidean, the components of the both tensorsU and ♭U form a
hypermatrix with 1 on the main diagonal and 0 elsewhere2).

2)This hypermatrix is commonly used in the literature as the higher-order unit tensor.
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6. LetA be a covariant totally symmetric tensor field of the same order m. Then the E-characteristic polynomial ofA
is influenced byU, it coincides with the resultant of the homogeneous polynomial system

(
A
♯
− λU

)
zm−1 = 0.

A scalar λ is G-eigenvalue ofA if and only if
(
A
♯
− λU

)
zm−1 has a nonzero solution.

Proof.

1. The symmetry within each pair of indices arises from the symmetry of the metric tensor. The right-
hand side of equation (15) is determined by the multiplication of k terms, which is commutative,
yielding symmetry between pairs.

2. Both equalities are immediate consequences of relation (15) when considering the definitions of scalar
product and norm.

3. The statement is a direct consequence of the relation (16).

4. It is evident that any vector z is a solution to (10) whenA♯ =U (i.e. A = ♭U) and λ = 1.

5. If 1i j = δi j, then

U j
i2···im
= δ j

i2
1i3i4 · · · 1im−1im =

{
1, j= i2= · · ·= im,
0, otherwise,

and

(♭U)i1i2···im = 1i1i2 · · · 1im−1im =

{
1, i1= i2= · · ·= im,
0, otherwise.

6. This is simply a reformulation of statements 1 and 3 in Theorem 3.4.

Given the obvious benefits of the tensorU and its analogies to the identity mapping and the Kronecker
delta tensor, it could be referred to as the higher-order unit tensor or the higher-order Kronecker delta
tensor.

Just as the characteristic matrix A−λI captures essential properties of a matrix A, the tensor fieldA♯−λU
(and A− λ♭U ) could provide valuable information on G-eigendata of the tensor field A, or of the tensor
at each point on the manifold. Tensor analysis tools contribute for the computation of G-eigendata in a
coordinate-independent manner, ensuring that the results are intrinsic to the manifold. Furthermore, G-
eigendata are closely related with the best rank-one approximation and tensor decomposition. Therefore,
it is beneficial to use tensor analysis within higher order tensor spectral analysis for a comprehensive
understanding of a tensor field.
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