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Abstract. In this paper, a composite mean-variance model for portfolio optimization problems in the
simultaneous presence of random and uncertain returns has been revisited and generalized. The expressions
for the mean and variance of the total uncertain random return have been obtained using chance distribution.
The model is flexible, as it is capable of dealing with both types of stocks: those with sufficient past records
and those that are newly introduced. A generalized uncertainty distribution is defined to represent the
returns of newly introduced stocks. And, the return vector of the stocks with sufficient past records
is assumed to follow a multivariate normal distribution. By varying the parameter(s) involved in the
generalized uncertain return distribution, different representative problems can be obtained. Thus, the
model provides the scope for incorporating subjective preferences. A comparative analysis of the solutions
obtained for different problems has been conducted. The most suitable one may be selected by the analysis.
The method of solution of the proposed model has been illustrated by constructing a numerical example
involving 30 stocks randomly selected from Bombay Stock Exchange (BSE) India, out of which 20 stocks
give a random return and the remaining 10 stocks give an uncertain return. The problem has been solved
using the function “fmincon” in Matlab R2018a.

1. Introduction

In 1952, Markowitz [12] did fundamental research work for modern finance theory, and then analysis of
the modern portfolio selection problem started. In his model, Markowitz respectively maximized and
minimized the expected value and variance of the total return. The expected value and variance of the
total return were calculated, considering the returns as random variables. Such estimations require enough
historical data. But in the stock market, there are some stocks that have recently entered the market, and
they naturally lack sufficient past records. In this scenario, a randomly selected portfolio will be a combina-
tion of stocks, some of which have sufficient past records and others that are newly introduced to the market.

To deal with the newly introduced stocks, which lack enough historical data, researchers resort to fuzzy set
theory and uncertainty theory. In this regard a comprehensive review of the literature is placed bellow:
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1.1. Literature review
Here we put forward the recent works in the field of portfolio optimization using fuzzy and uncertainty
theory.

1.1.1. Works using fuzzy set theory
Considering the returns of newly listed stocks as fuzzy variables, some researchers have developed fuzzy
portfolio optimization theory. Few such works are given by: Bhattacharya er al. [1] proposed multi-
objective fuzzy stock portfolio selection models that maximize mean and skewness as well as minimize
portfolio variance and cross-entropy. While Wang et al. [21] for the first time considered fuzzy Sharpe
ratio and then utilized it in defining value-at-Risk ratio for constructing a multi-objective portfolio selection
problem. Liu and Zhang [11] constructed a multi-period model where they considered the behavior, of
investors, which varies with time, in respect of loss and gains earned from the investment. Nath et al. [14]
employed goal programming (GP) method for solving a fuzzy model. In the portfolio model proposed
by Zhang et al. [23], an investor can immediately sell out the assets which gains a preassigned price.
Considering the dealings of investors, Chen et al. [2] proposed a model of portfolio where the proportions
of stocks could be adjusted suitably.

1.1.2. Works using uncertainty theory
To estimate inexact quantities using expert opinions, uncertainty theory introduced by Liu [6] is used as
an alternative approach. Uncertainty theory can also be used to model portfolio selection problems and
find their solutions. For application of the theory in portfolio selection problem, pioneering work has
been done by Qin et al. [18]. Further, Huang and Ying [3] established risk index-based models for port-
folio adjustment problems with uncertain returns subject to experts’ evaluation. Qin et al. [19] defined
an uncertain portfolio-adjusting model using the semi-absolute deviation. Li and Zhang [4] constructed
portfolio optimization model giving liquidity and entropy some preassigned lower bound. Mehlawat
et al. [13] studied portfolio selection problem using multiple objectives and higher order moments and
compare their finding with that of Qin [16]. Zhai et al. [22] studied portfolio optimization problem under
uncertain and random environment. It was observed that, to get higher return, one has to take higher risk
and skewness of the total return. Multi-period portfolio optimization problem with bankruptcy control
and liquidity was considered by Li et al. [5]. These are some of the works. Thus, it is evident that port-
folio selection problems, considering the stock return as an uncertain variable, are a vibrant area of research.

From the literature review, we note the following research gap:

1.2. Research gap
The zigzag uncertainty distribution [6] has three parameters, namely, a, b, and c respectively, a < b < c. The
values of the distribution function at a, b, and c are fixed at 0, 1/2, and 1, respectively. Many researchers used
this particular uncertainty distribution to represent rate of newly listed stocks. But the return distributions
of the newly listed stocks are unknown. Thus, it would be interesting to see the effect of variation in the
values of the distribution function assigned at a and b, in practical applications.

1.3. Motivation
The literature survey and research gap analysis motivated us to take the uncertainty return distribution to
be represented by a generalized uncertainty distribution having five parameters a, b, c; h1, h2, where h1 and h2
are respectively the values of the distribution function at a and b, with 0 ≤ h1 < h2 < 1. Also apply the same
to the portfolio optimization problem and compare the results obtained with those of the zigzag distribution.

Thus, in this paper, we have considered a hybrid portfolio of stocks, some of which have sufficient historical
data, and the rest are newly introduced. The returns from stocks with enough historical data are considered
random variables, and those with a lack of historical data are taken as uncertain variables, which follow a
generalized zigzag uncertainty distribution introduced in this paper. The expected value and the variance
of the total uncertain random return are calculated using chance distribution [10], in a generalized way.
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1.4. Contribution of the study

The main contributions of our study can be listed as follows:

• A new uncertainty distribution has been introduced as a generalization of the zigzag uncertainty
distribution, and its properties have been studied. The results generalize earlier findings obtained by
using the zigzag uncertainty distribution.

• For non-zero values of h1, the expression of the variance of the total return contains a term that repre-
sents the combined influence of randomness and uncertainty, which is a noble observation. Such joint
action is not present in the previous work with zigzag uncertainty distribution. Thus, the generalized
zigzag uncertainty distribution introduced in this paper is capable of reflecting the coexistence of
randomness and uncertainty more aptly than the zigzag uncertainty distribution.

• Four sets of representative values of h1 and h2 are taken for analyzing the effect of variation. From the
comparative analysis and expected value vs. variance graphs, the most suitable one is identified.

• It is shown in the form of a theorem that, the proposed method yields efficient solutions.

1.5. The reason for using uncertainty theory together with statistical approach in portfolio selection

In a portfolio selection problem, the most important variable is the return rate of a stock. Now, the
stocks that have recently been introduced to the market (risky stocks) lack sufficient past records. Hence,
the determination of the probability distribution of the return of such stocks is not possible. Since the
determination of the parameters of a distribution requires a reasonable amount of data, statistical methods
in such a scenario cannot be applied. One has to resort to fuzzy set theory or uncertainty theory to find
the membership or distribution function of the return of the risky stocks, using experts’ opinions. Further,
fuzzy methods have some limitations in this regard. A paradox will appear when fuzzy variables are
used to describe the return of the stocks, as was observed by Huang and Ying [3] . Thus, under such
situations, the uncertainty theory introduced by Liu [6] becomes an appropriate tool for working. Also,
uncertainty theory is established on a solid theoretical background. Hence, in our present work, we have
used uncertainty theory to find the return distributions of newly listed stocks.

Our portfolio is a composite one consisting of stocks, some of which have enough historical data, and
the remaining have been recently introduced to the market. Separately, we can apply statistical theory
to the first category of stocks and uncertainty theory to the second. But for the composite portfolio, the
only way is to use uncertainty theory. This is because uncertainty theory also permits the coexistence of
randomness and uncertainty. Using chance distribution introduced by Liu [10] , one can calculate the mean
and variance of the total uncertain random return of the portfolio. The same has been applied to the paper.

1.6. Organization of the paper

To fulfill our aim, the paper is organized as follows: In Section 2, we put forward some preliminaries
related to our study. Next, in Section 3, a generalized zigzag uncertainty distribution, is introduced, and
its properties are studied. Then in Section 4, the problem of portfolio selection is stated. In Section 5,
the expected value and variance of the total uncertain random return have been obtained. In Section 6,
we illustrated the procedure for solving our proposed problem. This has been done by constructing a
numerical example. Next in Section 7 a comparative analysis of the result obtained with existing result has
been done. Managerial implications and the perspective of the proposed methodology has been discussed
in Section 8. Section 9 contains the conclusions derived from the study, and the references relevant to our
study have been listed.
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2. Preliminaries

Definition 2.1. [6] Let Γ be a non-empty set and L be a σ algebra over Γ. Each element A ∈ L is called an
event. A set functionM : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:

1.M(Γ) = 1.
1.M(A1) ≤ M(A2) whenever A1 ⊂ A2.

2.M(A) +M(Ac) = 1, for any event A, Ac = Γ − A.
3. For every countable sequence of events {Ai},we have

M

{ ∞⋃
i=1

Ai

}
≤

∞∑
i=1

M{Ai}.

The triplet (Γ,L,M) is called an uncertainty space.

Definition 2.2. [6] An uncertain variable ξ is a measurable function from an uncertainty space (Γ,L,M) to
the set of real numbers, that is, for any Borel set B of real numbers, the set {ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B} is
an event.

Definition 2.3. [6] For any x ∈ R, the uncertainty distribution function Φ of an uncertain variable ξ is
defined by Φ(x) =M{γ ∈ Γ | ξ(γ) ≤ x}. Here, R is the set of all real numbers.

Definition 2.4. [8] An uncertain variable ξ is called zigzag if it has a zigzag uncertainty distribution function
given by

Φ(x) =


0, if x ≤ a
x−a

2(b−a) , if a ≤ x ≤ b
x+c−2b
2(c−b) , if b ≤ x ≤ c
1, if x ≥ c,

denoted byZ(a, b, c), where a, b, c are real numbers with a < b < c.

Definition 2.5. [7] The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M

{ n⋂
i=1

{ξi ∈ Bi}

}
= min

1≤i≤n
M{ξi ∈ Bi},

Theorem 2.1. [8] Let ξ1, ξ2, ..., ξn be independent uncertain variables with regular uncertainty distribution
functions Φ1,Φ2, ...,Φn respectively. If f is strictly increasing function, then

ξ = f (ξ1, ξ2, ..., ξn)

has an inverse uncertainty distribution function

Ψ−1(δ) = f (Φ−1
1 (δ),Φ−1

2 (δ), ...,Φ−1
n (δ)).

Definition 2.6. [6] The expected value of an uncertain variable ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x} dx −

∫ 0

−∞

M{ξ ≤ x} dx,

provided that at least one of the two integrals exits finitely.
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Theorem 2.2. [8] Let ξ1 and ξ2 be two independent uncertain variables with finite expected values E[ξ1]
and [ξ2] respectively. Then for any real numbers a and b,

E[aξ1 + bξ2] = aE[ξ1] + bE[ξ2].

Definition 2.7. [10] An uncertain random variable is a measurable function ξ̃ from the chance space
(Γ,L,M) × (Ω,A,P, ) to the set of real numbers, that is, for any Borel set B of set of real numbers R,
{ξ̃ ∈ B} = {(γ,ω) : ξ̃(γ,ω) ∈ B} ∈ L×A, that is an event inL×A, where γ ∈ Γ, ω ∈ Ω. Its chance distribution
is defined by Φ̃(x) = ch{ξ̃ ≤ x}, for any x ∈ R,
where {ξ̃ ≤ x} = {(γ,ω) ∈ Θ | γ ∈ Γ, ω ∈ Ω | ξ̃(γ,ω) ≤ x} ∈ L ×A.

Definition 2.8. [10] Let ξ̃ be an uncertain random variable. Then its expected value is defined by

E[ξ̃] =
∫ +∞

0
ch{ξ̃ ≥ x} dx −

∫ 0

−∞

ch{ξ̃ ≤ x} dx,

provided at least one of the two integrals exits finitely.

Result 2.1. [10] If η is a random variable and ξ is an uncertain variable, then η + ξ is an uncertain
random variable.

Result 2.2. [9] If η is a random variable and ξ is an uncertain variable, then the expected value of the
uncertain random variable η + ξ is given by

E[η + ξ] = E[η] + E[ξ].

Definition 2.9. [10] Let ξ̃ be an uncertain random variable with finite expected value e. Then its variance is
defined by

V[ξ̃] = E[(ξ̃ − e)2].

Theorem 2.3. [20] Let ξ̃ be an uncertain random variable with chance distribution Φ̃ and finite expected
value e. Then

V[ξ̃] =
∫ +∞

−∞

(x − e)2dΦ̃(x).

3. A new uncertainty distribution and its properties

In this section, we propose a new uncertainty distribution and study its properties.

Definition 3.1. An uncertain variable ξ is called generalized zigzag if its uncertainty distribution is given
by

Φ(x) =


0, if x < a

h1 +
(h2−h1)(x−a)

(b−a) , if a ≤ x ≤ b
h2 +

(1−h2)(x−b)
(c−b) , if b ≤ x ≤ c

1, if x ≥ c,

(1)

where a, b, c, h1, h2 are real numbers with a < b < c and 0 ≤ h1 < h2 < 1 and we write ξ ∼ GZ(a, b, c; h1, h2).
The only point of discontinuity of Φ is at x = a, for h1 , 0.

For a given pair of values of h1 and h2, the values of a, b, c are estimated using expert’s opinion on the
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basis of available information.

Clearly, the newly defined uncertainty distribution is a continuous and strictly increasing function with
respect to x at which 0 < Φ(x) < 1. So, by Theorem 3.1 of [15] and definition 1.16 of [8], the generalized
zigzag uncertainty distribution is a regular uncertainty distribution. Hence, the Operational law (theorem
2.1) holds for a finite collection of independent generalized zigzag uncertain variables. The discontinuity of
GZ(a, b, c; h1, h2) at x = a, (when h1 , 0) does not have any effect on the regularity property or the operational
law to hold.

Also a generalized zigzag uncertain variable becomes zigzag uncertain variable when h1 = 0 and h2 = 1/2 .

The distribution function ξ ∼ GZ(a, b, c; h1, h2) can be expressed in the form

Φ(x) =
(
h1 +

(h2 − h1)(x − a)
(b − a)

)
I{x: a≤x≤b} +

(
h2 +

(1 − h2)(x − b)
(c − b)

)
I{x: b≤x≤c} + I{x: x≥c}, (2)

where I{.} is the indicator function of the set {.}.

Next we find the inverse uncertainty distribution function for GZ(a, b, c; h1, h2), at an uncertainty level
δ, 0 < δ < 1 and put in the form of a lemma. The following lemma can easily be proved.

Lemma 3.1. The inverse uncertainty distribution of the generalized zigzag uncertain variableGZ(a, b, c; h1, h2)
is given by

Φ−1(δ) =

 (h2−δ)a+(δ−h1)b
h2−h1

, if 0 < h1 ≤ δ < h2
(1−δ)b+(δ−h2)c

1−h2
, if h2 ≤ δ < 1.

Now we have the following results regarding the sum and scalar multiplication operation of generalized
zigzag uncertain variables. Using the lemma 3.1, one can prove that:

Theorem 3.1. Let ξ1 ∼ GZ(a1, b1, c1; h1, h2) and ξ2 ∼ GZ(a2, b2, c2; h1, h2) are independent then ξ1 +
ξ2 ∼ GZ(a1 + a2, b1 + b2, c1 + c2; h1, h2). And if ξ ∼ GZ(a, b, c; h1, h2) then for a scalar w > 0, wξ ∼
GZ(wa,wb,wc; h1, h2).

Corollary 3.1. If β j ∼ GZ(a j, b j, c j; h1, h2), for j = 1, 2, ...,n, are independent uncertain variables, then for the
scalars d j ≥ 0, with

∑n
j=1 d j > 0, Σd jβ j ∼ GZ(Σd ja j,Σd jb j,Σd jc j; h1, h2).

The corollary is a direct consequence of theorem 3.1.

4. Problem statement

Here we find an optimal portfolio in a scenario where some of the stocks give random returns and for the
rest it is uncertain. For the purpose of stating our proposed problem of portfolio selection, we adopt the
following notations and symbols for convenience:

X =collection of stocks having enough historical data.
Y =collection of stocks that have recently entered the market and are lacking sufficient historical data.
m =| X |, the cardinality of the set X.
n =| Y |, the cardinality of the set Y.
αi denotes the random return of one unit of the ith stock belonging to the set X, for i = 1, 2, ...m.
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κi = E[αi], that is, the expected value of random variable αi, for i = 1, 2, ...m.
σi j is the covariance of random variables αi and α j, for i, j = 1, 2, ...,m.
σ2

ii ≡ σ
2
i is the variance of random variables αi, for i = 1, 2, ...,m.

Σ = (σi j)m×m = the covariance matrix for the random variables α1, α2, ..., αm.
Ψi is the probability distribution of the random variable αi, for i = 1, 2, ...,m.
β j denotes the uncertain return of one unit of the jth stock belonging to the set Y, for j = 1, 2, ...,n.
ρ j = E[β j] , that is, the expected value of the uncertain variable β j, for j = 1, 2, ...,n.
τ2

j is the variance of the uncertain variable β j, for j = 1, 2, ...,n.
ζ j denotes the uncertainty distribution of the uncertain variable β j, for j = 1, 2, ...,n.
xi denotes the proportion of the total budget invested in the ith stock belonging to set X, for i = 1, 2, ...m.
y j denotes the proportion of the total budget invested in the jth stock belonging to set Y, for j = 1, 2, ...,n.
Φ̃ is the chance distribution of the uncertain random variable

∑m
i=1 xiαi +

∑n
j=1 y jβ j (result 2.1).

The following notations for the frequently accruing matrices will be used throughout with out any specific
reference

x =


x1
x2
...

xm

, y =


y1
y2
...

yn

 , α =

α1
α2
...
αm

 , β =

β1
β2
...
βn

 , κ =

κ1
κ2
...
κm

 , ρ =

ρ1
ρ2
...
ρn

 ,

σ2 =


σ2

1
σ2

2
...
σ2

m

 , τ2 =


τ2

1
τ2

2
...
τ2

n

 .
4.1. Construction of the objectives and constraints

Here, we form the objectives and constraints for our proposed portfolio optimization problem.

4.1.1. Formation of objectives
The, the total return earned from the investment is x1α1+x2α2+ ...+xmαm+y1β1+y2β2+ ...+ynβn = x′α+y′β=
r(x, y;α,β). Here, x′α = x1α1 + x2α2 + ... + xmαm and y′β = y1β1 + y2β2 + ... + ynβn are respectively random
and uncertain variables.

It follows from result 2.1 and 2.2, that r(x, y;α,β) is an uncertain random variable and E[r(x, y;α,β)] =
E[x′α+ y′β] = E[x′α]+E[y′β]. Also the variance of the total return is given by, V[r(x, y;α,β)] = V[x′α+ y′β].

In any portfolio optimization problem, the primary aim of an investor is to maximize the total expected
return and minimize the total variance, representing the risk in the investment. Thus, we have set the
following two objectives in this paper.

• Maximization of expected value of total return: Our first objective is to maximize the total return
E[r(x, y;α,β)] earned from the investment.

• Minimization of variance of total return: Also we wish to minimize the investment risk measured by
the total variance V[r(x, y;α,β)] = V[x′α + y′β].

4.1.2. Formation of constraint
• Total budget constraint: According to this constraint the sum of the proportions of wealth invested in

different stocks must be equal to 1. Thus one constraint is x1 + x2 + ... + xm + y1 + y2 + ...yn = 1, where
xi, y j ≥ 0, for i = 1, 2, ...,m and j = 1, 2, ...,n.
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• Upper and lower bounds constraint: For the sake of reducing the risk of investment in the portfolio,
we put restrictions on the upper and lower bounds of the variables xi, y j. Let li ≤ xi ≤ ui and
lm+ j ≤ y j ≤ um+ j, to reduce the risk. The values of these bounds are decided by the decision-maker.

Thus, the portfolio selection problem under the simultaneous presence of random and uncertain returns,
is expressed as

Max E[r(x, y;α,β)] = E[x′α + y′β]
Min V[r(x, y;α,β)] = V[x′α + y′β]

subject to, I
′

mx + I
′

ny = 1
L1 ≤ x ≤ U1

L2 ≤ y ≤ U2

x, y ≥ 0,

(3)

where

Im =


1
1
...
1

 , In =


1
1
...
1

 , L1 =


l1
l2
...

lm

 , L2 =


lm+1
lm+2
...

lm+n

 , U1 =


u1
u2
...

um

 , U2 =


um+1
um+2
...

um+n


are column matrices. Here, Im and In are of orders m × 1 and n × 1 respectively.

4.2. Distribution of random and uncertain returns

In problem (3), the distribution of the random and uncertain variables involved has not been specified.
Now we assume that β j ∼ GZ(a j, b j, c j; h1, h2), j = 1, 2, ...,n are independent. We further assume that the
random vector α follows multivariate normal distribution having density

ψα(z) =
1√

(2π)m | Σ |
exp

(
−

1
2

(z − κ)
′

Σ−1(z − κ)
)
, ∀z ∈ Rm, | Σ |, 0.

Under our assumptions x′α follows normal distribution with mean x1κ1+x2κ2+...+xmκm = x′κ and variance
Σm

i=1Σ
m
j=1xix jσi j = x′Σx. The density function of the normal variable x′α is given by

ψ(s) =
1

√
2πσ(x)

exp
(
−

(s − κ′x)2

2σ2(x)

)
, (4)

where σ(x) =
√

x′Σx and σ2(x) = (σ(x))2.

Also it follows from theorem 3.1,

y
′

β =
n∑

j=1

y jβ j ∼ GZ(
n∑

j=1

y ja j,
n∑

j=1

y jb j,
n∑

j=1

y jc j; h1, h2). (5)

4.2.1. Formulae for expected value and variance of the total uncertain random return
Here we put forward the formulae for calculating the expected value and variance of the total return
r(x, y;α,β).
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Using the independence of β j, for j = 1, 2, ...n, we have E[y′β] = E[
∑

j=1 y jβ j] =
∑n

j=1 y jE[β j] =
∑n

j=1 y jρ j = y′ρ
(theorem 2.2). Therefore, from result 2.2, we have

E[r(x, y;α,β)] = E[x
′

α + y
′

β] = E[x
′

α] + E[y
′

β] = x
′

κ + y
′

ρ (6)

Thus, the variance of uncertain random variable r(x, y;α,β) is given by, Sheng and Yao [20]

V[r(x, y;α,β)] =
∫ +∞

−∞

[t − (x
′

κ + y
′

ρ)]2dΦ̃(t), (7)

where the chance distribution Φ̃(t) of r(x, y;α,β) is given by

Φ̃(t) =
∫ +∞

−∞

ζ(t − s)dΨ(s), (8)

where dΨ(s) = ψ(s)ds.
In the above expression ζ(.) and Ψ(.) denotes respectively the uncertainty distribution and probability
distribution of the variables y′β and x′α.

5. Calculation of total expected value and variance of the uncertain random return

Here our aim is to find E[r(x, y;α,β)] and V[r(x, y;α,β)] in terms of the parameters of the distributions and
holding proportions. For this first we calculate the expected value of uncertain variable β ∼ GZ(a, b, c; h1, h2),
which is placed in the form of the following theorem.

Theorem 5.1. The Generalized zigzag uncertain variable
β ∼ GZ(a, b, c; h1, h2) has expected value

E[β] =
1
2

[
(h1 + h2)a + (1 − h1)b + (1 − h2)c

]
. (9)

Proof: We know that, the uncertainty distribution ζ of an uncertain variable β having generalized zigzag
uncertainty distribution is given by

ζ(x) =


0, if x < a,

h1 +
(h2−h1)(x−a)

(b−a) , if a ≤ x ≤ b,
h2 +

(1−h2)(x−b)
(c−b) , if b ≤ x ≤ c,

1, if x ≥ c.

Hence, by the definition, the expected value of an uncertain variable β is given by,

E[β] =
∫ +∞

0
M{β ≥ x}dx −

∫ 0

−∞

M{β ≤ x}dx

=

∫ +∞

0
(1 − ζ(x))dx −

∫ 0

−∞

ζ(x)dx,

=

∫ a

0
0 dx +

∫ b

a
{1 − (h1 +

(x − a)(h2 − h1)
(b − a)

)}dx

+

∫ c

b
{1 − (h2 +

(1 − h2)(x − b)
(c − b)

)}dx +
∫ +∞

c
(1 − 1) dx

=
1
2

[
(h1 + h2)a + (1 − h1)b + (1 − h2)c

]
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Hence the theorem.

Corollary 5.1. The expected value of the generalized zigzag uncertain variable
∑n

j=1 y jβ j, where β j ∼

GZ(a j, b j, c j; h1, h2) and y j ≥ 0 is

E[
n∑

j=1

y jβ j] =
1
2

[
(h1 + h2)

n∑
j=1

y ja j + (1 − h1)
n∑

j=1

y jb j + (1 − h2)
n∑

j=1

y jc j

]
. (10)

The above result (10) can further be expressed as

E[y
′

β] =
1
2

[
(h1 + h2)y

′

a + (1 − h1)y
′

b + (1 − h2)y
′

c
]
, (11)

where

y =


y1
y2
...

yn

 , a =


a1
a2
...

an

 , b =


b1
b2
...

bn

 , c =


c1
c2
...

cn

 are the column matrices.

Similarly, if αi, i = 1, 2, ...,m are random variables and x1, x2, ..., xn are constants then
∑m

i=1 xiαi is also a
random variable and E[

∑m
i=1 xiαi] =

∑m
i=1 xiE[αi].

Thus in matrix notation,

E[x
′

α] = x
′

E[α] = x
′

κ (12)

Therefore the total return of the uncertain random variable r(x, y;α,β) is

E[r(x, y;α,β)] = x
′

κ +
1
2

[
(h1 + h2)y

′

a + (1 − h1)y
′

b + (1 − h2)y
′

c
]
. (13)

Now we are in a position to find variance of r(x, y;α,β).

Theorem 5.2. If β j ∼ GZ(a j, b j, c j; h1, h2) are generalized zigzag uncertain variables, for j = 1, 2, ...,n and
αi’s are random variables, for i = 1, 2, ...,m , then the variance of the chance distribution of the uncertain
random variable x′α + y′β is given by

V[r(x, y;α,β)] = V[x
′

α + y
′

β]

= σ2(x) +
1

12

[
4(h2 − h1)(y

′

b − y
′

a)2 + 4(1 − h2)(y
′

c − y
′

b)2

+ 3
(
(1 + h1)y

′

b − (h1 + h2)y
′

a − (1 − h2)y
′

c
)

×

(
(h2 − 3h1 + h2

1 + h1h2)y
′

a − (1 − h1)2y
′

b + (1 − h2)(1 + h1)y
′

c
)]

+

√
2

4
h1σ(x)

[
(h1 + h2 − 2)y

′

a + (1 − h1)y
′

b + (1 − h2)y
′

c
]2

.

(14)

Proof: We know that y′β is a generalized zigzag uncertain variable having expected value 1
2 [(h1 + h2)y′a+

(1 − h1)y′b + (1 − h2)y′c] (equation (11)).
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We have the following uncertainty distribution of u = y′β, using corollary 3.1 and equation (2)

ζ(u) =
(
h1 +

(h2 − h1)(u − y′a)

(y′b − y′a)

)
I
{u: y

′
a≤u≤y

′
b}

+

(
h2 +

(1 − h2)(u − y′b)

(y′c − b′y)

)
I
{u: y

′
b≤u≤y

′
c} + I

{u: u≥y
′
c}.

From equation(4) representing the density of the normal random variable x′α and (8) giving the distribution

function of the uncertain random variable we have

Φ̃(t) =
∫ +∞

−∞

[(
h1 +

(h2 − h1)(t − s − y′a)

(y′b − y′a)

)
I
{y′a≤t−s≤y

′
b}

+

(
h2 +

(1 − h2)(t − s − y′b)

(y′c − y′b)

)
I
{y
′
b≤t−s≤y

′
c} + I

{t−s≥y
′
c}

]
ψ(s)ds

=
1

√
2πσ(x)

∫ t−y
′
a

t−y
′
b

(
h1 +

(h2 − h1)(t − s − y′a)

(y′b − y′a)

)
exp

(
−

(s − κ′x)2

2σ2(x)

)
ds

+
1

√
2πσ(x)

∫ t−y
′
b

t−y
′
c

(
h2 +

(1 − h2)(t − s − y′b)

(y′c − y′b)

)
exp

(
−

(s − κ′x)2

2σ2(x)

)
ds

+
1

√
2πσ(x)

∫ t−y
′
c

−∞

exp
(
−

(s − κ′x)2

2σ2(x)

)
ds.

Differentiating both side of the above equation with respect to t, and then using (4) and (7), the total variance
is given by,

V[r(x, y;α,β)] =∫ +∞

−∞

[
t −

(
κ
′

x +
1
2

[(h1 + h2)y
′

a + (1 − h1)y
′

b + (1 − h2)y
′

c]
)]2

dΦ̃(t)

=
h2 − h1

√
2πσ(x)(y′b − y′a)

∫ +∞

−∞

exp
(
−

(s − κ′x)2

2σ2(x)

)

×

∫ s+y
′
b

s+y
′
a

[
t −

(
κ
′

x +
1
2

[(h1 + h2)y
′

a + (1 − h1)y
′

b + (1 − h2)y
′

c]
)]2

dt

 ds

+
1 − h2

√
2πσ(x)(y′c − y′b)

∫ +∞

−∞

exp
(
−

(s − κ′x)2

2σ2(x)

)

×

∫ s+y
′
c

s+y
′
b

[
t −

(
κ
′

x +
1
2

[(h1 + h2)y
′

a + (1 − h1)y
′

b + (1 − h2)y
′

c]
)]2

dt

 ds

+
h1

√
2πσ(x)

∫ +∞

−∞

exp
(
−

(t − y′a − κ′x)2

2σ2(x)

)
×

[
t −

(
κ
′

x +
1
2

[(h1 + h2)y
′

a + (1 − h1)y
′

b + (1 − h2)y
′

c]
)]2

dt

Finally, changing the order of integration, we get the desired result placed in (14).
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For specific values of h1, h2, for example, if h1 = 0, h2 = 1/2 then the expression for total variance is given by

V[r(x, y;α,β)] = σ2(x)

+
5(y′b − y′a)2 + 5(y′c − y′b)2 + 6(y′b − y′a)(y′c − y′b)

48

the same was obtained by Qin [16].

5.1. The portfolio selection problem for multivariate normal and generalized zigzag uncertainty distributions

Having calculated the expected value (EV) and variance of the total uncertain random return using chance
distribution in (13) and (14), respectively we are now in a position to recast our portfolio selection problem
(3) as follows:

Max z1 = x′κ + 1
2

[
(h1 + h2)y′a + (1 − h1)y′b + (1 − h2)y′c

]
Min z2 = x′Σx + 1

12

[
4(h2 − h1)(y′b − y′a)2 + 4(1 − h2)(y′c − y′b)2

+3
((

(1 + h1)y′b − (h1 + h2)y′a − (1 − h2)y′c
)

×

(
(h2 − 3h1 + h2

1 + h1h2)y′a − (1 − h1)2y′b + (1 − h2)(1 + h1)y′c
))]

+
√

2x′Σx h1
4

[
(h1 + h2 − 2)y′a + (1 − h1)y′b + (1 − h2)y′c

]2

subject to, I
′

mx + I
′

ny = 1
L1 ≤ x ≤ U1

L2 ≤ y ≤ U2

x, y ≥ 0.

(15)

This model (15) will be used to illustrate the solution procedure of the proposed portfolio selection problem
in the subsequent section.

We recall here that κ
′

= (κ1 κ2 ... κm), where κi = E[αi], (α1 α2 ... αm) = α
′

and ρ
′

= (ρ1 ρ2 ... ρm),
where ρi = E[βi], (β1 β2 ... βm) = β

′

.

For the solution of the model (15), we assume the following:
(i) The covariance matrix Σ is positive definite.
(ii) κ is not a multiple of I

′

m.
These assumptions ensures non-degeneracy of the optimal solution and it also prevents the situation where
all the existing stocks are risky.

Model (15) is a multi-objective non-linear programming problem. Next our endeavor is to find efficient or
non-dominating or Pareto optimal solutions of model (15), so that decision maker can choose the particular
one or ones best suited for him or her. The definition of an efficient solution is recalled.

Definition 5.1. Let F be the set of all feasible solutions of the multi-objective portfolio optimization problem
(15). A feasible solution x∗ ∈ F is said to be efficient if there exists no x ∈ F such that z1(x∗) ≤ z1(x) and
z2(x∗) ≥ z2(x) and for at least one of the z1, z2 either z1(x∗) < z1(x) or z2(x∗) > z2(x) is satisfied.

In our work we have considered 4 pairs of values of (h1, h2) namely (0, 1/2), (0, 1/4), (0, 3/4), and (1/3, 2/3).
For each of these pairs, the values of a, b, c have been estimated using an experienced expert’s opinion for
each of the 10 newly introduced stocks assumed to give uncertain return.



S. Chhatri et al. / Filomat 38:32 (2024), 11517–11537 11529

6. Illustration of the proposed method of solution of the portfolio selection problem by a real numerical
example

For solving the portfolio selection problem (15), we require the values of κ = E[α], ρ = E[β], and the
covariance matrix Σ of random returns. For this, we consider a case study involving 30 randomly chosen
stocks, of which 20 have enough historical data and the remaining 10 were recently introduced to the
market. These stocks were selected from the Bombay Stock Exchange (BSE), India.

6.1. Expected values of random and uncertain returns, covariance matrix of the random returns

20 randomly chosen stocks with enough historical data were taken during the period from 1st January 2014
to 31st August 2023. The average returns per month of the selected stocks are shown in Table 1.

Table 1: BSE codes and the sample mean of the monthly returns of the stocks

Sl. No.(i) 1 2 3 4 5 6 7 8
Code 500112 532215 500087 500257 531335 524804 524715 500570
Mean 1.88 1.82 1.27 0.63 1.37 1.66 0.92 1.47

Sl. No.(i) 9 10 11 12 13 14 15 16
Code 532939 500520 532555 532898 533098 500470 500113 500790
Mean 1.56 1.58 1.09 1.58 1.07 2.66 1.35 1.49

Sl. No.(i) 17 18 19 20
Name 500295 500330 500312 513599
Mean 1.35 2.6 0.51 2.18

Then κ
′

= (1.88 1.82 ... 2.18).

Next we find the covariance matrix, Σ = (σi j)20×20 in Table 2. The principal diagonal of Σ gives σ2, the
vector of the variances of the 20 stocks.

In Table 3, we displayed the values of a, b, and c for each stock. The expected values of the stocks for
the corresponding chosen return distribution are also shown. For example, for h1 = 0 and h2 = 1/2,
ρ = (0.5 1.25 ... 1.25).

6.2. Illustration of the proposed method of portfolio selection problem (15)

Problem (15) is a bi-objective one. For the solution of it, we first calculate the ideal values of the objectives
z1 and z2. Let, z∗1 = z1(x1

∗) and z∗2 = z2(x2
∗) respectively denote the ideal values (max/min values of the

respective objectives subject to the constraints). x1
∗ and x2

∗ are called the ideal solutions. Then using the ideal
solutions, we obtained the pessimistic values of the objectives as follows: ẑ1 = min{z1(x1

∗), z1(x2
∗)} = z1(x2

∗)
and ẑ2 = max{z2(x1

∗), z2(x2
∗)} = z2(x1

∗). These values are shown in Table 4.
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Table 4: Ideal and pessimistic values of objectives for different distributions

Case z∗1 z∗2 ẑ1

h1 = 0, h2 = 1/2 2.636 11.5175 0.7074

h1 = 0, h2 = 1/4 2.636 6.2185 1.31

h1 = 0, h2 = 3/4 2.636 12.7558 1.0214

h1 = 1/3, h2 = 2/3 2.636 14.3428 1.3778

The bi-objective problem (15) is converted into a single objective one by keeping the total expected value to
a given level λ and minimizing the total variance. The assigned value of λ is varied between the pessimistic
value ẑ1 and the ideal value z∗1 of the total return maximizing objective z1 in steps of ∆λ = 0.1. The model
is then solved for each pair of values of h1 and h2. Observing the variation of the values of h1 and h2, we
choose the best one. Thus, we have the following model to solve (15):

Min z2
subject to, z1 = λ

λ ∈ (ẑ1, z∗1)
I
′

20x + I
′

5y = 1
L1 ≤ x ≤ U1
L2 ≤ y ≤ U2
x, y ≥ 0,

(16)

where explicit expressions for z1 and z2 are given in (15).

The values ofκ,Σ, a, b, c,ρ can be utilized from Table 1, 2 and 3 respectively. Further the vectors L1,L2; U1,U2
are respectively given by L

′

1 = (0 0 ... 0)1×20, L
′

2 = (0 0 ... 0)1×10; U
′

1 = (0.6 0.6 ... 0.6)1×20; U
′

2 = (0.6 0.6 ... 0.6)1×10.

Next we show that an optimal solution of (16) yields an efficient solution of (15).

Theorem 6.1. An optimal solutions of (16) is an efficient solution of (15).

Proof: Let, x∗ be an optimal solution of model (16). We will show that x∗ is also an efficient solution
of (15).
If possible let, x∗ is not an efficient solution of (15). Then it follows from the definition of efficient solution
that, there exists x̄ ∈ F such that

z1(x̄) ≥ z1(x∗), z2(x̄) ≤ z2(x∗). (17)

and for at least one, one of the conditions of (17) strictly holds, i.e.,

either, z1(x̄) > z1(x∗) or, z2(x̄) < z2(x∗). (18)

Let, F be the set of all feasible solutions of (15). Clearly, the feasible solution space of (16) is a subset of F
and x∗ is a feasible solution of (15).

Now, Let S = {x ∈ F : z1(x) > ẑ1, z2(x) < ẑ2}. Then S , ϕ, the empty set, as it can be easily seen that x∗ ∈ S.
Here, ẑ1 and ẑ1 are respectively the pessimistic values of the maximizing objectives z1 and minimizing
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objective z2.
Next, we claim that x̄ < F − S. If not, then for at least one of z1, z2

z1(x̄) ≤ ẑ1 or z2(x̄) ≥ ẑ2, (19)

will be satisfied.
Again since x∗ ∈ S, therefore

z1(x∗) > ẑ1, z2(x∗) < ẑ2. (20)

Now from (19) and (20) we have,

z1(x̄) < z1(x∗) or z2(x̄) > z1(x∗), (21)

which contradicts (17). So, x̄ ∈ S.
Therefore, x∗ and x̄ belong to the same space S and x̄ gives a greater value than that of x∗. Which is
contradiction to the fact that x∗ is a optimal solution of (16). Thus, our assumption is wrong.
Hence, x∗ is an efficient solution of model (15).

6.2.1. Solution of model (16)
Now we apply the “fmincon” algorithm in Matlab 2018a to find the solution of (16) for different val-
ues λ ∈ (ẑ1, z∗1), in steps of ∆λ = 0.1. For h1 = 0 and h2 = 1/4, the solutions obtained are displayed
in table 5, where columns with all zero entries are not displayed. For the other sets of values of h1
and h2, the solutions are obtained similarly. The graphs of total uncertain random expected value
vs. variance, obtained from the solutions, are plotted in Figure 1 for 4 (four) sets of values of h1 and
h2 : h1 = 0, h2 = 1/2; h1 = 1/3, h2 = 2/3; h1 = 0, h2 = 1/4; h1 = 0, h2 = 3/4.
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Table
5:O

ptim
alholding

proportions
and

variances
for

given
values

ofthe
expected

returns

λ
x

3
x

4
x

5
x

6
x

7
x

10
x

12
x

14
x

16
x

18
x

19
y

2
V

ariance
1.4

0.0428
0.0127

0.0372
0

0.0028
0.002

0.1288
0.034

0.1455
0.0204

0
0.5738

6.4547

1.5
0.0285

0
0.0437

0.0028
0

0
01094

0.0695
0.1575

0.0527
0

0.5359
7.3673

1.6
0

0
0.0483

0.0104
0

0
0.09

0.1083
0.1675

0.087
0

0.4885
9.2084

1.7
0

0
0.0484

0.0089
0

0
0.0693

0.149
0.1749

0.1227
0

0.4268
12.0407

1.8
0

0
0.0484

0.0075
0

0
0.0485

0.1898
0.1824

0.1583
0

0.3651
15.9067

1.9
0

0
0.0485

0.0061
0

0
0.0278

0.2306
0.1898

0.194
0

0.3032
20.8068

2
0

0
0.0485

0.0046
0

0
0.007

0.2714
0.1973

0.2296
0

0.2416
26.7407

2.1
0

0
0.0466

0.003
0

0
0

0.3112
0.2022

0.2636
0

0.1734
33.7146

2.2
0

0
0.0438

0.0013
0

0
0

0.3505
0.2058

0.2968
0

0.1734
41.7467

2.3
0

0
0.0408

0
0

0
0

0.3897
0.2093

0.3299
0

0.0303
50.8391

2.4
0

0
0.0226

0
0

0
0

0.4325
0.1785

0.3664
0

0
61.0759

2.5
0

0
0

0
0

0
0

0.478
0.1159

0.4061
0

0
72.8340

2.6
0

0
0

0
0

0
0

0.5231
0.0283

0.4486
0

0
86.2356
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(a) h1 = 0, h2 = 1/2
(b) h1 = 1/3, h2 = 2/3

(c) h1 = 0, h2 = 1/4 (d) h1 = 0, h2 = 3/4

Figure 1: Expected value vs variance graph for different values of h1 and h2

6.3. Observations drawn from the figure:
From the graphs, we can see that the patterns are similar, concave in nature. Further, in each case, with the
increase in expected return level, variance of the total return also increases. It is observed that for the values
h1 = 0, h2 = 1/4 (graph (c)), rate of increase of variance, with the increase of expected return is initially the
lowest. However, for the return level 1.9 onward graph (a) represents a lower rate of risk.

7. Comparative analysis

Here, we have considered four representative models depending on the values of h1 and h2. For each model
(i.e., for fixed values of h1 and h2), the preassigned expected value of the total return (λ) in the constraint
has been varied from its pessimistic value ẑ1 to its ideal value z∗1. It is seen from Table 4 that the ideal value
of the objective z1 is the same for all the models. However, its pessimistic value varies. That is why, in Table
6, the initial value of λ differs for different models. It is to be mentioned here that, for h1 = 0, h2 = 1/2, the
model is that of Qin [16], obtained by using the zigzag uncertainty distribution. For different values of λ,
the corresponding variances are listed in Table 6 for the four models.
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Table 6: Comparison of different models

Return
level

Variance

h1 = 0
h2 = 1/2

h1 = 1/3
h2 = 2/3

h1 = 0
h2 = 1/4

h1 = 0
h2 = 3/4

0.8 11.5448 — — —
0.9 11.5793 — — —
1 11.6139 — — 12.7599

1.1 11.6486 — — 12.7605
1.2 11.6834 — — 12.7681
1.3 11.7183 — — 12.7773
1.4 11.7782 14.8961 6.4547 12.8979
1.5 12.1341 15.4484 7.3673 13.5603
1.6 12.9271 16.3784 9.2084 14.813
1.7 14.4396 17.9439 12.0407 16.8722
1.8 17.007 20.4719 15.9067 19.8704
1.9 20.6972 24.0827 20.8068 23.7062
2.0 25.6689 28.8262 26.7407 28.6653
2.1 31.9382 34.8642 33.7146 34.8323
2.2 39.5925 42.2087 41.7467 42.2087
2.3 48.7494 50.8837 50.8391 50.8837
2.4 59.4315 61.0759 61.0759 61.0759
2.5 71.6883 72.834 72.834 72.834
2.6 85.8556 86.2356 86.2356 86.2356

The managerial implications and conclusions based on the comparative analysis are given below.

8. Managerial implication

The actions need to be taken by the decision maker for optimal portfolio selection problem under uncertain
random environment are listed bellow:

• Instead of sticking to a fixed values of h1 and h2 in the uncertain return distribution, it is better to
solve the problem for some representative values of the parameters. Then the solution most suited to
the decision maker may be adopted.

• From the comparative analysis (table 6), it can be concluded that for a moderate investor, who prefers
to take lower risk, the generalized zigzag uncertainty distribution with h1 = 0, h2 = 1/4 (graph (c))
is most suitable among the considered distributions. On the other hand, for an aggressive investor,
who can take higher risk, can prefer the distribution with h1 = 0, h2 = 1/2 (graph (a)).

• To get a higher value of expected return, the investor need to invest 43.25% to 52.31% in stock 500470,
2.83% to 17.85% in stock 500790 and 36.64% to 44.86% in stock 500330 of his or her total wealth, for
the model with h1 = 0, h2 = 1/4.
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9. Conclusion and future scope

In this article, a hybrid portfolio selection problem has been studied using a generalized zigzag uncertainty
distribution. As a particular case (h1 = 0, h2 = 1/2), one can get the results previously obtained by other
authors. From the analysis of the numerical example, we observed that if the expected return is placed at a
lower value, then the concomitant risk is also low, but in that case, the optimal portfolio contains a larger
number of stocks. However, to get a higher return, an investor need to invest a large proportion of his or
her wealth in some particular stocks, thereby resulting in high risk. From the findings of this article, we
can conclude that the proposed method presented in this work is meaningful and applicable to a real-life
portfolio selection problem.

As a future scope of our study, portfolio optimization problems considering adjustments to stocks and
transaction costs can be considered. Also, one can use other relevant objectives of interest.

References

[1] R. Bhattacharyya, S. A. Hossain, S. Kar, M. Maiti, Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection, J. King
Saud Univ. - Comput. Inf. 26 (2014), 79–87.

[2] K-S. Chen, Y-Y. Huang, R-C. Tsaur, N-Y. Lin, Fuzzy Portfolio Selection in the Risk Attitudes of Dimension Analysis under the Adjustable
Security Proportions, Mathematics, 11 (2023), 1143. https://doi.org/10.3390/math11051143

[3] X. Huang, H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts’ evaluations, Econ. Model. 30
(2013), 61–66.

[4] B. Li, R. Zhang, A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification, Chaos Solitons
Fractals, 146 (2021), 110842.

[5] B. Li, R. Zhang, Y. Sun, Multi-period portfolio selection based on uncertainty theory with bankruptcy control and liquidity, Automatica.
147 (2023), 110751.

[6] B. Liu, Uncertainty Theory, 2nd edn, Springer-Verlag Berlin, 2007.
[7] B. Liu, Some research problems in uncertainty theory J. Uncertain Syst. 3 (2009), 3–10.
[8] B. Liu, Uncertainty Theory: A branch of mathematics for modelling human uncertainty, Berlin: Springer-Verlag, 2010.
[9] B. Liu, Uncertainty Theory, 4th edn, Springer Heidelberg New York, 2015.

[10] Y. Liu, Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput. 17 (2013), 625–634.
[11] Y-J. Liu, W-G. Zhang, Fuzzy multi-period portfolio selection model with time-varying loss aversion, J Oper Res Soc. 72(4) (2021), 935–949.
[12] H. Markowitz, Portfolio selection, J Finance, 7 (1952), 77–91.
[13] M.K. Mehlawat, P. Gupta, A.Z. Khan, Portfolio optimization using higher moments in an uncertain random environment, Inf. Sci. 576

(2021), 348–374.
[14] J. Nath, S. Chhatri, D. Bhattacharya, A multi-objective portfolio selection problem with parameters as interval type fuzzy set Int. J. Oper.

Res. (2022), (in press) DOI: 10.1504/IJOR.2022.10051487
[15] Z. Peng, K. A. Iwamura, sufficient and necessary condition of uncertainty distribution J. Interdiscip. Math. 13 (2010), 277–285.
[16] Z. Qin, Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper.

Res. 254 (2015), 480–488.
[17] Z. Qin, S. Kar, Single-period inventory problem under uncertain environment. Appl. Math. Comput. 219 (2013), 9630–9638.
[18] Z. Qin, S. Kar, X. Li, Developments of mean-variance model for portfolio selection in uncertain environment (2009),

http://orsc.edu.cn/online/090511.pdf
[19] Z. Qin, S. Kar, H. Zheng, Uncertain portfolio adjusting model using semi-absolute deviation. Soft Comput. 20 (2016), 1–9.
[20] Y. Sheng, K. Yao, Some formulas of variance of uncertain random variable, Journal of uncertainty analysis and application. 2 (2014),

Article 12.
[21] B. Wang, Y. Li, S. Wang, J. Watada, A Multi-Objective Portfolio Selection Model With Fuzzy Value-at-Risk Ratio, IEEE Trans Fuzzy

Syst. 26(6) (2018), 3673–3687.
[22] J. Zhai, M. Bai, J. Hao, Uncertain random mean–variance–skewness models for the portfolio optimization problem,. Optimization. 71(13)

(2022), 3941–3964.
[23] Y. Zhang, W. Liu, X. Yang, An automatic trading system for fuzzy portfolio optimization problem with sell orders, Expert Syst. Appl. 187

(2022), 115822


	Introduction
	Literature review
	Works using fuzzy set theory
	Works using uncertainty theory

	Research gap
	Motivation
	Contribution of the study
	The reason for using uncertainty theory together with statistical approach in portfolio selection
	Organization of the paper

	Preliminaries
	A new uncertainty distribution and its properties
	Problem statement
	Construction of the objectives and constraints
	Formation of objectives
	Formation of constraint

	Distribution of random and uncertain returns
	Formulae for expected value and variance of the total uncertain random return


	Calculation of total expected value and variance of the uncertain random return
	The portfolio selection problem for multivariate normal and generalized zigzag uncertainty distributions

	Illustration of the proposed method of solution of the portfolio selection problem by a real numerical example
	Expected values of random and uncertain returns, covariance matrix of the random returns
	Illustration of the proposed method of portfolio selection problem (15)
	Solution of model (16)

	Observations drawn from the figure: 

	Comparative analysis
	Managerial implication
	Conclusion and future scope

