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Abstract. In this study, we introduce a new type of mapping called (L, c)−expansions, induced by a novel
class of mappings known as G−functions. These mappings possess the unique property that their moduli
may be greater than one, yet they possess unique fixed points. Utilizing Kummer’s test, we demonstrate
that these (L, c)−expansions can be derived from the well-established framework of Banach contraction
mappings. Furthermore, our results allow for the creation of new contractions by altering the type of
G−functions used.

1. Introduction

The pursuit of solutions for equations of the form T x = x within the realm of fixed point theory has
witnessed a surge in interest in recent decade(see [1–14, 18]). The investigation of fixed points of operators,
denoted as Fix(T ), is a central theme in this domain. This study unveils a novel facet of fixed point theory
by introducing a distinctive class of mappings, termed (L, c)−expansions, originating from a newly defined
set of mappings known as G−functions. The uniqueness of these mappings lies in their capacity to exhibit
modulous surpassing unity while retaining exclusive fixed points. Such a characteristic departure from
traditional fixed point theory prompts an exploration into the mathematical foundations that underpin
these mappings. Drawing inspiration from Kummer’s test, a powerful tool in the analysis of positive
series convergence, this study establishes a connection between (L, c)−expansions and the well-established
framework of Banach contraction mappings.

Kummer’s test, as articulated in [15], stands as a prominent method for assessing the convergence or di-
vergence of positive series. Noteworthy convergence tests, such as D’Alembert’s, Raabe’s, Bertrand’s, and
Gauss’, all find their roots in Kummer’s test, with their specifics determined by the choice of appropriate
constants. This research leverages Kummer’s test to offer a comprehensive exploration of the conver-
gence properties of (L, c)−expansions, unveiling a deep connection to the principles of Banach contraction
mappings.

Theorem 1.1. (Kummer’s Test) [16, 17] Let
∑
∞

n=1 un be a positive series.
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(1)
∑
∞

n=1 un is convergent if and only if there is a positive series
∑
∞

n=1 kn and a constant c > 0, such that
kn( un

un+1
) − kn+1 ≥ c.

(2)
∑
∞

n=1 un is divergent if and only if there is a positive series
∑
∞

n=1 kn such that
∑
∞

n=1
1
kn

be divergent and
kn( un

un+1
) − kn+1 ≤ 0.

The significance of this study is underscored by its ability to extend the repertoire of contractions through
the manipulation of the type of G−functions employed. The subsequent sections delve into the theoretical
underpinnings of (L, c)−expansions, providing a rigorous mathematical foundation for their existence and
properties. Additionally, this work establishes a bridge between Kummer’s test and the emerging field
of (L, c)−expansions, paving the way for new avenues of exploration within fixed point theory. As we
progress, we shall elucidate the intricacies of this novel mathematical framework and its implications for
the broader landscape of fixed point theory.

2. Main Results

In this section, leveraging the Kummer Test, a pioneering connection between σ(Tx,Ty) and σ(x, y) is
established, heralding a paradigm shift in fixed point theory methodologies. This novel relation forms the
cornerstone for our main results.

Definition 2.1. Let (X, σ) be a metric space. The function L : X × X → R+ is called G-function if it satisfies the
following items:

(i) L(x, y) = L(y, x), for all x, y ∈ X,

(ii) for each sequence {xn} ⊂ X and each y ∈ X and c > 0

xn → x implies
L(xn, x)

c +L(xn+1, y)
is bounded

for sufficiently large n ∈N. The set of all G-functions is denoted by SG(X).

Example 2.2. (q1) Let X = R endowed with Euclidean metric, L(x, y) = xy and let c > 0 be arbitrary. Then L is
a G−function.

(q2) Let X = R endowed with Euclidean metric,L(x, y) = x+ y and let c > 0 be arbitrary. ThenL is a G−function.

(q3) Let X = [1,+∞) be metric space, L(x, y) = 1
x2+y2 and let c > 0 be arbitrary. Then L is a G−function.

(q4) Let (X, d) be metric space, L(x, y) = d(x, y) and let c > 0 be arbitrary. Then L is a G−function.

Definition 2.3. Let (X, σ) be a metric space. We say that T : X → X is (L, c)-expansion mapping, if there exist
L ∈ SG(X) and c > 0 such that

σ(Tx,Ty) ≤
L(x, y)

c +L(Tx,Ty)
σ(x, y), (1)

for all x, y ∈ X.

Upon scrutinizing diverse generalizations of Banach fixed point theorems in existing literature, particularly
within their proofs, it becomes evident that the attainment of sought-after results, such as the identification
of a fixed point, hinges upon the treatment of the sequence an = d(xn, xn−1). Here, xn = Tn(x0) represents
the iterative sequence induced by the mapping T, initiated at x0. A pivotal element in these proofs lies in

establishing the convergence of the series
∞∑

n=1

an—a crucial step leading to the limit point of xn, the optimal

candidate for the fixed point.
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This observation motivates our exploration into the intricate relationship between series convergence
and fixed point outcomes. In the ensuing theorem, we introduce a novel form of contraction, drawing
inspiration from Kummer’s test, thus deviating from the conventional Banach paradigm. It is noteworthy
that the prevailing study of Banach fixed point generalizations has operated under the premise that the
modulus α falls within the range [0, 1). In contrast, our approach accommodates scenarios where the
modulus may surpass unity, thereby forging a pioneering path within the scholarly discourse.

Theorem 2.4. Let (X, σ) be a complete metric space and let J from X → X be a (L, c)-expansion mapping. Then J
has a unique fixed point in X.

Proof. Let t0 ∈ X and let t1 = Jt0. If t0 = t1, then t0 is the fixed point and the proof is completed. If tn be
selected, then we can define tn+1 = Jtn, inductively. Without loss of generality, we can suppose that tn+1 , tn.
Considering (1), we have

σ(tn+1, tn) ≤
L(tn, tn−1)

c +L(tn+1, tn)
σ(tn, tn−1).

Letting un = σ(tn, tn−1) and kn = L(tn, tn−1), we yields

kn

( un

un+1

)
− kn+1 ≥ c.

Thus, by the Kummer’s Test, the series
∞∑

n=1

un is convergent.

It remains to show that:

Step (1): {xn} is a Cauchy sequence and so is convergent to some z ∈ X,

Step (2): z is the unique fixed point.

Reaching Step (1), let m,n ∈N and m > n. Then

σ(tn, tm) ≤
m−1∑
k=n

σ(ti, ti+1) =
m−1∑
k=n

ui+1 → 0 (m,n→∞).

Therefore, lim
n→∞

sup{σ(tn, tm) : m ≥ n} = 0. So, the sequence {tn} is Cauchy and since X is completed, there
exists z ∈ X such that tn → z, as n→∞.
Proving Step (2), we get

σ(tn+1, Jz) ≤
L(tn, z)

c +L(tn+1, Jz)
σ(tn, z). (2)

According to (ii) of Definition 2.1, we have L(tn,z)
c+L(tn+1,Jz) is bounded. So by letting n tends to∞, the right hand

both side of (2), tends to zero and it deduces that Jz = z. Now assume z,w ∈ X are two fixed points. We
have

σ(z,w) = σ(Jz, Jw) ≤
L(z,w)

c +L(Jw, Jz)
σ(w, z) =

L(z,w)
c +L(w, z)

σ(w, z).

If σ(z,w) , 0, then it yields that
L(z,w)

c +L(w, z)
≥ 1 and this is a contradiction, so we have z = w and hence the

fixed point is unique.

The next corollary shows that the Banach fixed point principle can be derived from Theorem 2.4.
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Corollary 2.5. Let (X, σ) be a complete metric space and let J from X into itself is a contraction mapping, for given
α ∈ (0, 1). Then J has a unique fixed point in X.

Proof. Considering L(x, y) = 1 and c = 1
α − 1 In Theorem 2.4, we have

σ(Jx, Jy) ≤ ασ(x, y) =
1

c + 1
σ(x, y)

and desired result is concluded.

The most surprising aspect of Theorem 2.4 is the modulus
L(x, y)

c +L(Tx,Ty)
which can be greater than one in

spite of the fact that T has a fixed point. The following example support the claim.

Example 2.6. Let X = [1, 2] ∪ {3} and let c = 1
4 . We define the function Tx as follows:

Tx =


1
2x +

3
4 , x , 3

2 , x = 3

Additionally, let d(x, y) = |x − y| and L(x, y) = xy. We will now demonstrate that T satisfies all the conditions of
Theorem 2.4.
Firstly, we note that T(X) ⊂ X and (X, d) is a complete metric space.

Case(1) Let x, y ∈ [1, 2]. In this case, we have 1 ≤ xy ≤ 4. Thus,

1
16 ≤

1
4xy ≤

1
4

3
16 ≤

3
8x ≤

3
8

3
16 ≤

3
8y ≤

3
8

It follows that

c +
7

16
+

9
16
≤ c +

1
4xy
+

3
8x
+

3
8y
+

9
16
≤ 1 + c +

9
16
= 1 +

13
16

Therefore,

c +
1

4xy
+

3
8x
+

3
8y
+

9
16
≤ 2 ≤ 2x2y2.

This yields

c + (
1
2x
+

3
4

)(
1

2y
+

3
4

) ≤ (2xy)L(x, y).

Therefore,

c +L(Tx,Ty) ≤ (2xy)L(x, y)

Thus,

d(Tx,Ty) = |Tx − Ty| =
1
2
|x − y|

xy
≤

L(x, y)
c +L(Tx,Ty)

|x − y|

and the desired result is obtained.

Case(2) Let x ∈ [1, 2] and y = 3. In this case, d(Tx,Ty) = | 1
2x −

5
4 |, L(x, 3) = 3x, and L(Tx, 2) = 1

x +
3
2 . Also,

c +
1
x
+

3
2
≤ c +

5
2
≤ 3 ≤ 3x(3 − x).

Thus,

d(Tx,Ty) =
5
4
−

1
2x
≤ 1 ≤

3x
c + 1

x +
3
2

(3 − x) =
L(x, 3)

c +L(Tx, 2)
d(x, y).
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The other cases are similar and have been left to the discretion of the reader.

Remark 2.7. In example 2.6, it is worth mentioning that, in comparison with the Banach contraction principle,

L(x, 3)
c +L(Tx, 2)

=
3x

c + 1
x +

3
2

≥ 1

and shows that Theorem 2.4 is a real different type in fixed point theory.

Another intriguing aspect of Theorem 2.4 is the ability of constructing new contractions by considering the
various type of G−functions. The following corollaries are the natural new contractions induced by some
G−functions.

Corollary 2.8. Let (X, σ) be a complete metric space and let J from X itself be a mapping. Suppose that there exists
c > 0 such that

σ2(Jx, Jy) + cσ(Jx, Jy) ≤ σ2(x, y), (3)

for all x, y ∈ X. Then J has a unique fixed point in X.

Proof. Let define L(x, y) = σ(x, y), then (3) concludes

σ(Jx, Jy)(c + σ(Jx, Jy)) ≤ σ2(x, y),

Thus, we have

σ(Jx, Jy) ≤
σ(x, y)

c + σ(Jx, Jy)
σ(x, y),

so by Theorem (2.4), we conclude desired result.

Corollary 2.9. Let (X, σ) be a complete metric space and let J from X itself be a mapping. Suppose that there exists
c > 0 and φ : [0,+∞)→ [0,+∞) such that for all sequence {tn} ⊂ [0,+∞) implies lim sup

n→∞
φ(tn) exists. Also,

σ(Jx, Jy)(c + φ(σ(Jx, Jy)) ≤ φ(σ(x, y))σ(x, y), (4)

for all x, y ∈ X. Then J has a unique fixed point in X.

Proof. Let define L(x, y) = φ(σ(x, y)), then (4) concludes

σ(Jx, Jy)(c +L(Jx, Jy)) ≤ L(x, y)σ(x, y).

Thus, we have

σ(Jx, Jy) ≤
L(x, y)

c +L(Jx, Jy)
σ(x, y),

so by Theorem (2.4), we conclude desired result.

Corollary 2.10. (Caristi type,see [? ] for more detail) Let (X, σ) be a complete metric space and let J from X itself be
a mapping. Suppose that there exists c > 0 and φ : X → [0,+∞) such that for all sequence {tn} ⊂ [0,+∞) implies
lim sup

n→∞
φ(tn) exists. Also,

cσ(Jx, Jy) ≤ φ(x)φ(y) − φ(Jx)φ(Jy), (5)

for all x, y ∈ X. Then J has a unique fixed point in X by Theorem 2.4.
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Proof. Let define L(x, y) = φ(x)φ(y)
σ(x,y) then from 5 we have

cσ(Jx, Jy) + φ(Jx)φ(Jy) ≤ φ(x)φ(y)

So we have

cσ(Jx, Jy) + σ(Jx, Jy)
φ(Jx)φ(Jy)
σ(Jx, Jy)

≤
φ(x)φ(y)
σ(x, y)

σ(x, y),

and then

σ(Jx, Jy) ≤

φ(x)φ(y)
σ(x,y)

c + φ(Jx)φ(Jy)
σ(Jx,Jy)

σ(x, y).

Therefore,

σ(Jx, Jy) ≤
L(x, y)

c +L(Jx, Jy)
σ(x, y)

for all x, y ∈ X. Then J has a unique fixed point in X by Theorem 2.4.

In the following, we introduce a new contraction which inspired from F−contraction (see [18, Definition
2.1]).

Definition 2.11. Let F+ : R+ → R+, be an strictly increasing mapping A mapping T : X → X is said to be
F+−contraction if there exists τ > 0 such that

∀ x, y ∈ X such that d(Tx,Ty) > 0 implies τ + F(d(Tx,Ty)) ≤ F(d(x, y)) (6)

Corollary 2.12. Let (X, d) be a complete metric space and let T from X into itself be a F+− contraction mapping.
Then T has a unique fixed point in X.

Proof. Let x, y ∈ X such that d(Tx,Ty) > 0. Then we have τ + F(d(Tx,Ty)) ≤ F(d(x, y)). Thus we have
d(Tx,Ty)) < d(x, y). Considering (6), we have

1 ≤
F(d(x, y))

τ + F(d(Tx,Ty))
(7)

Multiplying d(Tx,Ty) on both side of 7, we have

d(Tx,Ty) ≤
F(d(x, y))

τ + F(d(Tx,Ty))
d(Tx,Ty) ≤

F(d(x, y))
τ + F(d(Tx,Ty))

d(x, y).

Taking G(x, y) = F(d(x, y)), we have T is (G, τ)−expantion mapping and so Theorem 2.4, conclude desired
result.

3. Exploring the Profound Connection between (L, c)-Expansion Mappings and a Broad Class of Con-
tractions

A salient observation arises when considering a substantial subset of contractions that satisfy the
condition:

∞∑
n=1

d(Tn(x0),Tn+1(x0)) < ∞, (8)
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for an initial point x0 ∈ X. The majority of these contractions share a common characteristic encapsulated
in the following relationship:

d(Tn(x0),Tn+1(x0)) ≤
F(Tn−1(x0))

c + F(Tn(x0))
d(Tn(x0),Tn−1(x0)), (9)

for each n ∈ N, where c > 0 and F : OT(x0) → [0,+∞) is a mapping, with OT(x0) = Tn(x0) : n ∈ 0 ∪N, a
set notably akin to the (L, c)-expansion mappings. This observation sets the stage for the development of
our main results. To illustrate the significance of this connection, consider the following example:

Example 3.1. Let (X, d) be a complete metric space, and T : X→ X be a mapping satisfying the contraction condition:

d(Tx,Ty) ≤ ψ(d(x, y)), (10)

where x, y ∈ X, and ψ : [0,+∞) → [0,+∞) is a mapping with lim sup
t→s+

ψ(t)
t < 1 for each s ∈ (0,+∞). Then, T

satisfies (8). Indeed, for x0 ∈ X and Tn(x0) = xn, inequality (12) implies:

d(Tn+1(x0),Tn(x0)) ≤ ψ(d(Tn−1(x0),Tn(x0))). (11)

Taking an = d(Tn−1(x0),Tn(x0)), (13) leads to an+1 ≤ ψ(an). Therefore, an+1
an
≤

ψ(an)
an

. By our assumption,

lim
n→∞

an+1
an
≤ lim

n→∞

ψ(an)
an

< 1. Thus, by the ratio test, we obtain:

∞∑
n=1

d(Tn+1(x0),Tn(x0)) < ∞.

Example 3.2. Let (X, d) be a complete metric space, and T : X→ X be a mapping such that

d(Tx,Ty) ≤ ψ(d(x, y))d(x, y), (12)

where x, y ∈ X and ψ : [0,+∞) → [0, 1) is a mapping such that lim sup
t→s+

ψ(t) < 1, for each s ∈ (0,+∞). Then, T

satisfies (8). Since, if x0 ∈ X, and let Tn(x0) = xn. Then, (12) shows that

d(Tn+1(x0),Tn(x0)) ≤ ψ(d(Tn−1(x0),Tn(x0)))d(Tn−1(x0),Tn(x0)). (13)

Thus, taking an = d(Tn−1(x0),Tn(x0)), (13) shows that an+1 ≤ ψ(an)an. Therefore, an+1
an
≤ ψ(an). By our assumption,

we get lim
n→∞

an+1
an
≤ lim

n→∞
ψ(an) < 1 and so by ratio test we have

∞∑
n=1

d(Tn+1(x0),Tn(x0)) < ∞.

The following lemma plays a crucial rule in the next theorem.

Lemma 3.3. Let (an) ⊂ (0,+∞) and let
∑
∞

n=1 an be a convergent series. Then there exists a monotonic sequence (γn)
such that lim

n→∞
γn = ∞ and

∑
∞

n=1 anγn is convergent.
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Proof. Let ρn =
∑
∞

k=n+1 ak. Note that lim
n→∞

ρn = 0 and we have ρn−1 − ρn = an thus

an
√
ρn−1

=
ρn−1 − ρn
√
ρn−1

=
(
√
ρn−1 −

√
ρn)(
√
ρn−1 +

√
ρn)

√
ρn−1

= (
√
ρn−1 −

√
ρn)

( √
ρn−1 +

√
ρn

√
ρn−1

)
< 2(

√
ρn−1 −

√
ρn)

(14)

It means that, for all n ∈N,

n∑
k=1

ak
√
ρk−1

<
n∑

k=1

2(
√
ρk−1 −

√
ρk)

= 2(
√
ρ0 −

√
ρn) ≤ 2

√
ρ0 < ∞.

Therefore, the series
∑
∞

n=1
an
√
ρk−1

is convergent. Considering γn =
1
ρn−1

, one can obtain desired result.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → X be a mapping. Suppose that x0 ∈ X and
consider {Tn(x0)} as the Picard iterative sequence such that

∞∑
n=1

d(Tn(x0),Tn−1(x0)) < ∞. (15)

Then there exist c > 0 and a mapping F : OT(x0) × OT(x0)→ [0,+∞) such that for each n ∈N,

d(Tn(x0),Tn+1(x0)) ≤
F(Tn−1(x0),F(Tn(x0)))
c + F(Tn(x0),Tn+1(x0))

d(Tn(x0),Tn−1(x0)), (16)

in which OT(x0) = {Tn(x0) : n ∈ {0} ∪N}.

Proof. Let an = d(Tn(x0),Tn−1(x0)) and by (15),
∑
∞

n=1 an < ∞. Applying Lemma 3.3, one can create a sequence
γn such that lim

n→∞
γn = ∞ and

∑
∞

n=1 γnan < ∞. So we can choose b1 ∈ R such that
∑
∞

n=1 anγn = a1b1. Now

define {bn} as follows

bn+1 =
bnan − γn+1an+1

an+1
.

Therefore, based on creating the sequence γn in Lemma 3.3, γn ⊂ (0,+∞). So

γn+1an+1 = bnan − bn+1an+1. (17)

It means that, γn+1an+1 > 0. Thus, bn+1an+1 < bnan and this yields there exists q ≥ 0 such that lim
n→∞

bnan = q.
So,

∞∑
n=1

γn+1an+1 =

∞∑
n=1

(bnan − bn+1an+1)

= a1b1 − lim
n→∞

an+1bn+1 = a1b1 − q

(18)

Hence, q = lim
n→∞

an+1bn+1 = 0. According to Lemma 3.3 and the fact that {an} ⊂ [0,+∞), the sequence {bn} is

positive. Now define F : OT(x0) ×OT(x0)→ [0,+∞) such that for each n ∈N, F(Tn−1(x0),Tn(x0)) = bn. Using
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the fact that lim
n→∞

γn = ∞, for each c > 0, there exists N > 0 such that γn > c. Applying (18) forall n ≥ N, we
have

bnan − bn+1an+1 = γn+1an+1 > can+1.

Thus,

an+1 <

(
bn

bn+1 + c

)
an. (19)

Hence, we can rewrite (19) as follows

d(Tn(x0),Tn+1(x0)) ≤
F(Tn−1(x0),F(Tn(x0)))
c + F(Tn(x0),Tn+1(x0))

d(Tn(x0),Tn−1(x0))

and the proof is completed.

Conclusion and Future Directions

In conclusion, this study pioneers a novel perspective on contractions through the lens of series conver-
gence tests, offering valuable insights into the identification of fixed points for operators with modulus not
restricted to values less than one. The introduction of (L, c)-expansion mappings represents a significant
advancement in the exploration of fixed point results, marking the first instance of their application in this
context.

A noteworthy outcome of this research is the initial exploration of contractions with moduli greater
than one and their potential application in solving integral equations, particularly when coefficients exceed
unity. This opens avenues for further investigation and application in solving real-world problems.

However, several intriguing questions emerge, pointing towards promising directions for future re-
search. Given the pivotal role of Kummer’s test (Theorem 1.1) as a convergence criterion for series and its
centrality in our main results, an intriguing avenue for exploration is the quest for a terminated fixed point
result. Specifically, can a general formula be derived for an arbitrary operator with at least one fixed point,
considering the termination aspect of Kummer’s test?

Moreover, a crucial question arises concerning the existence of a mapping Γ : [0,+∞)×[0,+∞)→ [0,+∞)
with specific properties, facilitating the establishment of a terminated fixed point result for operators with
fixed points. This inquiry holds the potential to advance our understanding of fixed point theory and its
broader applications. Future research efforts are warranted to address these questions, thereby contributing
to the ongoing evolution of fixed point theory and its practical implications.
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