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Available at: http://www.pmf.ni.ac.rs/filomat

On the Marshall-Olkin extended Gamma Lindley autoregressive
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Abstract. In this research paper, we generalize the Gamma Lindley distribution according to the Marshall-
Olkin transformation, in order to enhance data modeling flexibility. The rth moment of this distribution
is derived. Hence, we introduce a first autoregressive process (Xn)n∈N with minification structure using
the proposed model. We exhibit some of its statistical properties, in particular we compute the first order
autocovariance function, the conditional mean and the conditional cumulative distribution function of Xn+1

given Xn. We prove that P(Xn+1 = Xn) > 0, then we derive explicitly the joint probability distribution of
(Xn, Xn+1). Consequently, we estimate the unknown parameters of the proposed process using maximum
likelihood, conditional least squares and method of moments estimation. Then, a simulation study is
conducted to compare the performance of these approaches. An application to gold price data is illustrated
to show the flexibility of this process. We develop an algorithm for predicting time series real data by
employing the suggested autoregressive process. Results point out that the proposed autoregressive model
offers a statistically superior fit for the real data. Furthermore, it is a good predictive model compared to
the standard form for the first order one.

1. Introduction

Modeling data by generalized distributions is still very common nowadays. Several researchers pro-
posed new generalizations for lifetime distributions used in various fields such as finance, medicine and
engineering. For example, Laribi, Masmoudi, and Boutouria [12, 13] derived the Generalized Gamma Lind-
ley distribution to enhance the capability of analyzing various forms of lifetime data. Ghitany et al. [7] used
the Lindley distribution to illustrate an application to waiting time data in a bank. Rajitha and Akhilnath
[23] generalized the Lindley distribution using the power exponentiated family of distributions to model
the data of the covid-19 case fatality ratio. Ghitany et al. [6] proved that the power Lindley distribution
is significant to address stress-strength reliability modeling. El-Morshedy and Eliwa [4] defined the odd
flexible Weibull-H family of distributions and provided its applications in complete and upper record data.
Additionally, Marshall and Olkin [17] introduced an important method of incorporating a new parameter
to an existing distribution. The resulting model, known as Marshall-Olkin extended distribution, involves
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the original distribution as a special case and provides greater flexibility to model different types of real
data. Let fY(x), FY(x), FY(x) = 1 − FY(x) are respectively the probability density function (pdf), the cumula-
tive distribution function (cdf) and the survival function (sf) of a random variable Y following the original
model. According to the technique of Marshall-Olkin, the new survival function of a random variable X is
expressed as

FX(x; p) =
pFY(x)

1 − pFY(x)
, x ∈ R, (1)

where p > 0 and p = 1 − p. The corresponding probability density function is given by

fX(x; p) =
p fY(x)

(1 − pFY(x))2
, x ∈ R. (2)

The use of Marshall-Olkin transformation has been a great interest among many researchers. For instance,
Eghwerido et al. [3] proposed the Marshall-Olkin Gompertz distribution and explored its practical ap-
plications. Ghitani et al. [5] derived the Marshall-Olkin extended Weibull distribution and examined its
application for censored data. Krishna et al. [10] studied the applications of the Marshall-Olkin fréchet
distribution in acceptance sampling, reliability analysis and time series modeling. Zeghdoudi and Nedjar,
recently introduced a new distribution, called Gamma Lindley (GaL) distribution [20, 24], as a mixture of

Gamma(2, θ) distribution and Lindley(θ) distribution (see Lindley [14]) with mixing probabilities
α − 1
α

and
1
α

, respectively. They proved that this distribution is flexible for modeling real data in various fields
and it is more suitable than Exponential, Weibull, Gamma, two parameter Lindley distributions for some
applications. The usefulness of the Gamma Lindley distribution allows for the derivation of numerous
generalizations using a variety of methodology ( see [2, 19, 21] ).
Motivated by the idea of Marshall-Olkin and to increase the flexibility of the Gamma Lindley distribution,
we generalize it according to this technique.
Furthermore, modeling time series data is indeed crucial in different fields, especially finance, economics,
environmental science. As a result of numerous practical issues of modeling real data instances, several
time series models with non-Gaussian marginal are introduced. Accordingly, some attractive models with
Exponential [16], Lindley [1] and Gamma Lindley are discussed [18]. Autoregressive modeling is one of the
interesting techniques applied in time series analysis. This technique predicts future values based on past
observations, when there is some correlation between values.
Autoregressive models were constructed behind the idea that the present value of a series (Xn)n∈N∗ can be
explained through a function of p past values Xn−1, Xn−2, Xn−3, ..., Xn−p.
The standard form of an autoregressive model of order p, denoted by AR(p), is given by

Xn = a0 +

p∑
i=1

aiXn−i + ϵn

with ϵn is a white noise and (ai)0≤i≤p are p + 1 fixed parameters. The minification process [15] can be
used to model catastrophic events such as earthquakes, storms and stock market crashes. A first order
autoregressive minification process having the following general structure,

Xn =

ϵn with probability p
min(Xn−1, ϵn) with probability 1 − p

(3)

with 0 < p < 1 and {ϵn} is a sequence of independent and identically distributed random variables in-
dependent of {Xi, i < n}. This process was introduced with a marginal distribution that belonging to the
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family of Marshall-Olkin distributions by many researchers. Within this context, Krishnan and George [11]
defined the minification process with Marshall-Olkin Weibull Truncated Negative Binomial Distribution as
marginal. Jose et al. [9] constructed a minification process with Marshall-Olkin beta distribution. Further,
Jaykumar and Mathew [8] developed an application in modeling time series exchange rate data using the
Marshall-Olkin semi-Burr autoregressive process.
In this paper, we introduce a minification process with the Marshall-Olkin Gamma Lindley distribution
called the Marshall–Olkin Gamma Lindley autoregressive process. The latter is motivated by the following:
the mathematical properties of this process are relatively simple in form and may be used as quick approx-
imations in many cases. This new process has several advantages, including a number of parameters that
can be used to model a variety of phenomena in diverse fields such as actuarial science and economics.
Moreover, it can provide adequate fits to many data sets and can be used effectively in analyzing many real
lifetime data sets.
The main goal of this paper is to introduce a new generalization of the Gamma Lindley distribution [24]
based on the Marshall-Olkin transformation in order to develop an autoregressive process having the mini-
fication structure (3) and to show that this model can well predict time series data in diverse disciplines.
The paper is outlined as follows. In Section 2, we generalize the Gamma Lindley distribution using the
Marshall-Olkin technique in order to obtain a more flexible model. In Section 3, we develop the autoregres-
sive process of first order with minification structure using the proposed generalization and we explore
some of its statistical properties. In Section 4, we conduct a statistical inference for the unknown parame-
ters of this process using different methods of estimation, namely maximum likelihood, conditional least
squares and method of moments. In Section 5, we illustrate an application of the proposed process to real
data set. Finally, Section 6 is dedicated to concluding remarks and perspectives for future research.

2. Marshall-Olkin Extended Gamma Lindley distribution

Due to the ability of the Gamma Lindley distribution in modeling time series data, as well as the
remarkable flexibility of the Marshal-Olkin family in autoregressive models as marginal. We extend the
GaL distribution relying on the Marshall-Olkin method. The probability density function and the survival
function of a random variable Y follows a Gal distribution are given as follows

fY(x; α, θ) =
θ2((α + αθ − θ)x + 1)e−θx

α(1 + θ)
, x > 0, α >

θ
1 + θ

, θ > 0,

FY(x; α, θ) =
((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ)
, x > 0, α >

θ
1 + θ

, θ > 0. (4)

By substituting Equation (4) into Equation (1), we obtain the new survival function of the random variable
X as follows

FX(x; α, p, θ) =
p((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ) − p((θα + α − θ)(θx + 1) + θ)e−θx , x > 0. (5)

The new generalisation entitled Marshall-Olkin Extended Gamma Lindley (MOEGaL) with parameters α,

p and θ, where θ > 0 is the scale parameter, α >
θ

1 + θ
and p > 0 are the shape parameters.

The corresponding probability density function is expressed as below

fX(x; α, p, θ) =
α(1 + θ)pθ2((θα + α − θ)x + 1)e−θx

(α(1 + θ) − p((θα + α − θ)(θx + 1) + θ)e−θx)2
, x > 0.

This distribution has three parameters, providing significant flexibility. It is well suited for modeling real
data. Now, we prove that this extended model is geometrically extremely stable.
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Theorem 2.1. Let N be a geometric random variable with parameter p ∈ (0, 1), and let {Yi, i ≥ 1} be a sequence

of independently and identically random variables distributed as GaL(α, θ) distribution with α >
θ

1 + θ
, θ > 0.

Assuming that N is independent of Yi, i ≥ 1, then

(i) UN = min(Y1,Y2, ...,YN) has a Marshall-Olkin Extended Gamma Lindley distribution with parameters α, p,
θ.

(ii) VN = max(Y1,Y2, ...,YN) has a Marshall-Olkin Extended Gamma Lindley distribution with parameters α,
1
p

, θ.

Proof. Using the law of total probability, the survival function of UN is given by
(i)

FUN (x; α, p, θ) = P(UN > x),

=

∞∑
n=1

P(Un > x)P(N = n).

Since, N follows the geometric distribution with parameter p
(
P(N = n) = p(1 − p)n−1, n = 1, 2, ...

)
, therefore

FUN (x; α, p, θ) =

∞∑
n=1

F
n
Y(x; α, θ)(1 − p)n−1p,

=
pFY(x; α, θ)

1 − (1 − p)FY(x; α, θ)
,

=
p((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ) − p((θα + α − θ)(θx + 1) + θ)e−θx ,

which is the survival function of Marshall-Olkin Extended Gamma Lindley distribution with parameters α, p, θ.

(ii) The cumulative function of VN is expressed as

FVN (x; α, p, θ) = P(VN ≤ x),

=

∞∑
n=1

P(Vn ≤ x)P(N = n),

=

∞∑
n=1

Fn
Y(x; α, θ)(1 − p)n−1p,

=
pFY(x; α, θ)

1 − (1 − p)FY(x; α, θ)
.
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From this it is follows that the survival function of the random variable VN is

FVN (x; α, p, θ) =
FY(x; α, θ)

p + (1 − p)FY(x; α, θ)
,

=
((θα + α − θ)(θx + 1) + θ)e−θx

pα(1 + θ) + (1 − p)((θα + α − θ)(θx + 1) + θ)e−θx ,

=

1
p

((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ) − (1 −
1
p

)((θα + α − θ)(θx + 1) + θ)e−θx
,

which implies that VN follows the Marshall-Olkin Extended Gamma Lindley distribution with parameters α,
1
p

,

θ.

The following proposition establishes the rth moment of MOEGaL(α, p, θ) distribution.

Proposition 2.2. Let (Yn)n≥1 be a sequence of independently and identically random variables distributed as

GaL(α, θ) distribution with α >
θ

1 + θ
, θ > 0 and let Z j+1 = min(Y1, Y2, ...,Y j+1). Assume that X be a ran-

dom variable following MOEGaL(α, p, θ) distribution with 0 < p ≤ 1, then its rth moment is expressed as

µ′r = E(Xr) =
∞∑
j=0

pp jE(Zr
j+1), r = 1, 2, ...

Proof. Before proceeding with the computation, the initial focus is on demonstrating the existence of the rth

moment of MOEGaL(α, p, θ) distribution.

E(Xr) =

∫
∞

0
P(Xr > x) dx, r = 1, 2, ...

=

∫
∞

0

pFY(x1/r; α, θ)

1 − pFY(x1/r; α, θ)
dx,

=

∫
∞

0

pFY(x1/r; α, θ)
p + pFY(x1/r; α, θ)

dx,

≤

∫
∞

0
FY(x1/r; α, θ) dx,

≤

∫
∞

0
P(Y > x1/r) dx,

≤ E(Yr).

In addition, the Gamma Lindley distribution is a mixture of Gamma(2, θ) and Lindley(θ), with mixing

probabilities
α − 1
α

and
1
α

, respectively.

E(Yr) =

∫
∞

0
xr fY(x; α, θ) dx,

=
α − 1
α

∫
∞

0
θ2xr+1e−θx dx +

1
α

∫
∞

0

θ2

θ + 1
xr(1 + x)e−θxdx,

=
(α − 1)(r + 1)!

αθr +
r!(θ + r + 2)
αθr(θ + 1)

< ∞. (6)
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By proving the integrability, we affirm the convergence. Then, we compute the rth moment as follows

E(Xr) =

∫
∞

0
P(Xr > x) dx,

=

∫
∞

0

pFY(x1/r; α, θ)

1 − pFY(x1/r; α, θ)
dx.

Since 0 < pFY(x1/r; α, θ) < 1 for x > 0, using the generalized binomial formula given by

(1 − z)−s =

∞∑
j=0

(
j + s − 1

j

)
z j, |z|< 1, s > 0, (7)

we get for s=1

E(Xr) =

∫
∞

0
pFY(x1/r; α, θ)

(
1 − pFY(x1/r; α, θ)

)−1
dx,

=

∫
∞

0

∞∑
j=0

pp jF
j+1
Y (x1/r; α, θ) dx,

=

∫
∞

0

∞∑
j=0

pp jP(min(Y1,Y2, ...,Y j+1) > x1/r) dx.

Relying on the Theorem of Fubini-Tonelli, we get

E(Xr) =

∞∑
j=0

pp j
∫
∞

0
P(min(Y1,Y2, ...,Y j+1) > x1/r) dx,

=

∞∑
j=0

pp jE((min(Y1,Y2, ...,Y j+1))r).

Denote Z j+1 = min(Y1,Y2, ...,Y j+1), therefore

E(Xr) =
∞∑
j=0

pp jE(Zr
j+1),

where, E(Zr
j+1) =

∫
∞

0
xr( j + 1)F

j
Y(x; α, θ) fY(x; α, θ) dx can be computed numerically using Monte Carlo

method.

In particular, the first two moments of X are

µ′1 = E(X) =
∞∑
j=0

pp jE(Z j+1). (8)

and

µ′2 = E(X2) =
∞∑
j=0

pp jE(Z2
j+1). (9)

The kth central moment of the MOEGaL(α, p, θ) distribution is given by:

µk = E[(X − µ′1)k] =
k∑

r=0

(
k
r

)
µ′r(−µ

′

1)k−r.
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So, the kurtosis and skewness coefficients are expressed as γ1 =
µ4

µ2
2

and γ2 =
µ3√
µ3

2

. The moments of

MOEGaL(α, p, θ) distribution for different values of α, p and θ using Monte Carlo method are displayed in
Table (1).

Parameters E(X) Variance Kurtosis Skewness
α = 2, p = 0.6, θ = 2 0.662 0.378 7.811 1.815
α = 1.5, p = 0.8, θ = 5 0.260 0.060 8.295 1.854
α = 5, p = 0.4, θ = 3 0.413 0.141 8.694 1.960

α = 3.2, p = 0.2, θ = 0.8 1.127 1.440 13.685 2.647

Table 1: Moments of MOEGaL distribution for various values of α, p and θ using Monte Carlo method.

From Table (1), we can see that MOEGaL AR(1) distribution is positively skewed and leptokurtic. In
addition, when θ is increasing, the mean and variance are decreasing.

3. Autoregressive time series modeling

In the current section, we develop minification autoregressive process of order one, where MOEGaL
is the stationary marginal distribution. This process is denoted MOEGaL AR(1) process and some of its
statistical properties are investigated.

3.1. Construction of the MOEGaL AR(1) process

Let {Xn, n ∈N∗}, be a first order autoregressive (AR(1)) model

Xn =

Yn with probability p
min(Xn−1,Yn) with probability 1 − p

(10)

where p ∈ (0, 1) and {Yn} is a sequence of independent and identically distributed random variables
independent of {Xi, i < n}. This process is stationary Markovian with Marshall-Olkin distribution as
marginal.
The following theorem characterizes the first order autoregressive process using Marshall-Olkin Extended
Gamma Lindley distribution (MOEGaL AR(1)).

Theorem 3.1. In autoregressive process with structure given by (10), {Xn} is stationary Markovian with MOEGaL(α, p, θ)

distribution if and only if {Yn} is distributed as GaL(α, θ) distribution and X0
d
=MOEGaL(α, p, θ).

Proof. ”⇒ ”

Based on (10), the survival function of Xn is expressed as

FXn (x; α, p, θ) = P(Xn > x),

= pP(Yn > x) + (1 − p)P(Yn > x)P(Xn−1 > x),

= pFYn (x; α, θ) + (1 − p)FXn−1 (x; α, p, θ)FYn (x; α, θ).
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If {Xn} is stationary with MOEGaL(α, p, θ) distribution, then

FYn (x; α, θ) =
FXn (x; α, p, θ)

p + (1 − p)FXn (x; α, p, θ)
,

=
1

p

FXn (x; α, p, θ)
+ 1 − p

,

=
1

p
(
α(1 + θ) − (1 − p)((θα + α − θ)(θx + 1) + θ)e−θx

p((θα + α − θ)(θx + 1) + θ)e−θx

)
+ (1 − p)

,

=
((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ)
.

Then Yn follows the Gamma Lindley distribution with parameters θ > 0 and α >
θ

1 + θ
.

”⇐ ”

FX1 (x; α, p, θ) = pFY1 (x; α, θ) + (1 − p)FX0 (x; α, p, θ)FY1 (x; α, θ),

= FY1 (x; α, θ)
(
p + (1 − p)FX0 (x; α, p, θ)

)
,

=
((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ)

(
p +

(1 − p)p((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ) − (1 − p)((θα + α − θ)(θx + 1) + θ)e−θx

)
,

=
p((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ) − (1 − p)((θα + α − θ)(θx + 1) + θ)e−θx .

Therefore by induction, we can establish that Xn
d
= MOEGaL(α, p, θ). Which implies that the process {Xn}

is stationary with Marshall Olkin Extended Gamma Lindley distribution.

3.2. Statistical properties of the MOEGaL AR(1) process

In this part, we explore some of the important properties of the MOEGaL AR(1) process such as the
first order autocovariance function, the joint survival function and the joint probability density function of
(Xn, Xn+1).

3.2.1. Autocovariance function of the MOEGaL AR(1) process
We provide all the expressions for the first order autocovariance function of the MOEGaL AR(1) process

in the following proposition.
More precisely, we compute I1 = E(X2

n1(Xn>Yn+1)), I2 = E(Yn+11(Xn=x>Yn+1 )|Xn = x), I3 = E(XnYn+11(Xn>Yn+1)) and
I4 = E(min(Xn,Yn+1)).

Proposition 3.2. Assume that the process (Xn)n∈N satisfies (10), then

(i)

I1 = E(X2
n1(Xn>Yn+1)),

= µ′2 −
∞∑
j=0

( j + 1)p(1 − p) j

j + 2
E(Z2

j+2).



M. Ammar et al. / Filomat 38:32 (2024), 11477–11499 11485

(ii)

I2 = E(Yn+11(Xn=x>Yn+1 )|Xn = x),

= (−θ +
θ2

α(1 + θ)
)x2e−θx + (2θ −

θ2

α(1 + θ)
)(−

x
θ

e−θx
−

1
θ2 e−θx +

1
θ2 ).

(iii)

I3 = E(XnYn+11(Xn>Yn+1)),

= (
2
θ
−

1
α(1 + θ)

)µ′1 + (−θ +
θ2

α(1 + θ)
)
∫
∞

0
x3e−θx fXn (x; α, p, θ)dx

+(2θ −
θ2

α(1 + θ)
)(
∫
∞

0
(
−x2

θ
−

x
θ2 )e−θx fXn (x; α, p, θ)dx.

(iv)

I4 = E(min(Xn,Yn+1)) =
E(Xn+1) − pE(Yn+1)

1 − p
.

Proof.

(i)

E(X2
n1(Xn>Yn+1)) =

∫
∞

0

∫
{x>y>0}

x2 fXn (x; α, p, θ) fYn+1 (x; α, θ)dx dy,

=

∫
∞

0
x2 fXn (x; α, p, θ)FYn+1 (x; α, θ)dx,

= µ′2 −

∫
∞

0
x2 p fYn (x; α, θ)

(1 − pFYn (x; α, θ))2
FYn+1 (x; α, θ)dx.

Since 0 < (1− p)FYn (x; α, θ) < 1 and using the fact that the generalized binomial formula (7) for s = 2,
we get

E(X2
n1(Xn>Yn+1)) = µ′2 −

∫
∞

0

∞∑
j=0

( j + 1)p(1 − p) jx2 fYn (x; α, θ)F
j+1
Yn

(x; α, θ)dx,

= µ′2 −
∞∑
j=0

( j + 1)p(1 − p) j

j + 2
E(Z2

j+2).

(ii) Using Theorem (3.1) and an integration by parts, we get

E(Yn+11(Xn=x>Yn+1 )|Xn = x) =

∫
{x>y>0}

y fYn+1 |Xn=x(y; α, θ)dy,

=

∫ x

0

yθ2((α + αθ − θ)y + 1)e−θy

α(1 + θ)
dy,

=
θ2(α + αθ − θ)

α(1 + θ)

∫ x

0
y2e−θydy +

θ2

α(1 + θ)

∫ x

0
ye−θydy,

= (−θ +
θ2

α(1 + θ)
)x2e−θx + (2θ −

θ2

α(1 + θ)
)(−

x
θ

e−θx
−

1
θ2 e−θx +

1
θ2 ).

(11)
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(iii) Using some properties of conditional means, we obtain

E(XnYn+11(Xn>Yn+1)) = E(E(XnYn+11(Xn>ϵn+1)|Xn)),

= E(XnE(Yn+11(Xn>Yn+1)|Xn)),

= E(Xn((−θ +
θ2

α(1 + θ)
)X2

ne−θXn + (2θ −
θ2

α(1 + θ)
)(
−Xn

θ
e−θXn −

1
θ2 e−θXn +

1
θ2 ))),

= (
2
θ
−

1
α(1 + θ)

)µ′1 + (−θ +
θ2

α(1 + θ)
)
∫
∞

0
x3e−θx fXn (x; α, p, θ)dx

+(2θ −
θ2

α(1 + θ)
)
∫
∞

0
(
−x2

θ
−

x
θ2 )e−θx fXn (x; α, p, θ)dx.

In order to compute numerically each of these integrals, Monte Carlo method can be employed.

(iv)
From (10), we obtain E(Xn+1) = pE(Yn+1) + (1 − p)E(min(Xn,Yn+1)). Therefore

E(min(Xn,Yn+1)) =
E(Xn+1) − pE(Yn+1)

1 − p
.

Now, we compute the first order autocovariance function of the MOEGaL AR(1) process based on the
Proposition (3.2).

Proposition 3.3. The autocovariance between the random variables Xn+1 and Xn of MOEGaL AR(1) process is given
by

Cov(Xn+1,Xn) = (1 − p)
(
µ′2 − I1 + I3 − I4µ

′

1

)
,

with I1, I3, I4 are the expressions provided in the above proposition and µ′1, µ′2 are the first two moments of MOEGaL
distribution given by (8) and (9) respectively.

Proof. From (10), one obtains

Cov(Xn+1,Xn) = pCov(Xn,Yn+1) + (1 − p)Cov(min(Xn,Yn+1),Xn).

As Xn and Yn+1 are independent, thus

Cov(Xn+1,Xn) = (1 − p)Cov(min(Xn,Yn+1),Xn),

= (1 − p) (E(min(Xn,Yn+1)Xn) − E(min(Xn,Yn+1))E(Xn)) ,

= (1 − p)
(
E(X2

n1(Xn < Yn+1)) + E(XnYn+11(Xn > Yn+1)) − E(min(Xn,Yn+1))E(Xn)
)
,

= (1 − p)
(
E(X2

n) − E(X2
n1(Xn > Yn+1)) + E(XnYn+11(Xn > Yn+1)) − E(min(Xn,Yn+1))E(Xn)

)
.

In the below proposition, we compute the conditional mean and the conditional cumulative distribution
function of Xn+1 given Xn = x.

Proposition 3.4. Let (Xn) be the MOEGaL AR(1) process, then the conditional mean and the conditional cumulative
distribution function of Xn+1 given Xn = x are expressed as follows
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(i)

E(Xn+1|Xn = x) = p
(

2(α − 1)
αθ

+
(θ + 3)
αθ(θ + 1)

)
+ (1 − p)x

(
((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ)

)
+(1 − p)

(
(−θ +

θ2

α(1 + θ)
)x2e−θx + (2θ −

θ2

α(1 + θ)
)(−

x
θ

e−θx
−

1
θ2 e−θx +

1
θ2 )

)
.

(12)

(ii)

FXn+1 |Xn=x1 (x2) =
((θα + α − θ)(θx2 + 1) + θ)e−θx2

α(1 + θ)
1x1>x2+

(
(1 − p) + p

((θα + α − θ)(θx2 + 1) + θ)e−θx2

α(1 + θ)

)
1x1≤x2 .

(13)

Proof.

(i) Based on (10), the conditional mean is given by

E(Xn+1|Xn = x) = pE(Yn+1) + (1 − p)E(min(Xn,Yn+1)|Xn = x),

= pE(Yn+1) + (1 − p)E
(
x1(Yn+1≥x) + Yn+11(x>Yn+1 )|Xn = x

)
.

As Xn and Yn+1 are independent, thus

E(Xn+1|Xn = x) = pE(Yn+1) + (1 − p)
(
xP(Yn+1 ≥ x) + E(Yn+11(x>Yn+1 ))

)
,

= pE(Yn+1) + (1 − p)
(
xFYn+1 (x; α, θ) + E(Yn+11(x>Yn+1 ))

)
.

Where, E(Yn+1), FYn+1 (x; α, θ) and E(Yn+11(x>Yn+1 )) are given respectively by the Equations (6), (4) and
(11), therefore

E(Xn+1|Xn = x) = p
(

2(α − 1)
αθ

+
(θ + 3)
αθ(θ + 1)

)
+ (1 − p)x

(
((θα + α − θ)(θx + 1) + θ)e−θx

α(1 + θ)

)
+(1 − p)

(
(−θ +

θ2

α(1 + θ)
)x2e−θx + (2θ −

θ2

α(1 + θ)
)(−

x
θ

e−θx
−

1
θ2 e−θx +

1
θ2 )

)
.

(ii) Relying on (10), the conditional cumulative distribution function of Xn+1 given Xn = x is expressed as

FXn+1 |Xn=x1 (x2) = P(Xn+1 ≤ y|Xn = x1),
= (1 − p)P(min(Xn,Yn+1) ≤ x2|Xn = x1) + pP(Yn+1 ≤ x2|Xn = x1).

Since, Xn and Yn+1 are independent, hence

FXn+1 |Xn=x1 (x2) = (1 − p)P(min(x1,Yn+1) ≤ x2|Xn = x1) + pP(Yn+1 ≤ x2),
= (1 − p)(1 − P(min(x1,Yn+1) > x2)) + pFYn+1 (x2; α, θ),
= (1 − p)(1 − P(x1 > x2, Yn+1 > x2)) + pFYn+1 (x2; α, θ).

Therefore

FXn+1 |Xn=x1 (x2; α, p, θ) =


FYn+1 (x2; α, θ), if x1 > x2,

1 − p + pFYn+1 (x2; α, θ), if x1 ≤ x2.
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3.2.2. The joint probability distribution of (Xn, Xn+1)
In this part, we derive the joint probability distribution of the couple of random variables (Xn, Xn+1) due

to its importance in statistical analysis and applications. We begin first by computing its survival function
for MOEGaL AR(1) process in the following theorem.

Theorem 3.5. Assume that the process (Xn)n∈N satisfies (16), then the joint survival function of the couple of random
variables (Xn, Xn+1) is given by

S(x1, x2; α, p, θ) = pFY(x1; α, θ)FX(x2; α, p, θ) + (1 − p)FY(x1; α, θ)S0(x1, x2; α, p, θ), (14)

where

α >
θ

1 + θ
, 0 < p ≤ 1, θ > 0 and S0(x1, x2; α, p, θ) = P(Xn > max(x1, x2)) =

{
FX(x1; α, p, θ), x1 ≥ x2,
FX(x2; α, p, θ), x1 < x2.

Proof. Using (16) and the stationary property of (Xn)n∈N, we have

S(x1, x2; α, p, θ) = P(Xn+1 > x1,Xn > x2),

= pP(Yn+1 > x1,Xn > x2) + (1 − p)P(min(Xn,Yn+1) > x1,Xn > x2),

= pP(Yn+1 > x1)P(Xn > x2) + (1 − p)P(Yn+1 > x1)P(Xn > x1,Xn > x2),

= pP(Yn+1 > x1)P(Xn > x2) + (1 − p)P(Yn+1 > x1)P(Xn > max(x1, x2)),

= pFY(x1; α, θ)FX(x2; α, p, θ) + (1 − p)FY(x1; α, θ)S0(x1, x2; α, p, θ),

where

S0(x1, x2; α, p, θ) = P(Xn > max(x1, x2)) =
{

FX(x1; α, p, θ), x1 ≥ x2,
FX(x2; α, p, θ), x1 < x2.

Note that the joint survival function of random variables Xn and Xn+1 is not continuous. We have

P(Xn = Xn+1) = (1 − p)P(Yn ≥ Xn+1) = (1 − p)
∫ +∞

0
P(Yn ≥ x) fXn+1 (x; α, p, θ) dx =

1 − p + p log(p)
1 − p

> 0.

In the following theorem, we prove that the joint probability distribution of (Xn, Xn+1) for MOEGaL AR(1)
process is the sum of an absolutely continuous and singular measures.

Theorem 3.6. Assume that (Xn)n∈N satisfies (16), then the joint probability distribution of (Xn, Xn+1) is given by

P(Xn,Xn+1)(dx1, dx2) = f (x1, x2; α, p, θ)dx1dx2 + f0(x1; α, p, θ)dx1 ⊗ δx1 (dx2), (15)

where,
f (x1, x2; α, p, θ) = p fY(x1; α, θ) fX(x2; α, p, θ) + (1 − p) fY(x1; α, θ) fX(x2; α, p, θ)1x1<x2 ,
f0(x1; α, p, θ) = (1 − p) fX(x1; α, p, θ)FY(x1; α, θ) and δx1 denotes the Dirac measure at x1.
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Proof. To find the absolutely continuous part of P(Xn,Xn+1)(dx1, dx2), we compute

f (x1, x2; α, p, θ) =
∂2S(x1, x2; α, p, θ)

∂x1∂x2
,

= p fY(x1; α, θ) fX(x2; α, p, θ) + (1 − p) fY(x1; α, θ) fX(x2; α, p, θ)1x1<x2 .

Since that
∫
∞

0

∫
∞

0
f (x1, x2; α, p, θ) dx1dx2 < 1, it is clear that the joint probability distribution of Xn and

Xn+1 can be written as a mixture of an absolute continuous and singular measures.
In order to prove (15), we will demonstrate that∫

∞

x1

∫
∞

x2

f (u1,u2; α, p, θ)du1du2 + f0(u1; α, p, θ)du1 ⊗ δu1 (du2) = S(x1, x2; α, p, θ),

with S(x1, x2; α, p, θ) is given by (14). We distinguish two cases:
Case 1 : x1 ≥ x2∫

∞

x1

∫
∞

x2

f (u1, u2; α, p, θ)du1du2

+

∫
∞

x1

∫
∞

x2

f0(u1; α, p, θ)du1 ⊗ δu1 (du2) =

∫
∞

x1

∫
∞

x2

p fY(u1; α, θ) fX(u2; α, p, θ)du1du2

+

∫
∞

x1

∫
∞

x2

(1 − p) fY(u1; α, θ) fX(u2; α, p, θ)1u1<u2 du1du2

+

∫
∞

x1

(1 − p) fX(u1; α, p, θ)FY(u1; α, θ)(
∫
∞

x2

δu1 (du2))du1.

Using the fact that,∫
∞

x2

δu1 (du2) = δu1 ([x2,+∞[)

one gets, ∫
∞

x1

∫
∞

x2

f (u1, u2; α, p, θ)du1du2

+

∫
∞

x1

∫
∞

x2

f0(u1; α, p, θ)du1 ⊗ δu1 (du2) = pFY(x1; α, θ)FX(x2; α, p, θ)

+(1 − p)
∫
∞

x1

FX(u1; α, p, θ) fY(u1; α, θ)du1

+(1 − p)
∫
∞

x1∨x2

fX(u1; α, p, θ)FY(u1; α, θ)du1,

= pFY(x1; α, θ)FX(x2; α, p, θ)

+(1 − p)
∫
∞

x1

FX(u1; α, p, θ) fY(u1; α, θ)du1

+(1 − p)
∫
∞

x1

fX(u1; α, p, θ)FY(u1; α, θ)du1.
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Using integration by parts, one obtains,

(1 − p)
∫
∞

x1

fX(u1; α, p, θ)FY(u1; α, θ)du1 = (1 − p)[−FY(x1; α, θ)FX(x1, α, p, θ)

+

∫
∞

x1

FX(u1; α, p, θ) fY(u1; α, θ)du1],

= −(1 − p)FY(x1; α, θ)(1 − FX(x1; α, p, θ))

+(1 − p)
∫
∞

x1

fY(u1; α, θ)du1

−(1 − p)
∫
∞

x1

FX(u1; α, p, θ) fY(u1; α, θ)du1,

= (1 − p)FY(x1, α, θ)FX(x1; α, p, θ)

−(1 − p)
∫
∞

x1

FX(u1; α, p, θ) fY(u1; α, θ)du1.

Therefore,∫
∞

x1

∫
∞

x2

f (u1, u2; α, p, θ)du1du2 + f0(u1; α, p, θ)du1 ⊗ δu1 (du2) = pFY(x1; α, θ)FX(x2; α, p, θ)

+(1 − p)FY(x1; α, θ)FX(x1; α, p, θ),
= S(x1, x2; α, p, θ).

Case 2 : x1 < x2∫
∞

x1

∫
∞

x2

f (u1, u2; α, p, θ)du1du2

+

∫
∞

x1

∫
∞

x2

f0(u1; α, p, θ)du1 ⊗ δu1 (du2) =

∫
∞

x1

∫
∞

x2

p fY(u1; α, θ) fX(u2; α, p, θ)

+

∫
∞

x1

∫
∞

x2

(1 − p) fY(u1; α, θ) fX(u2; α, p, θ)1u1<u2 du1du2

+

∫
∞

x1

(1 − p) fX(u1; α, p, θ)FY(u1; α, θ)(
∫
∞

x2

δu1 (du2))du1,

= pFY(x1; α, θ)FX(x2; α, p, θ)

+(1 − p)
∫
∞

x2

fX(u2; α, p, θ)[FY(u2; α, θ) − FY(x1; α, θ)]du2

+(1 − p)
∫
∞

x2

fX(u1; α, p, θ)FY(u1; α, θ)du1.

Since FY(x; α, θ) = 1 − FY(x; α, θ), hence we can write that,

(1 − p)
∫
∞

x2

fX(u2; α, p, θ)[FY(u2; α, θ) − FY(x1; α, θ)]du2 = (1 − p)
∫
∞

x2

fX(u2; α, p, θ)(1 − FY(u2; α, θ))du2

−(1 − p)(1 − FY(x1; α, θ))
∫
∞

x2

fX(u2; α, p, θ)du2.

Then, we deduce the desired result.
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4. Statistical inference for the MOEGaL AR(1) process

In this section, we develop statistical inference for the unknown parameters of the MOEGaL AR(1)
process using Maximum Likelihood (ML), Conditional Least Squares (CLS) and Method of Moments (MM)
estimation methods. Additionally, we conducted a simulation study to evaluate the obtained estimators
resulting from these approaches. The experiments are performed with PYTHON software.

4.1. Maximum likelihood estimation method

In this subsection, we consider maximum likelihood estimation methods to estimate the unknown
parameters of the MOEGaL AR(1) process.
Based on (15), the distribution of (Xn, Xn+1) is dominated by the following measure

υ(dx1, dx2) = 1x1<x2 dx1dx2 + 1x1>x2 dx1dx2 + 1x1=x2 dx1 ⊗ δx1 (dx2).

The joint probability density function of (Xn, Xn+1) can be written as below:

f(Xn, Xn+1)(x1, x2; α, p, θ) =



fY(x1, α, θ) fX(x2, α, p, θ) if x1 < x2

p fY(x1, α, θ) fX(x2, α, p, θ) if x1 > x2

(1 − p) fX(x1, α, p, θ)FY(x1, α, θ) if x1 = x2

(16)

Let (X1, X2, ...,Xn) be a MOEGaL AR(1) time series, D = {1, ...,n − 1}, D1 = {i : i ∈ D, xi < xi+1}, D2 = {i : i ∈
D, xi > xi+1} and D3 = {i : i ∈ D, xi = xi+1}. Then due to conditioning approach and the Markov property,
the joint probability density function of (X1, X2, ...,Xn) is given by

f(X1, X2,...,Xn)(x1, ..., xn;α, p, θ) =
f(Xn−1, Xn)(xn−1, xn; α, p, θ)

fXn−1 (xn−1, α, p, θ)
× ... ×

f(X1, X2)(x1, x2; α, p, θ)
fX1 (x1, α, p, θ)

× fX1 (x1; α, p, θ),

=

∏n−1
i=1 f(Xi, Xi+1)(xi, xi+1; α, p, θ)∏n−1

i=2 fXi (xi; α, p, θ)
. (17)

Based on (17), the log-likelihood function of X1 = x1, X2 = x2, ...,Xn = xn is expressed as follows,

ℓ(x1, ..., xn; α, p, θ) =
∑

i∈D1∪D2∪D3

ln( f(Xi, Xi+1)(xi, xi+1; α, p, θ)) −
n−1∑

2

ln( fXi (xi; α, p, θ)),

=
∑
i∈D1

ln( fY(xi; α, θ) fX(xi+1; α, p, θ)) +
∑
i∈D2

ln(p fY(xi; α, θ) fX(xi+1; α, p, θ))

+
∑
i∈D3

ln((1 − p) fX(xi; α, p, θ)FY(xi; α, θ)) −
n−1∑

2

ln( fXi (xi; α, p, θ)).

The maximum likelihood estimators α̂, p̂ and θ̂ of α, p and θ respectively are obtained by maximizing
numerically the log-likelihood function using the gradient descent method. The optimization algorithm is
described as follows
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Algorithm 1 The maximum likelihood estimation method using Gradient Descent algorithm
Problem: Estimate the unknown parameters Θ = (α, p, θ) of the MOEGaL AR(1) process.
Input: Precision ϵ, step size h, x1, x2, ..., xn are drawn from MOEGaL AR(1) process.
Output: The estimates Θ̂ML = (α̂ML, p̂ML, θ̂ML).

1: D = {1, ...,n − 1}, D1 = {i : i ∈ D, xi < xi+1}, D2 = {i : i ∈ D, xi > xi+1} and D3 = {i : i ∈ D, xi = xi+1}.
2: Initialize Θ0

3: k← 0
4: repeat
5: Θk+1 = Θk + h∇ℓ(x1, x2, ..., xn;Θk)
6: k← k + 1
7: until ∥Θk+1

−Θk
∥ < ϵ

8: return Θ̂ML = Θ
k

4.2. Conditional least squares

Let {Xi, i = 1, ...,n} be a MOEGaL AR(1) time series. The conditional least squares estimators α̂CLS, p̂CLS and
θ̂CLS of the unknown parameters α, p and θ are obtained by minimizing numerically the following cost
function

ψ(α, p, θ) =
n−1∑
i=1

(Xi+1 − E(Xi+1|Xi = x))2 ,

where E(Xi+1|Xi = x) is given by Equation (12). The algorithm of obtaining the estimators α̂CLS, p̂CLS and
θ̂CLS using gradient descent method is described as below

Algorithm 2 The Conditional least squares estimation method using Gradient Descent algorithm
Problem: Estimate the unknown parameters Θ = (α, p, θ) of the MOEGaL AR(1) process.
Input: Precision ϵ, step size h, x1, x2, ..., xn are drawn from MOEGaL AR(1) process.
Output: The estimates Θ̂CLS = (α̂CLS, p̂CLS, θ̂CLS).

1: Initialize Θ0

2: k← 0
3: repeat
4: Θk+1 = Θk

− h∇ψ(Θk)
5: k← k + 1
6: until ∥Θk+1

−Θk
∥ < ϵ

7: return Θ̂CLS = Θ
k

4.3. Method of moments

Let {Xi, i = 1, ...,n} be a MOEGaL AR(1) time series. We consider first the estimation of the unknown
parameter p. The estimator p̂MM of p is the solution of the following equation

11(p) =
1 − p + p log(p)

1 − p
−

1
n − 1

n−1∑
i=1

1(Xi=Xi+1) = 0. (18)

Then, the estimators α̂MM and θ̂MM of the unknown parameters α and θ are derived by using Monte Carlo
simulation and solving the following non-linear system of equations numerically through the Newton-
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Raphson method



12(α, p̂MM, θ) =
1

n − 1
∑n−1

i=1 Xi − E(Xn) = 0.

13(α, p̂MM, θ) =
1

n − 1
∑n−1

i=1 X2
i − E(X2

n) = 0.

(19)

Where E(Xn) and E(X2
n) are given by Equations (8) and (9) respectively. We apply the Algorithm 3 in

PYTHON software, we get the estimators, α̂MM, p̂MM and θ̂MM.

Algorithm 3 Method of moments using Newton-Raphson algorithm
Problem: Estimate the unknown parameters p and Θ1 = (α, θ) of the MOEGaL AR(1) process.
Input: Precision ϵ, x1, x2, ..., xn are drawn from MOEGaL AR(1) process.
Output: The estimates α̂MM, p̂MM and θ̂MM

1: Step 1
2: Initialize p0

3: k← 0
4: repeat

5: pk+1 = pk
−
11 (̂p)
1′1 (̂p)

6: k← k + 1
7: until |pk+1

− pk
| < ϵ

8: return p̂MM = pk

9: Step 2
10: Initialize Θ0

1
11: k← 0
12: repeat

13: Θk+1
1 = Θk

1 − (∇(12, 13)(Θk
1, p̂MM))−1

(
12(Θk

1, p̂MM)
13(Θk

1, p̂MM)

)
14: k← k + 1
15: until ∥Θk+1

1 −Θk
1∥ < ϵ

16: return Θ̂1MM = Θ
k
1

4.4. Simulation study

In this part, we investigate the sample path behavior of the MOEGaL AR(1) process. Additionally, we
conduct a simulation study to evaluate the accuracy of the estimates obtained from the maximum likelihood,
conditional least squares and moments estimation methods. For this purpose, we generate N = 50 samples
of size n = 100, 200, 250 from the proposed process with true parameter values (2, 0.8, 1.5), (1.5, 0.7, 1)
and (2.5, 0.3, 0.6). Figure 1 shows that the sample path behavior appears distinct and adjustable through
the parameters α, p and θ, this adds a lot of value to the model.
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Figure 1: Sample path behavior of MOEGaL AR(1) process for various values of α, p and θ.

We compute the root mean squared error of the estimates by, RMSE =

√√√
1
N

N∑
k=1

(λ̂k − λ)2 where λ̂k is the

estimator of λ from the kth sample with λ = α, λ = p or λ = θ. The obtained estimated values for different
approaches are highlighted in the following Tables

n RMSE ML MM CLS
100 RMSE(α, α̂) 0.063 0.093 0.081

RMSE(p, p̂) 0.053 0.086 0.074
RMSE(θ, θ̂) 0.055 0.087 0.075

200 RMSE(α, α̂) 0.0042 0.052 0.031
RMSE(p, p̂) 0.0034 0.042 0.023
RMSE(θ, θ̂) 0.0040 0.052 0.022

250 RMSE(α, α̂) 0.00013 0.010 0.0032
RMSE(p, p̂) 0.00064 0.0066 0.0081
RMSE(θ, θ̂) 0.00061 0.011 0.0022

Table 2: RMSE of estimated values of α = 2, p = 0.8, θ = 1.5 by ML, CLS and MM approaches.
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n RMSE ML MM CLS
100 RMSE(α, α̂) 0.059 0.093 0.081

RMSE(p, p̂) 0.059 0.088 0.079
RMSE(θ, θ̂) 0.056 0.081 0.071

200 RMSE(α, α̂) 0.0042 0.035 0.023
RMSE(p, p̂) 0.0043 0.022 0.012
RMSE(θ, θ̂) 0.0097 0.051 0.024

250 RMSE(α, α̂) 0.00043 0.012 0.0031
RMSE(p, p̂) 0.00071 0.0085 0.0022
RMSE(θ, θ̂) 0.00088 0.014 0.0024

Table 3: RMSE of estimated values of α = 1.5, p = 0.7, θ = 1 by ML, CLS and MM approaches.

n RMSE ML MM CLS
100 RMSE(α, α̂) 0.041 0.081 0.062

RMSE(p, p̂) 0.043 0.084 0.063
RMSE(θ, θ̂) 0.061 0.086 0.078

200 RMSE(α, α̂) 0.0032 0.041 0.032
RMSE(p, p̂) 0.0021 0.039 0.024
RMSE(θ, θ̂) 0.0039 0.042 0.036

250 RMSE(α, α̂) 0.00010 0.0083 0.0015
RMSE(p, p̂) 0.00034 0.0092 0.0031
RMSE(θ, θ̂) 0.00042 0.015 0.0019

Table 4: RMSE of estimated values of α = 2.5, p = 0.3, θ = 0.6 by ML, CLS and MM approaches.

Relying on (2), (3) and (4), it is inferred that all estimators are consistent and asymptotically unbiased since
the RMSE tend to zero when the sample size n increases. It is also noteworthy that the ML generates the
best results and it outperforms MM and CLS methods in terms of RMSE criterion for different parameter
values of α, p and θ. From this perspective, it is quite reasonable to use the maximum likelihood estimation
method so as to estimate the unknown parameters of the MOEGaL AR(1) process.

5. Application

In this section, we illustrate an application of the MOEGaL AR(1) process with a real data set in order
to study the usability and significance of the proposed process.

5.1. Data

We consider the gold price data of Japan for 100 months in Japanese yen from 31 January 2011 to 30 April
2019 (https://www.kaggle.com/datasets/odins0n/monthly-gold-prices/). The main idea of this data
analysis is to see how the proposed model works in practice and also how it works in predictive modeling.
To normalize the data, we divide each value by 105. The real data set is presented in Figure 2. From the
plots drawn in Figure 3, the autocorrelation function decays exponentially and the partial autocorrelation
function is significant at lag 1. The stationarity of the gold data set is validated through the Dickey-Fuller
test, with corresponding p-value = 6.54 × 10−5 < 0.05.

https://www.kaggle.com/datasets/odins0n/monthly-gold-prices/
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Figure 2: Gold price data in Japan from 31 January 2011 to 30 April 2019

(a) Autocorrelation function (b) Partial autocorrelation function

Figure 3: Autocorrelation function, Partial autocorrelation function plots of the real data

5.2. Goodness of fit
In this part, we check how well the real data fit MOEGaL AR(1) process. Referring to [22], we apply

the goodness of fit test in order to examine the performance of this model. Therefore, we consider the null
hypothesis

H0 : Xi+1|Xi follows F(.|α, p, θ,Xi), i = 0, ...,n − 1

where F(.|α, p, θ, Xi) is given by (13).
Under the null hypothesis, we consider the following deviation process

Un(x, y) =
1
√

n

n−1∑
i=0

1Xi≤x[1Xi+1≤y − FXi+1 |Xi (y)].

The basis for a test of H0 is expressed by the supremum deviation

Sn = sup
x,y
|Un(x, y)|.

We undertake the following steps. Firstly, we compute α̂, p̂ and θ̂ the ML estimates of α, p, θ, as well as
Un and Sn from the real data. Secondly, starting with initial value X∗0, we generate X∗i+1 from F(.|̂α, p̂, θ̂,X∗i ),



M. Ammar et al. / Filomat 38:32 (2024), 11477–11499 11497

0 ≤ i ≤ n − 1. Thirdly, based on the bootstrap pseudo series (X∗i )1≤i≤n, let U∗n(x, y) be indicated as Un(x, y)
by replacing α̂, p̂, θ̂ with α̂∗, p̂∗, θ̂∗. Moreover, we calculate the Bootstrap statistics of Sn which is given by
S∗n = supx,y |U

∗
n(x, y)|. Finally, we repeat the above steps B times in order to obtain the ordered statistics

S∗(1) ≤ S∗(2) ≤ ... ≤ S∗(B). Then, for a level of significance α ∈ (0, 1), we calculate t∗1−α the empirical 1−α quantile.
As a matter of fact, we reject H0 if Sn > t∗1−α.
For α = 0.05 the computed test statistics Sn for MOEGaL model is equal to 0.12 with an associated p-value
of 0.96. However, for the standard AR(1) model the calculated test statistics Sn is equal to 0.31 with an
associated p-value of 0.24. Consequently, these results indicate that the MOEGaL model offers a strong and
superior fit for the gold price data compared to the standard AR(1) model.

5.3. Predictions

We evaluate the performance of the proposed autoregressive model and we compare it with the standard
form for the AR(1) process, given by Xn = a0+ a1Xn−1+ ϵn,where ϵn is a white noise, in terms of predictions.
We split the real data into {x1, x2, ..., x80} the training data and {x81, x82, ..., x100} the test data. We estimate the
unknown parameters of both models using maximum likelihood estimation method on the training data.
The obtained estimators are illustrated in Table (5).

Model α̂ p̂ θ̂ â0 â1

MOEGaL AR(1) 2.15 0.72 1.49
Standard form for the AR(1) 0.048 0.645

Table 5: The parameter estimates of the MOEGaL AR(1) and the Standard form for the AR(1)

Now, we check the performance of models on the test data. The prediction algorithm is summarized as
follows:

Algorithm 4 Algorithm for predicting future values using MOEGaL AR(1) process

Input: The estimates α̂, p̂ and θ̂, xn0= last value of the train data set, N=size of data set.
Output: Predicted values {̂xn0+1, x̂n0+2, ..., x̂n0+N}.

1: Generate random sample Y = {yn0+1, yn0+2, ..., yn0+N} from Gamma Lindley distribution with parameters
α̂ and θ̂.

2: Generate random sample Z = {zn0+1, zn0+2, ..., zn0+N} from Bernoulli distribution with parameter p̂.
3: X̂ be a new array
4: X̂[n0]← xn0

5: for i = n0 + 1→ n0 +N do
6: if Z[i]← 1 then
7: X̂[i]← Y[i]
8: else
9: X̂[i]← min(X̂[i − 1],Y[i])

10: end if
11: end for
12: return X̂[n0 + 1→ n0 +N]

For the purpose of predicting x̂n, n0 + 1 ≤ n ≤ n0 +N using MOEGaL AR(1) process, we simulate K samples[̂
x(i)

n0+1, ..., x̂
(i)
n0+N

]
1≤i≤K

based on the above algorithm, implemented in PYTHON software. Then, we compute

the mean predicted value x̂n =
1
K

∑K
i=1 x̂(i)

n . In the current application, we consider K = 50. In order to
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compare the performance of the MOEGaL AR(1) and the Standard form for the AR(1), we use the mean
absolute error (MAE) and the mean relative error (MRE) as comparison criteria. The MAE and MRE are

expressed respectively by MAE =
1

20

100∑
t=81

|x̂n − xn|, MRE =
1

20

100∑
n=81

|x̂n − xn|

xn
.

Model MAE MRE
MOEGaL AR(1) 0.0008 0.001
Standard form for the AR(1) 0.01 0.04

Table 6: MAE and MRE values of prediction models

From Table (6), the smallest values of MAE and MRE are obtained from MOEGaL AR(1) model. Thus, we
can conclude that it provides the best predictions among the other considered model. Figure 4 illustrates the
close fit between the prediction curve generated by the MOEGaL AR(1) model and the test data. However,
predictions from the standard AR(1) one exhibit a single decreasing trend, unlike the varied trajectory seen
in the prediction curve of MOEGaL AR(1). Hence, Figure 4 supports the results in Table 5, showing that
MOEGaL AR(1) is a good predictive model due to its structure.

Figure 4: Predictions of time series data using MOEGaL AR(1) process and the Standard form for the AR(1)

6. Conclusion

In the current research, a new first order autoregressive process (Xn)n∈N using Marshall-Olkin Extended
Gamma Lindley distribution (MOEGaL AR(1)) was constructed. We computed the first order autocovari-
ance function, as well as the conditional mean and the conditional cumulative distribution function of Xn+1
given Xn. We established the joint probability distribution of (Xn, Xn+1). Consequently, we estimated the
unknown parameters of this process using different estimation methods. We performed a simulation study
in order to assess the accuracy of the obtained estimates resulting from these approaches. We developed
an algorithm for predicting a gold price time series data by employing MOEGaL AR(1) model. This is
suggestive that the proposed autoregressive model is a good predictive model compared to the standard
AR(1) one. As a final note, we would assert that the current research work can be extend, taken further
and built upon. Indeed as new perspectives we will focus in future on generalizing the MOEGaL AR(1)
model to the kth order autoregressive model. Another equally pertinent extension involves introducing a
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first autoregressive minification process with multivariate Marshall-Olkin Extended Gamma Lindley as
marginal.
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[16] D. Mališić, On exponential autoregressive time series models, Math. Statis. Prob. Theory B (1987), 147-153.
[17] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential

and Weibull families, Biometrika. 84(3) (1997), 641-652.
[18] A. B. Mello, M. C. Lima, A. D. Nascimento, A notable Gamma-Lindley first-order autoregressive process: An application to

hydrological data, Environmetrics. 33(4) (2022), e2724.
[19] H. Messaadia, H. Zeghdoudi, Around gamma Lindley distribution, J. Mod. Appl. Stat. Methods. 16(2) (2017), 23.
[20] S. Nedjar, H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math. 298 (2016) 167-174.
[21] S. Nedjar, H. Zeghdoudi, New Compound Poisson distribution: Properties, Inflated distribution and applications, Int. J. Agricult.

Stat. 16(2) (2020).
[22] M. H. Neumann, E. Paparoditis, Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap

approximations, Bernoulli. 14(1) (2008), 14-46.
[23] C.S. Rajitha, A. Akhilnath, Generalization of the lindley distribution with application to covid-19 data, Int. J. Data. Sci. Anal.

(2022), 1–21.
[24] H. Zeghdoudi, S. Nedjar, Gamma Lindley distribution and its application, J. Appl. Probab. Stat. 11(1) (2016), 129–138.


	Introduction
	Marshall-Olkin Extended Gamma Lindley distribution
	Autoregressive time series modeling
	Construction of the MOEGaL AR(1) process
	Statistical properties of the MOEGaL AR(1) process
	Autocovariance function of the MOEGaL AR(1) process
	The joint probability distribution of (Xn, Xn+1)


	Statistical inference for the MOEGaL AR(1) process
	Maximum likelihood estimation method
	Conditional least squares
	Method of moments
	Simulation study

	Application
	Data
	Goodness of fit
	Predictions

	Conclusion

