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Abstract. This work will investigate the existence of positive solutions for a fractional boundary value
problem, including a conformable fractional differential equation with an integral boundary condition. To
reach the desired results, Krasnoselskii’s, Schaefer and Legget-Williams fixed-point theorems on cones
will be used. Some examples will be given to point out the results.

1. Introduction

The theory of fractional differential equations has received much attention over the past years due to its
numerous applications in a great number of areas as control theory, signal and image processing, physics,
and even chemistry and economics. Such applications have been described in a number of monographs,
see [2–8, 23, 25–28, 32, 33, 37].
Numerous operators such as Riemann-Liouville, Caputo, Grünwald–Letnikov and etc., have been intro-
duced to generalize the derivative of the natural order to the derivative of the fractional order. Recently, the
new definition of a conformable fractional derivative, given by [1, 24, 36, 38–40], has drawn much interest
from many mathematicians and scientists. In the recent years, various papers have been presented about
the fractional boundary value problems (see [9–11, 13–15, 17, 19, 30, 34, 35, 43]. However, few papers have
been published about the existence and uniqueness of the solutions and positive solutions of differential
equations with conformable fractional derivatives [12, 16, 18, 22, 41].

Recently, in [42], authors discussed the existence of positive solutions for the following problem (with
conformable derivative):

Dϑχ(τ) + φ(τ, χ(τ)) = 0, τ ∈ [0, 1];ϑ ∈ (1, 2],

χ(0) = 0;χ(1) = λ
∫ 1

0
χ(τ)dτ, (1)

where Dϑχ(τ) denotes the conformable fractional derivative of a functionχ of orderϑ, andφ : [0; 1]×[0; 1)→
[0; 1) is a continuous function. Employing a fixed point theorem in a cone, they established some criteria
for the existence of at least one positive solution.
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Very recently in [21], by using some fixed point theorems on cones, Faouzi Haddouchi obtained results
about the existence of positive solutions of the following boundary value problem including fractional
differential equation with conformable derivative.

Dϑχ(τ) + φ(τ, χ(τ)) = 0, τ ∈ [0, 1];ϑ ∈ (1, 2],

χ(0) = 0;χ(1) = λ
∫ ζ

0
χ(τ)dτ, 0 < ζ < 1,

where, φ : [0; 1] × [0; 1) → [0; 1) is a continuous function. It is mentioned that the integral boundary
condition of this problem depends on the parameter ζ, while the limits of the integral boundary condi-
tion of the problem (1) are constant.

With inspiration from the above works, in this paper existence and multiplicity of solutions for the
following boundary value problem will be discussed:

Dϑχ(τ) + θ(τ)φ(τ, χ(τ)) = 0, τ ∈ (0, 1),

χ(0) = x′(0) = 0, χ(1) = λ
∫ ζ

0
χ(τ)dτ, (2)

where 2 < ϑ ≤ 3, 0 < ζ < 1, Dϑ is the conformable fractional derivative of χ at τ of order ϑ, φ ∈
C([0, 1] × [0,∞), [0,∞)), θ ∈ C([0, 1], [0,∞)) with some property and λ < 3

ζ3 .
The rest of the paper is organized as: In section 2, some preliminary facts that will be used in this

paper will be presented. In section 3, the green function of (2) will be computed and some aspects of it
will be proved. In section 4, by using some fixed point theorems, our existence results will be proved.
Finally, In section 5, two examples will be presented to make clear the existence theorems.

2. Preliminaries

In this section, we present some definitions and properties of fractional derivatives that will be helpful
throughout the paper and can be found in [1, 24].

Definition 2.1. Let 0 < ϑ ≤ 1, the conformable derivative of a mapping φ : [0,∞)→ R of order ϑ is presented by

Dϑφ(τ) = lim
ϵ→0

φ(τ + ϵτ1−ϑ) − φ(τ)
ϵ

. (3)

If Dϑφ(τ) exists on (0, b), then Dϑφ(0) = limt→0 Dϑφ(τ).

Definition 2.2. Let n < ϑ ≤ n + 1, the conformable derivative for φ : [0,∞)→ R defined by

Dϑφ(τ) = Dβφ(n)(τ),

where β = ϑ − n.

Definition 2.3. Let n < ϑ ≤ n + 1, the conformable integral for φ : [0,∞)→ R of order ϑ is defined by

Iϑφ(τ) =
1
n!

∫ t

0
(τ − ς)nςϑ−n−1φ(ς)dς.

Lemma 2.4. Let ϑ ∈ (n,n + 1]. If φ is a continuous function on [0,∞), then for all t > 0,DϑIϑφ(τ) = φ(τ).

Lemma 2.5. Let ϑ ∈ (n,n + 1], then Dϑτk = 0 for τ ∈ [0, 1] and k = 1, 2, . . . ,n.
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Lemma 2.6. (See [37]) Let ϑ ∈ (n,n + 1]. If Dϑφ(τ) is continuous on [0,∞), then

IϑDϑφ(τ) = φ(τ) + C1 + C2τ
2 + · · · + Cnτ

n,

for some real numbers.

Throughout this paper, we assume that B is equal to Banach space of all real continuous functions on
[0, 1] which is equipped with the following supremum norm

∥χ∥ = sup
τ∈[0,1]

|χ(τ)|.

Definition 2.7. Assume ℘ ⊂ B be a nonempty, closed, convex set and λ ≥ 0, ℘ is called a cone if

(i) χ ∈ ℘ implies λχ ∈ ℘;

(ii) χ ∈ ℘ and −χ ∈ ℘ implies χ = 0.

Also considering c be arbitrary number we define ℘c as follows:

℘c = {χ ∈ K : ∥χ∥ < c}. (4)

Theorem 2.8. (Krasnoselskii’s)[29] Assume ℘ ⊂ B be a cone and let Ω1 and Ω2 be open subsets of B such that
0 ∈ Ω1,Ω1 ⊂ Ω2, also let

ℑ : P ∩ (Ω2 \Ω1)→ P,

be a completely continuous operator with the following properties:

(i) ∥ℑχ∥ ≤ ∥χ∥, χ ∈ ℘ ∩ ∂Ω1, and ∥ℑχ∥ ≥ ∥χ∥, χ ∈ ℘ ∩ ∂Ω2; or

(ii) ∥ℑχ∥ ≥ ∥χ∥, χ ∈ ℘ ∩ ∂Ω1, and ∥ℑχ∥ ≤ ∥χ∥, χ ∈ ℘ ∩ ∂Ω2.

Then ℑ has a fixed point in ℘ ∩ (Ω2 \Ω1).

Theorem 2.9. (Schaefer)[20] Suppose E be a closed convex subset of Bnach space B and U an open subset of E and
0 ∈ U. If ℑ : U→ E be a continuous, compact, then either

(i) ℑ has a fixed point in U,

or

(ii) There exist χ ∈ ∂U and λ ∈ (0, 1) such that u = λℑ(χ).

Theorem 2.10. (Legget-Williams) [31] Suppose ℘ is a cone and ℑ : ℘c → ℘c be a completely continuous operator
and ψ a nonnegative continuous concave on cone ℘ with ψ(χ) ≤ ∥χ∥ for χ in ℘c. Assume that there exist constants
0 < a < b < d ≤ c with the following property:

(i) {χ ∈ P(ψ, b, d) : ψ(χ) > b} , 0 and ψ(ℑχ) > b if χ ∈ P(ψ, b, d),

(ii) ∥ℑχ∥ < a if χ ∈ Pa,

(iii) ψ(ℑχ) > b for χ ∈ P(ψ, b, c) with ∥ℑχ∥ > d.

Then, there exist some fixed points χ1, χ2 and χ3 for χ such that ∥χ1∥ < a, b < ψ(χ2) and ∥χ3∥ > a with ψ(χ3) < b.
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3. Green Function and Bounds

Green’s function plays the most fundamental role in applying fixed point theorems for differential
equations operators, so we first introduce this function and investigate its characteristics.

Lemma 3.1. Let ϱ : [0, 1]→ [0,∞) be a continuous function, then the FBVP

Dϑχ(τ) + ϱ(τ) = 0, τ ∈ (0, 1), 2 < ϑ ≤ 3,

χ(0) = χ′(0) = 0, χ(1) =
∫ ζ

0
χ(τ)dτ, 0 < ζ < 1, (5)

is equivalent with

χ(τ) =
∫ 1

0
G(τ, ς)ϱ(ς)dς, (6)

where

G(τ, ς) = K(τ, ς) +
λτ2

6 − 2λζ3 H(ζ, ς), (7)

K(τ, ς) =
{

1
2 [τ2(1 − ς)2ςϑ−3

− (τ − ς)2ςϑ−3], 0 ≤ ς ≤ τ ≤ 1,
1
2τ

2(1 − ς)2ςϑ−3, 0 ≤ τ ≤ ς ≤ 1,
(8)

H(ζ, ς)
{
ζ3(1 − ς)2ςϑ−3

− (ζ − ς)3ςϑ−3, 0 ≤ ς ≤ ζ ≤ 1,
ζ3(1 − ς)2ςϑ−3, 0 ≤ ζ ≤ ς ≤ 1. (9)

Proof. By integrating from equation (5), we get

χ(τ) = −Iϑϱ(τ) + c0 + c1τ + c2τ
2.

By applying the first and second boundary conditions one can see c0 = c1 = 0. By FBVP (3) we have

χ(1) = −Iϑh(1) + c2 = λ

∫ ζ

0
χ(τ)dτ,

and so

c2 = Iϑh(1) + λ
∫ ζ

0
χ(ς)dς =

1
2

∫ 1

0
(1 − ς)2ςϑ−3ϱ(ς)dς + λ

∫ ζ

0
χ(ς)dς.

Consequently

χ(τ) = −
1
2

∫ τ

0
(τ − ς)2ςϑ−3ϱ(ς)dς +

1
2
τ2

∫ 1

0
(1 − ς)2ςϑ−3ϱ(ς)dς

+λτ2
∫ ζ

0
χ(ς)dς. (10)

Now one can integrate the relation (10) from 0 to ζ and get∫ ζ

0
χ(τ)dτ = −

1
2

∫ ζ

0

∫ t

0
(τ − ς)2ςϑ−3ϱ(ς)dςdτ

+
1
2
ζ3

3

∫ 1

0
(1 − ς)2ςϑ−3ϱ(ς)dς

+
λζ3

3

∫ ζ

0
χ(τ)dτ.
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So

(1 −
λζ3

3
)
∫ ζ

0
χ(τ)dτ = −

1
2

∫ ζ

0

∫ ζ

ς
(τ − ς)2ςϑ−3ϱ(ς)dτdς

+
1
6
ζ3

∫ 1

0
(1 − ς)2ςϑ−3dς

= −
1
6

∫ ζ

0
(ζ − ς)3ςϑ−3ϱ(ς)dς

+
1
6
ζ3

∫ 1

0
(1 − ς)2ςϑ−3ϱ(ς)dς,

and ∫ ζ

0
χ(τ)dτ = −

1
6 − 2λζ3

∫ ζ

0
(ζ − ς)3ςϑ−3ϱ(ς)dς

+
1

6 − 2λζ3

∫ 1

0
ζ3(1 − ς)2ςϑ−3ϱ(ς)dς.

Hence

χ(τ) = −
1
2

∫ τ

0
(τ − ς)2ςϑ−3ϱ(ς)dς +

1
2

∫ 1

0
τ2(1 − ς)2ςϑ−3ϱ(ς)dς

−
λτ2

6 − 2λζ3

∫ ζ

0
(ζ − ς)3ςϑ−3ϱ(ς)dς

+
λτ2

6 − 2λζ3

∫ 1

0
ζ3(1 − ς)2ςϑ−3ϱ(ς)dς

=

∫ 1

0
K(τ, ς)ϱ(ς)dς +

λτ2

6 − 2λζ3

∫ 1

0
H(ζ, ς)ϱ(ς)dς

=

∫ 1

0
G(τ, ς)ϱ(ς)dς.

Lemma 3.2. The functions K(τ, ς) and H(τ, ς) defined by relations (8) and (9) are continuous in [0, 1] × [0, 1] and
also satisfies the following:

1. K(τ, ς) ≥ 0,H(ζ, ς) ≥ 0 for all τ, ς, ζ ∈ [0, 1];
2. 1

2τ
2(1 − τ)(1 − ς)2ςϑ−3

≤ K(τ, ς) ≤ ςϑ−3(1 − ς)2 for all (τ, ς) ∈ [0, 1] × [0, 1];
3. ζ3(1 − τ)(1 − ς)2ςϑ−3

≤ H(ζ, ς) ≤ 2ζ3(1 − ς)2ςϑ−3 for all (τ, ς) ∈ [0, 1] × [0, 1].

Proof. The continuity of functions K(τ, ς) and H(τ, ς) is obvious. For proving statement (1) at first assume
0 ≤ ς ≤ τ ≤ 1, so

K(τ, ς) =
1
2

[τ2(1 − ς)2
− (τ − ς)2]ςϑ−3

≥
1
2

[τ2(1 − ς)2
− (τ − τς)2]ςϑ−3

=
1
2

[τ2(1 − ς)2
− (1 − ς)2]ςϑ−3 = 0.

For ς ≥ τ, clearly

K(τ, ς) =
1
2

[τ2(1 − ς)2]ςϑ−3
≥ 0,
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so,

K(τ, ς) ≥ 0, for all τ, ς ∈ [0, 1].

Now let 0 ≤ ς ≤ τ ≤ 1, we have

H(ζ, ς) = [ζ3(1 − ς)2
− (ζ − ς)3]ςϑ−3

≥ [ζ3(1 − ς)2
− (ζ − ζς)3]ςϑ−3

= ζ3[(1 − ς)2
− (1 − ς)3]ςϑ−3 = 0.

For ς ≥ ζ, clearly

H(ζ, ς) = [ζ3(1 − ς)2]ςϑ−3
≥ 0.

So it is concluded that H(τ, ς) ≥ 0, for all τ, ς ∈ [0, 1].
For proving statement (2) let 0 < ς ≤ τ, then

K(τ, ς) =
1
2

[τ2(1 − ς)2
− (τ − ς)2]ςϑ−3

≥
1
2

[τ2(1 − ς)2
− (τ − ς)(τ − τς)]ςϑ−3

≥
1
2

[τ2(1 − ς)2
− τ(τ − ς)(1 − ς)]ςϑ−3 =

1
2
τ(1 − ς)ςϑ−3[τ(1 − ς) − (τ − ς)]

=
1
2
τ(1 − τ)(1 − ς)ςϑ−3

≥
1
2
τ2(1 − τ)(1 − ς)2ςϑ−3.

Also for τ ≥ ς clearly K(τ, ς) ≥ 1
2τ

2(1 − τ)(1 − ς)2ςϑ−2.
Moreover, for 0 < ς ≤ τ, we get

K(τ, ς) =
1
2

[τ2(1 − ς)2
− (τ − ς)2]ςϑ−3 =

1
2

[τ2(1 − ς)2 + (τ − τς)2]ςϑ−3

≤ τ2(1 − ς)2ςϑ−3
≤ (1 − ς)2ςϑ−3,

and clearly for τ ≥ ς clearly we have K(τ, ς) ≤ (1 − ς)2ςϑ−3. Consequently for all τ, ς ∈ [0, 1] we have

1
2
τ2(1 − τ)(1 − ς)2ςϑ−3

≤ K(τ, ς) ≤ (1 − ς)2ςϑ−3.

Next we prove statement (3), for ς ≤ ζ we have

H(ζ, ς) = [ζ3(1 − ς)2
− (ζ − ς)3]ςϑ−3

≥ [ζ3(1 − ς)2
− (ζ − ς)(ζ − ζς)2]ςϑ−3

= ζ2[(1 − ς)ζ2
− (ζ − ς)(1 − ς)2]ςϑ−3 = ζ2(1 − ς)2ςϑ−3

≥ ζ3(1 − τ)(1 − ς)2ςϑ−3,

and for ζ ≥ ς we have

H(ζ, ς) = ζ3(1 − ς)2ςϑ−3
≥ ζ3(1 − τ)(1 − ς)2ςϑ−3.

On the other hand for ς ≤ ζ we have

H(ζ, ς) = [ζ3(1 − ς)2
− (ζ − ς)3]ςϑ−3 = [ζ3(1 − ς)2 + (ζ − ζς)3]ςϑ−3

≤ (1 − ς)22ζ3ςϑ−3,

and clearly for ζ ≥ ς we have H(ζ, ς) ≤ (1 − ς)22ζ3ςϑ−3.

Lemma 3.3. Suppose ξ ∈ (0, 1) and G(τ, ς) is the function defined by (7), then

1. G(τ, ς) ≥ 0, for all τ, ς ∈ [0, 1],
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2. τ2(1 − τ)
(

3
6−2λζ3

)
(1 − ς)2ςϑ−3

≤ G(τ, ς) ≤
(

6
6−2λζ3

)
(1 − ς)2ςϑ−3 for all 0 ≤ τ, ς ≤ 1,

3. ξ2(1 − ξ)
(

3
6−2λζ3

)
(1 − ς)2ςϑ−3

≤ G(τ, ς) ≤
(

6
6−2λζ3

)
(1 − ς)2ςϑ−3, for all (τ, ς) ∈ [0, ξ] × [0, 1].

Proof. Statement (1) can be proven easily and statement (3) can be concluded directly from (2). So we need
olny prove statmnet (2). In view of Lemma 3.2 and relation (7), it is concluded that

G(τ, ς) = K(τ, ς) +
λτ2

6 − 2λζ3 H(ζ, ς)

≤ (1 − ς)2ςϑ−3 +
2λζ3

6 − 2λζ3 (1 − ς)2ςϑ−3

=
( 6

6 − 2λζ3

)
ςϑ−3(1 − ς)2.

Moreover from Lemma 3.2, we get

G(τ, ς) = K(τ, ς) +
λτ2

6 − 2λζ3 H(τ, ς)

≥
1
2
τ2(1 − ς)2ςϑ−3 +

λτ2

6 − 2λζ3 ζ
3(1 − τ)(1 − ς)2ςϑ−2

≥ τ2(1 − τ)
[

1
2
+

λζ3

6 − 2λζ3

]
(1 − ς)2ςϑ−3

=
3

6 − 2λζ3 τ
2(1 − τ)(1 − ς)2ςϑ−3.

Lemma 3.4. Let ϱ : [0, 1] → [0,∞) be a continuous function and 0 < ξ < 1, then FBVP (5) has a unique
non-negative solution χ with

min
τ∈(0,ξ)

χ(τ) ≥ X∥χ∥,

where X = 1
2ξ

2(1 − ξ).

Proof. It is concluded directly from lemma 3.1 and Lemma 3.3 that χ(τ) is a positive. Let τ ∈ [0, 1], we have

χ(τ) =

∫ 1

0
G(τ, ς)ϱ(ς)dς

≤

∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ςϑ−3ϱ(ς)dς,

then

∥u∥ ≤
∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ςϑ−3ϱ(ς)dς. (11)

On the other hand, for any τ ∈ [0, ξ], in view of Lemmas 3.1, 3.3 and relation (11), we get

χ(τ) =

∫ 1

0
G(τ, ς)ϱ(ς)dς

≥

∫ 1

0

3
6 − 2λζ3 ξ

2(1 − ξ)(1 − ς)2ςϑ−3dς

=
1
2
ξ2(1 − ξ)

∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ςϑ−3ϱ(ς)dς

≥ X∥u∥,
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therefore

min
τ∈[0,ξ]

χ(τ) ≥ X∥u∥.

4. Existence and Multiplicity Results

Now we are ready to present some existence and multiplicity results about FBVP (2). In this section we
assume ξ ∈ (0, 1) be fixed, and consider the set of all functions χ ∈ B such that minτ∈[0,ξ] χ(τ) ≥ X∥u∥. It is
easy to see that this set is a cone, we show this set by ℘. Now we define the operator ℑ : ℘→ ℘ by

ℑχ(τ) =
∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς, (12)

where G(τ, ς) is the same as appeared in (12). Clearly, the fixed points of the operatorℑ in℘ are the solutions
to the problem (2). We have the following items for problem (2):

(A1) φ ∈ C([0, 1] × [0,∞), [0,∞)) with φ(τ, 0) . 0;

(A2) θ ∈ C([0, 1], [0,∞) and θ(τ) . 0 on [0, 1].

Theorem 4.1. Considering (A1) and (A2), the operator ℑ, is completely continuous and ℑ℘ ⊂ ℘.

Proof. Given that φ is continuous (According to condition (A1)), by Lemma 3.4 we get ℑ℘ ⊂ ℘. By (A1)
and non negativeness and continuity of G(τ, ς) and utilizing Lebesgue’s dominated convergence theorem,
it obtains that ℑ : ℘→ ℘. If Ω be a bounded set in ℘. Then, ∃M > 0 with Ω ⊂ {χ ∈ ℘ : ∥χ∥ < M}. Put

γ = max{φ(τ, χ) : τ ∈ [0, 1],u ∈ Ω}.

From Lemma 3.1 and 3.2, we obtain

ℑχ(τ) =

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≤

∫ 1

0
G(τ, ς)θ(ς)γdς

≤ γ

(∫ 1

0
θ(ς)dς

) ∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ςϑ−3dς.

Hence, ℑ(Ω) is uniformly bounded. For χ ∈ Ω and for τ1, τ2 ∈ [0, 1] that satisfy τ1 < τ2, by Lemma 3.1 and
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3.3 we get

|ℑχ(τ1) − ℑχ(τ2)| =

∣∣∣∣∣∣
∫ 1

0
G(τ1, ς)θ(ς)φ(ς, χ(ς))dς

−

∫ 1

0
G(τ2, ς)θ(ς)φ(ς, χ(ς))dς

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
[K(τ1, ς) − K(τ2, ς)]θ(ς)φ(ς, χ(ς))dς

+
λ(τ2

1 − τ
2
2)

6 − 2λζ3

∫ 1

0
H(ζ, ς)θ(ς)φ(ς, χ(ς))dς

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

0
[K(τ1, ς) − K(τ2, ς)]θ(ς)φ(ς, χ(ς))dς

∣∣∣∣∣∣
+

∣∣∣∣∣∣λ(τ2
1 − τ

2
2)

6 − 2λζ3

∫ 1

0
H(ζ, ς)θ(ς)φ(ς, χ(ς))dς

∣∣∣∣∣∣
≤ γ

∫ 1

0
|K(τ1, ς) − K(τ2, ς)|θ(ς)dς

+
λ(τ2

1 − τ
2
2)γ

6 − 2λζ3

∫ 1

0
H(ζ, ς)θ(ς)dς.

Since K is continuous for 0 ≤ τ, ς ≤ 1, we can see the first integral of the right-hand side of the above
relation tends to 0 when τ2 → τ1. On the other hand in view of the term (τ2

1 − τ
2
2), the second relation of

the right-hand side of the above tends to zero if τ2 → τ1. So, ℑ(Ω) is equicontinuous. Hence, utilizing the
Arzela-Ascoli theorem, ℑ : ℘→ ℘ is completely continuous.

We put

Λ1 =

(∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ςϑ−3θ(ς)dς

)−1

,

Λ2 =

(
X

∫ ξ

0

( 3
6 − 2λζ3

)
(1 − ς)2ςϑ−3θ(ς)dς

)−1

.

We prove that 0 < Λ1 < Λ2. Indeed we have

Λ−1
2 = X

∫ ξ

0

( 3
6 − 2λζ3

)
(1 − ς)2ς3θ(ς)dς

<

∫ 1

0

( 6
6 − 2λζ3

)
(1 − ς)2ς3θ(ς)dς

= Λ−1
1 .

Our first result is based on the Theorem 2.8.

Theorem 4.2. Considering (A1)-(A2) and also assuming that there exist constants ρ1 > 0, ρ2 > 0, µ1 ∈ (0,Λ1], and
µ2 ∈ [Λ2,∞), such that ρ1 < ρ2 and µ2ρ1 < µ1ρ2. Furthermore, φ satisfies:

• φ(τ, χ) ≤ µ1ρ2 for all χ ∈ [0, ρ2] and τ ∈ [0, 1], and

• φ(τ, χ) ≥ µ2ρ1 for all χ ∈ [Xρ1, ρ1] and τ ∈ [0, ξ].

Then the problem (2) has at least one positive solution χ ∈ ℘ with property ρ1 < ∥χ∥ < ρ2.
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Proof. We set

Ω2 = {χ ∈ B; ∥χ∥ < ρ2}.

Let χ ∈ ℘ ∩ ∂Ω2. Then from (1) and Lemma 3.3, we have

ℑχ(τ) =

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≤

∫ 1

0
G(τ, ς)θ(ς)µ1ρ2dς

≤ µ1ρ2

∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς

≤ Λ1Λ
−1
1 ρ2 = ρ2.

So for all χ ∈ ℘ ∩ ∂Ω2 we have ∥ℑχ∥ ≤ ∥χ∥.
Now we define the open setΩ1 = {χ ∈ B : ∥χ∥ < ρ1}. For u ∈ P∩ ∂Ω1, considering (A1)-(A2), and regarding
(2) and Lemma 3.3, for τ ∈ [0, ξ], we get

ℑχ(τ) =

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≥

∫ ξ

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≥ X
∫ ξ

0

3
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)φ(ς, χ(ς))dς

≥ ρ1NX
∫ ξ

0

3
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς,

= ρ1Λ2Λ
−1
2 = ρ1.

So for all χ ∈ ℘ ∩ ∂Ω1, we have ∥ℑχ∥ ≥ ∥χ∥. So by utilizing the property (ii) in Theorem 2.8, T has at least
one fixed point in ℘∩ (Ω2 \Ω1), which is the solution of problem (2), that means the problem (2) has at least
one positive solution u with ρ1 < ∥χ∥ < ρ2.

In a similar way, we can get the following result.

Theorem 4.3. With considering (A1)-(A2), if there exist ρ1 > 0, ρ2 > 0, µ1 ∈ (0,Λ1], and µ2 ∈ [Λ2,∞), where
Xρ2 < ρ1, and µ1ρ1 > Nρ2, such that f satisfies

• φ(τ, χ) ≥ µ2ρ2 for x ∈ [Xρ2, ρ2], and

• φ(τ, χ) ≤ µ1ρ1 for x ∈ [0, ρ1] and τ ∈ [0, 1].

Then the problem (2) has at least one positive solution u ∈ P satisfiying ρ1 < ∥χ∥ < ρ2.

The next result is based on the Theorem 2.9.

Theorem 4.4. Let (A1)-(A2) hold and there exists µ > 0 with

µ > γ

(∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς

)
, (13)

with γ = max{φ(τ, χ) : (τ, χ) ∈ [0, 1] × [0, µ]}, then, the problem (2) has at least one positive solution.
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Proof. Suppose that

X = {χ ∈ ℘ : ∥χ∥ < µ}.

By Theorem 4.1, ℑ : U → P is completely continuous. Also there exist χ ∈ X and κ ∈ (0, 1) with χ = κℑχ.
Then,

|χ(τ)| = |κTχ(τ)| =

∣∣∣∣∣∣κ
∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

∣∣∣∣∣∣
≤

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≤ γ

∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς.

So

∥χ∥ ≤ γ

∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς.

Now ,(4.4) implies that ∥χ∥ < µ, that is X is bounded. So there exists no χ ∈ ∂Xwith χ = κℑχ for κ ∈ (0, 1).
Hence by Theorem 2.9, the problem (2) has at least one positive solution.

According to Leggett-Williams theorem, we provide the conditions for problem (1) that it has at least three
positive solution. We consider the below set of a cone ℘.

Pc = {χ ∈ K : ∥χ∥ < c}, P(ψ, b, d) = {x ∈ ℘ : b ≤ ψ(χ), ∥χ∥ ≤ d}. (14)

Theorem 4.5. Let (A1)-(A2) are true and there exist a, b, c satisfying 0 < a < Xb < b ≤ c with

(B1) φ(τ, χ(τ)) < Λ1a, (τ, χ) ∈ [0, 1] × [0, a],

(B2) φ(τ, χ(τ)) ≥ XΛ2b, (τ, χ) ∈ [0, ξ] × [Xb, b],

(B3) φ(τ, χ(τ)) ≤ Λ1c, (τ, χ) ∈ [0, ξ] × [0, c].

Then the problem (2) has at least three positive solution χ1, χ2 and χ3, such that

∥χ1∥ < a, Xb < ψ(χ2), ∥χ3∥ > a with ψ(χ3) < Xb.

Proof. By Theorem 4.1 ℑ : ℘→ ℘ is a completely continuous. Suppose that

ψ(χ) = min
0≤τ≤ξ

χ(τ).

Clearly, ψ is continuous and concave on ℘ and ψ(χ) ≤ ∥χ∥, for χ ∈ ℘c. We check the properties of Theorem
2.10. Let χ ∈ Kc, with ∥χ∥ ≤ c. For τ ∈ [0, 1] by definition of (12) and (B3), we get

∥ℑχ(τ)∥ = max
0≤τ≤1

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≤

∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)Mcdς

= Mc
∫ 1

0

6
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς

= McM−1 = c.
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This implies that ℑ : Pc → Pc. In a similar way, if χ ∈ Pa (Pa is the same be defined in (14)), we can
conclude ∥ℑχ∥ < a and hence (ii) of Theorem 2.10 is true. Since Xb+b

2 ∈ {χ ∈ P(ψ,Xb, b) : ψ(χ) > Xb}, we get
{χ ∈ P(ψ,Xb, b) : ψ(χ) > Xb} = ∅. Moreover, for χ ∈ P(ψ,Xb, b), we get

Xb ≤ ψ(χ) = min
0≤τ≤ξ

≤ χ(τ) ≤ ∥χ∥ ≤ b, τ ∈ [0, ξ].

That is ψ(ℑχ) > Xb for χ ∈ P(ψ,Xb, b). So by Lemma 3.3 and (B2), we obtain

ψ(ℑχ) = min
0≤t≤ξ

∫ 1

0
G(τ, ς)θ(ς)φ(ς, χ(ς))dς

≥

∫ ξ

0
X

3
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)φ(ς, χ(ς))dς

= Nb
∫ ξ

0
X

3
6 − 2λζ3 (1 − ς)2ςϑ−3θ(ς)dς

= b > Xb.

Hence, (i) of Theorem 2.10 holds. Now, we prove that if χ ∈ P(ψ,Xb, c) with ∥ℑχ∥ > b then ψ(ℑχ) > Xb.
Assume that χ ∈ P(ψ,Xb, c) with ∥ℑχ∥ > b, then by Lemma 3.4, we get

ψ(ℑχ) = min
0≤t≤1

(ℑχ)(τ) ≥ X∥ℑχ∥ > Xb.

Therefore, the property (iii) of Theorem 2.10 hold.
So, by Theorem 2.10 the proof is complete.

5. Examples

Now it is time to explain the results by two examples.

Example 5.1. Consider the following FIBVP:

Dϑχ(τ) +
√
τφ(τ, χ(τ)) = 0, (15)

χ(0) = χ′(0) = 0, χ(1) = λ
∫ ζ

0
χ(τ)dt,

where φ(τ, χ(τ)) = 1
100 (40 + 5

√
χ + τ), θ(τ) = τ

1
2 , λ = 20, ϑ = 5

2 and ζ = 1
2 . By a simple calculation we have

Λ−1
1 =

∫ 1

0

6
6 − 2λζ3 (1 − ς)dς = 2,

so Λ1 = 0.5, also

Λ−1
2 = δ

∫ ξ

0

3
6 − 2λζ3 (1 − ς)2dς = ξ2[(1 − ξ)(1 − (1 − ξ)3].

It is easy to see that 0.18 ≤ Λ2 ≤ 0.33 if 0.3 ≤ ξ ≤ 0.7. Now by choosing µ1 = Λ1, µ2 = Λ2, ρ1 = 0.01 and ρ2 = 1
we have

• φ(τ, χ(τ)) = 1
100 (40 + 5

√
χ + τ) ≤ 0.46 = µ1ρ2 = 0.5, [τ, χ] ∈ [0, 1] × [0, 1] × [0, 1],

• φ(τ, χ(τ)) = 1
100 (40 + 5

√
χ + τ) ≥ 0.4 ≥ µ2ρ1 = 0.33, [τ, χ] ∈ [0, ξ] × [0.01δ, δ].

So all conditions of Theorem 4.2 hold and hence FBVP 15 has at least one positive solution χ with 0.01 < ∥χ∥ ≤ 1.
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Example 5.2. Let us consider the FIBVP:

Dϑχ(τ) + θ(τ)φ(τ, χ(τ)) = 0,
χ(0) = χ′(0) = 0, χ(1) = λ

∫ ζ
0 χ(τ)dτ,

(16)

where ϑ = 5
2 , ζ = 1

2 , θ(τ) = τ
1
2 , λ = 20 and

φ(τ, χ) =
{

30u7 + 0.01 sin2 πτ, (τ, χ) ∈ [0, 1] × [0, 1],
29 + u

1
4 + 0.01 sin2 πτ (τ, χ) ∈ [0, 1] × [1,∞).

In view of the previous example by choosing ξ = 0.5 we haveΛ1 = 0.5 andΛ2 = 18.51. Let a = 1
2 , b = 10 and c = 64,

then we have

• φ(τ, χ(τ)) ≤ 0.243 < Λ1a = 0.25,(τ, χ) ∈ [0, 0.5] × [0, 0.5];

• φ(τ, χ(τ)) ≥ 30.11 ≥ δΛ2b = 23.1375,(τ, χ) ∈ [0, 0.5] × [1.25, 10];

• φ(τ, χ(τ)) ≤ 31.83 ≤ Λ1c = 32, (τ, χ) ∈ [0, 0.5] × [0, 64].

Consequently the FIBVP (16) satisfy all conditions of Theorem 4.5 and therefore the problem has at least three solutions
χ1, χ2 and χ3 such that

∥χ1∥ ≤
1
2
, 1.25 < ψ(χ2), ∥χ3∥ >

1
2
, ψ(χ3) < 1.25.
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