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Abstract. In this paper, we define confluent Appell polynomials of class A(2), construct a generalization of
Szász operators using these polyomials and derive some approximation properties of this generalization
on the semi infinite interval in a weighted function space. Finally, some graphical results are given to show
the approximation process of constructed operators to a given function f .

1. Introduction

Szász operators [15] are an extension of Bernstein operators to infinite intervals. These operators
have a significant impact in the field of approximation theory. Recently, there has been a significant
amount of research on the study of generalizations of Szász operators, particularly those defined using
polynomials and generating functions. These generalizations offer a variety of novel sequences of operators
for approximation theory. Jakimovski and Leviatan [10] proposed an extension of Szász operators using
Appell polynomials. Ismail [7] introduced an additional form of Szász operators and also established
Jakimovski and Leviatan operators using Sheffer polynomials. On the other hand, Kazmin [11] has defined
that a sequence of polynomials {Pn (z)} , P(n)

n (z) ≡ cn, where cn , 0 are constants, n = 0, 1, 2, ..., is called
a system of generalized Appell polynomials ( or a system of polynomials of class A(2)) if any one of the
following equivalent conditions holds:

1. P′′n (z) = Pn−2 (z) ;
2. There exist two formal power series

A (t) =
∞∑

k=0

ak

k!
tk and B (t) =

∞∑
k=0

bk

k!
tk,

which formally satisfy the identity

A (t) ezt + B (t) e−zt =

∞∑
n=0

Pn (z) tn.
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The requirement that the n-th Appell polynomial Pn (z) have degree n is equivalent to requiring that
a2

0 − b2
0 , 0. Various properties of polynomials in the class A(2) were studied by Ozhegov [13]. Then, Varma

and Sucu [16] have introduced a generalization of Szász operators with the help of the Appell polynomials
of class A(2) defined by Kazmin [11];

Tn( f ; x) =
1

enxA (1) + e−nxB (1)

∞∑
k=0

pk (nx) f
(

k
n

)
where A (1) > 0, B (1) ≥ 0, pk (x) > 0 and x ∈ [0,∞) . Özarslan and Çekim [14] have introduced the confluent
Appell polynomials

{
P(a,b)

n (x)
}∞

n=0
,

A (t) 1F1 (a; b; xt) =
∞∑

n=0

P(a,b)
n (x)

tn

n!
,

where A (t) is an analytic function in the disc |t| < R, R > 1,

A (t) =
∞∑

k=0

ak
tk

k!
, a0 , 0

and

1F1 (a; b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!
.

Subsequently, Özarslan and Çekim [14] have developed approximation operators utilizing confluent Appell
polynomials, facilitating the approximation of a function defined on the semi-infinite interval within a
weighted function space. One can find more generalizations of Szász operators using similar methods in
the literature [5],[8],[9],[12] and [17].

Now, we introduce confluent Appell polynomials of class A(2) and utilize them to develop a generalized
form of Szász operators. This is accomplished by leveraging the properties of confluent Appell polynomials
of class A(2).

2. The Confluent Appell Polynomials of Class A(2)

In this chapter, we introduce univariate confluent Appell polynomials of class A(2). We give them the
generating function and properties we have obtained for them.

Definition 2.1. A polynomial system
{
P(a,b)

n (x)
}∞

n=0
is called confluent Appell of class A(2) if there exists a generating

function of the form

A (t) 1F1 (a; b; xt) + B (t) 1F1 (a; b;−xt) =
∞∑

n=0

P(a,b)
n (x)

tn

n!
, (1)

where A (t) and B (t) are an analytic functions in the disc |t| < R, R > 1, a2
0 − b2

0 , 0

A (t) =
∞∑

k=0

ak
tk

k!
,B (t) =

∞∑
k=0

bk
tk

k!
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and

1F1 (a; b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!
(2)

is the confluent hypergeometric function. This function is convergent for all finite z and the Pochhammer symbol is
defined by

(a)n =

{
a (a + 1) ... (a + n − 1) ; n ≥ 1
1 ; n=0

Theorem 2.2. Let
{
P(a,b)

n (x)
}∞

n=0
be a confluent polynomial system where b < {0,−1,−2, ...}. The following assertions

are equivalent.

1.
{
P(a,b)

n (x)
}∞

n=0
is a set of confluent Appell of class A(2) polynomial system.

2. There exists a sequence {ck}k≥0 independent of n with c0 , 0 such that

P(a,b)
n (x) =

n∑
k=0

cn−k

(
n
k

)
(a)k

(b)k
xk (3)

where cn−k = an−k + (−1)k bn−k

Proof. (1) ⇔ (2) : Let
{
P(a,b)

n (x)
}∞

n=0
be a sequence of confluent Appell polynomials of class A(2). If we use

series expansions and Cauchy product in generating functions, we obtain the equality

∞∑
n=0

P(a,b)
n (x)

tn

n!
= A (t) 1F1 (a; b; xt) + B (t) 1F1 (a; b;−xt)

=

 ∞∑
n=0

an
tn

n!


 ∞∑

k=0

(a)k

(b)k

(xt)k

k!


+

 ∞∑
n=0

bn
tn

n!


 ∞∑

k=0

(a)k

(b)k

(−xt)k

k!


=

∞∑
n=0

 n∑
k=0

(
an−k + (−1)k bn−k

) (n
k

)
(a)k

(b)k
xk

 tn

n!

=

∞∑
n=0

 n∑
k=0

cn−k

(
n
k

)
(a)k

(b)k
xk

 tn

n!

and from this equality is obtained.

Theorem 2.3. Let
{
P(a,b)

n (x)
}∞

n=0
be a confluent polynomial system where b < {0,−1,−2, ...}. If P(a,b)

n (x) holds
properties of given in (3) then it satisfies the following equality(

P(a,b)
n (x)

)′′
=

a (a + 1)
b (b + 1)

n (n − 1) P(a+2,b+2)
n−2 (x) , n ≥ 2. (4)

and P(a,b)
n (0) is independent of a and b.
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Proof. If we take twice derivate of both sides of equation (3) with respect to x, we get(
P(a,b)

n (x)
)′′
=

n∑
k=2

cn,k (a, b)
(a)k

(b)k
k (k − 1) xk−2

=

n−2∑
k=0

cn,k+2 (a, b)
(a)k+2

(b)k+2
(k + 1) (k + 2) xk

=
a (a + 1)
b (b + 1)

n (n − 1)
n−2∑
k=0

cn−k−2

(
n − 2

k

)
(a + 2)k

(b + 2)k
xk

=
a (a + 1)
b (b + 1)

n (n − 1) P(a+2,b+2)
n−2 (x)

where

cn,k+2 =
n

k + 2
n − 1
k + 1

...
n − k − 1

1
cn−k−2,0 (a, b) =

(
n − 2

k

)
cn−k−2,0 (a, b) =

(
n − 2

k

)
cn−k−2.

3. Construction of Operators ζn

Let P(a,b)
n (x) be confluent Appell polynomials of class A(2). We define a new generalization of Szász

operators by

ζn( f ; x) =
1

A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

∞∑
k=0

p(a,b)
k (nx)

k!
f
(

k
n

)
(5)

where f ∈ C [0,∞), x ≥ 0, n ∈N, b > a > 0.
With the help of following assumptions

(i) A (t) and B (t) are analytics functions given in (1),
(ii) A (1) > 0 and B (1) ≥ 0 ,

(iii) p(a,b)
k (x) > 0 for all k = 0, 1, ... such that 0 ≤ k ≤ n, cn−k = an−k + (−1)k bn−k > 0.

It is clear that these operators defined in (5) are linear positive operators.
We note that in the special case A (t) = 1 and B (t) = 0, ζn operators will be reduced to confluent Szász
operators in [14]. In the special case A (t) = 1, B (t) = 0 and a = b, we discover the well-known Szász
operators.

Lemma 3.1. For the function given in (1), we have the following equalities

1.
∞∑

k=0

p(a,b)
k (nx)

k! = A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx) ,

2.
∞∑

k=0

p(a,b)
k+1 (nx)

k! = A′ (1) 1F1 (a; b; nx) + B′ (1) 1F1 (a; b;−nx)

+nx a
b [A (1) 1F1 (a + 1; b + 1; nx) − B (1) 1F1 (a + 1; b + 1;−nx)] ,

3.
∞∑

k=0

p(a,b)
k+2 (nx)

k! = A′′ (1) 1F1 (a; b; nx) + B′′ (1) 1F1 (a; b;−nx)

+2nx a
b [A (1) 1F1 (a + 1; b + 1; nx) − B (1) 1F1 (a + 1; b + 1;−nx)]

+n2x2 a(a+1)
b(b+1) [A (1) 1F1 (a + 2; b + 2; nx) + B (1) 1F1 (a + 2; b + 2;−nx)] .

Lemma 3.2. Let ζn( f ; x) be the operator introduced in (5). By using Lemma 3.1, we get
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1. ζn(1; x) = 1,
2. ζn(t; x) = x a

b
A(1)1F1(a+1;b+1;nx)−B(1)1F1(a+1;b+1;−nx)

A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) + 1
n

A′(1)1F1(a;b;nx)+B′(1)1F1(a;b;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) ,

3. ζn(t2; x) = x2 a(a+1)
b(b+1)

A(1)1F1(a+2;b+2;nx)+B(1)1F1(a+2;b+2;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) + x

n
a
b

(2A′(1)+A(1))1F1(a+1;b+1;nx)−(2B′(1)+B(1))1F1(a+1;b+1;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx)

+ 1
n2

(A′′(1)+A′(1))1F1(a;b;nx)+(B′′(1)+B′(1))1F1(a;b;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) .

Lemma 3.3. By using Lemma 3.2 and by the linearty of operators ζn, we can compute the following central moments
values;

1. ζn(t − x; x) = x a
b

[
A(1)1F1(a+1;b+1;nx)−B(1)1F1(a+1;b+1;−nx)

A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) − 1
]
+ 1

n
A′(1)1F1(a;b;nx)+B′(1)1F1(a;b;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) ,

2. ζn((t − x)2 ; x) = x2
[

a(a+1)
b(b+1)

A(1)1F1(a+2;b+2;nx)+B(1)1F1(a+2;b+2;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) − 2 a

b
A(1)1F1(a+1;b+1;nx)−B(1)1F1(a+1;b+1;−nx)

A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) + 1
]

+ x
n

[
a
b

(2A′(1)+A(1))1F1(a+1;b+1;nx)−(2B′(1)+B(1))1F1(a+1;b+1;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) − 2 (A′(1)+A(1))1F1(a;b;nx)+(B′(1)+B(1))1F1(a;b;−nx)

A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx)

]
+ 1

n2
(A′′(1)+A′(1))1F1(a;b;nx)+(B′′(1)+B′(1))1F1(a;b;−nx)

A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx) .

4. Rate of Convergence for Operators ζn

In this section, we elucidate the rate of convergence of the operators ζn, leveraging the definitions of
various tools.

Theorem 4.1. Let f be continuous on [0,∞) and

H∗ =
{

f :
f (x)

1 + x2 is convergent as x→∞
}
.

Then, sequence of operators in (5) converges uniformly on the each compact subset on [0,∞) ,i.e.

lim
n→∞
ζn( f ; x) = f (x) .

Proof. Now, fix c > 0 and consider the lattice homomorphism Tc : C [0,∞)→ C [0, c] defined by Tc
(

f
)
= f |[0,c]

for every f ∈ C [0,∞). It is apparent from 1F1 (a; b; z) ∼ Γ (b)
(

ezza−b

Γ(a) −
(−z)−a

Γ(b−a)

)
for large |z| and − 3π

2 < ar1 (z) ≤ π2
[1] and Lemma 3.2 that

lim
n→∞

Tc

(
ζn(ti; x)

)
= Tc

(
ti
)
, i = 0, 1, 2,

uniformly on [0, c] for every f ∈ C [0,∞). Applying the Korovkin-type property ([2], Theorem 4.1.4 (vi)),
the proof is completed.

Theorem 4.2. The operators ζn defined in (5) satisfy the following inequality

∣∣∣ζn( f ; x) − f (x)
∣∣∣ ≤ 2ω

(
f ;

√
ζn((t − x)2

)
where f ∈ H∗ and ω is the modulus of continuity of the function f [3] defined by

ω
(

f ; δ
)

:= sup
x,y∈[0,∞)
|x−y|≤δ

∣∣∣ f (x) − f
(
y
)∣∣∣ .
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Proof. The modulus of continuity of function f ∈ H∗ satisfies the below inequality in [2]∣∣∣ f (x) − f (t)
∣∣∣ ≤ ω (

f ; δ
) (

1 +
|t − x|
δ

)
. (6)

From the inequality (6), we get∣∣∣ζn( f ; x) − f (x)
∣∣∣ ≤ ζn(

∣∣∣ f (t) − f (x)
∣∣∣ ; x) ≤

(
1 +

1
δ
ζn (|t − x| ; x)

)
ω

(
f ; δ

)
. (7)

Using the Cauchy-Schwarz inequality leads us to

ζn (|t − x| ; x) =

∞∑
k=0

√√√(
1

A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

)2
p(a,b)

k (nx)

k!


2 (

k
n
− x

)2

≤


√√√
∞∑

k=0

(
1

A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

) p(a,b)
k (nx)

k!

 ( k
n
− x

)2


×


√√√
∞∑

k=0

(
1

A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

) p(a,b)
k (nx)

k!


 .

We can write the following inequality,

ζn (|t − x| ; x) ≤
√
ζn((t − x)2 ; x)

√
ζn(1; x) =

√
ζn((t − x)2 ; x) (8)

Using the inequality (8) in (7), we obtain∣∣∣ζn( f ; x) − f (x)
∣∣∣ ≤ (

1 +
1
δ

√
ζn((t − x)2 ; x)

)
ω

(
f ; δ

)
. (9)

Here, by choosing δ (t, x) =
√
ζn((t − x)2 ; x) in inequality (9), the proof is completed.

Now, for 0 < β ≤ 1 and η1, η2 ∈ [0,∞), let us introduce the following class of functions [6]:

Lip(β)
M :=

{
f ∈ C [0,∞) :

∣∣∣ f (
η1

)
− f

(
η2

)∣∣∣ ≤M
∣∣∣η1 − η2

∣∣∣β , t, x ∈ [0,∞)
}
. (10)

Theorem 4.3. Let ζn be operator defined in (5). Then for each f ∈ Lip(β)
M

(
M > 0, 0 < β ≤ 1

)
satisfy (10). We have∣∣∣ζn( f ; x) − f (x)

∣∣∣ ≤M
(
ζn((t − x)2

) β
2 .

Proof. We prove it by using (10) and Hölder’s inequality. First, as in the proof of Theorem 4.2, we have∣∣∣ζn( f ; x) − f (x)
∣∣∣ ≤Mζn

(
|t − x|β ; x

)
. (11)

Then, we can use Hölder’s inequality ar the right-hand side of the inequality in (11), we get∣∣∣ζn( f ; x) − f (x)
∣∣∣ ≤ Mζn

(
|t − x|β ; x

)
≤ M

(
ζn(

(
(t − x)2 ; x

)) β
2 (ζn(1; x))

2−β
2

≤ M
[
ζn((t − x)2

] β
2 .

Hereby, the proof is done.
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5. Approximation Properties in Weighted Space

Gadjiev has extended Korovkin’s theorem, a pivotal result in approximation theory, to an unbounded
interval within weighted function spaces [4]. Let function f be a monotone increased function, lim

x→∞
f (x) = ∞,

ρ (x) = 1 + x2 is a weighted function and M f and γ f are a positive constants that depend to function f .
Accordingly, we recall the following weighted space of functions defined on [0,∞) ,

Bρ [0,∞) : =
{

f ∈ [0,∞) :
∣∣∣ f (x)

∣∣∣ ≤M f · ρ (x)
}
,

Cρ [0,∞) : =
{

f ∈ Bρ [0,∞) : f is continuous
}
,

Cγρ [0,∞) : =
{

f ∈ Cρ [0,∞) : lim
n→∞

f (x)
ρ (x)

= γ f < ∞

}
.

It obvious that Cγρ [0,∞) ⊂ Cρ [0,∞) ⊂ Bρ [0,∞). Bρ [0,∞) is a normed space with the following norm:∥∥∥ f
∥∥∥
ρ
= sup

x∈[0,∞)

∣∣∣ f (x)
∣∣∣

ρ (x)
.

Theorem 5.1. [4] Let (Tn)n≥1 be a sequence of linear positive operators. If (Tn)n≥1 satisfy two conditions:
i) The operators Tn act from Cρ [0,∞) to Bρ [0,∞) ,

ii) lim
n→∞

∥∥∥∥Tn

(
ti; x

)
− xi

∥∥∥∥
ρ
= 0, i = 0, 1, 2, then for any function f ∈ Cγρ [0,∞)

lim
n→∞

∥∥∥Tn
(

f ; x
)
− f

∥∥∥
ρ
= 0.

Lemma 5.2. The operators ζn defined in (5) satisfy the following inequality

ζn
(
ρ, x

)
≤ Cρ (x) , C > 0

where ρ (x) = 1 + x2.

Theorem 5.3. The operators ζn give in (5) confirm the following equality

lim
n→∞

∥∥∥ζn
(

f ; x
)
− f

∥∥∥
ρ
= 0

for f ∈ Cγρ [0,∞) where ρ (x) = 1 + x2.

Proof. i) Let f ∈ Cρ [0,∞) , from Lemma 5.2, we obtain

ζn
(

f , x
)
= ζn

(
f
ρ
ρ, x

)
≤

∥∥∥ f
∥∥∥
ρ
ζn

(
ρ, x

)
≤

∥∥∥ f
∥∥∥
ρ

C · ρ (x) ≤M f · ρ (x) (12)

where M f > 0. From the inequality (12), it is ζn ∈ Bρ [0,∞) . So, we get that the operators ζn act from
Cρ [0,∞) to Bρ [0,∞) .

ii) From Lemma 3.2 , it is clear that

lim
n→∞
∥ζn(1; x) − 1∥ρ = 0.

Also, by using Lemma 3.3 and from 1F1 (a; b; z) ∼ Γ (b)
(

ezza−b

Γ(a) −
(−z)−a

Γ(b−a)

)
for large |z| and − 3π

2 < ar1 (z) ≤ π
2 [1]

,we can write

∥ζn(t; x) − x∥ρ ≤ sup
x∈[0,∞)

x
1 + x2

∣∣∣∣∣ab A (1) 1F1 (a + 1; b + 1; nx) − B (1) 1F1 (a + 1; b + 1;−nx)
A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

− 1
∣∣∣∣∣

+ sup
x∈[0,∞)

∣∣∣∣ 1
n

A′(1)1F1(a;b;nx)+B′(1)1F1(a;b;−nx)
A(1)1F1(a;b;nx)+B(1)1F1(a;b;−nx)

∣∣∣∣
1 + x2

≤
1
2

∣∣∣∣∣∣ 2B (1)

e2nA (1) + (−1)a−b B (1)

∣∣∣∣∣∣ + 1
n

∣∣∣∣∣∣A′ (1) e2n + (−1)a−b B′ (1)

A (1) e2n + (−1)a−b B (1)

∣∣∣∣∣∣
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Thus, we get

lim
n→∞
∥ζn(t; x) − x∥ρ = 0.

Then,∥∥∥∥ζn

(
t2; x

)
− x2

∥∥∥∥
ρ
≤ sup

x∈[0,∞)

x2

1 + x2

∣∣∣∣∣ a (a + 1)
b (b + 1)

A (1) 1F1 (a + 2; b + 2; nx) + B (1) 1F1 (a + 2; b + 2;−nx)
A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

−2
a
b

A (1) 1F1 (a + 1; b + 1; nx) − B (1) 1F1 (a + 1; b + 1;−nx)
A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx)

+ 1
∣∣∣∣∣

+ sup
x∈[0,∞)

x
1 + x2

∣∣∣∣∣ab (2A′ (1) + A (1)) 1F1 (a + 1; b + 1; nx) − (2B′ (1) + B (1)) 1F1 (a + 1; b + 1;−nx)
n (A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx))

−2
(A′ (1) + A (1)) 1F1 (a; b; nx) + (B′ (1) + B (1)) 1F1 (a; b;−nx)

n (A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx))

∣∣∣∣∣
+ sup

x∈[0,∞)

1
1 + x2

∣∣∣∣∣ (A′′ (1) + A (1)) 1F1 (a; b; nx) + (B′′ (1) + B (1)) 1F1 (a; b;−nx)
n2 (A (1) 1F1 (a; b; nx) + B (1) 1F1 (a; b;−nx))

∣∣∣∣∣
≤

∣∣∣∣∣∣ 4B (1)

e2nA (1) + (−1)a−b B (1)

∣∣∣∣∣∣ + 1
n

∣∣∣∣∣∣A (1) e2n
− (−1)a−b (4B′ (1) + B (1))

A (1) e2n + (−1)a−b B (1)

∣∣∣∣∣∣
+

1
n2

∣∣∣∣∣∣ (A′′ (1) + A′) (1) e2n + (−1)a−b (B′′ (1) + B′ (1))

A (1) e2n + (−1)a−b B (1)

∣∣∣∣∣∣
Thus, we get

lim
n→∞

∥∥∥ζn(t2; x) − x2
∥∥∥
ρ
= 0.

As a result, we obtain

lim
n→∞

∥∥∥ζn(tk; x) − xk
∥∥∥
ρ
= 0, k = 0, 1, 2.

If we apply the Theorem 5.1, we obtain the desired results.

6. Graphical Results

Finally, in this section, we present graphical examples illustrating the convergence of Szász operators,
including the confluent Appell polynomials of class A(2). These graphical examples provide a clearer
understanding of how our operators converge to specific functions.

Example 6.1. The first illustration demonstrates the convergence of the operators ζn depending on n. Here, taken
a = 1

2 and b = 4
5 values and approximating function f (x) = cos(7x)

2+cos(x) , we see the operators respectively for n = 50,n =
100 and n = 200 values in Figure 1.

Example 6.2. Another example is illustrated in Figure 2 to show impact of shape parameters b. For a = 1 and
n = 100 are fixed and b = 2, b = 4 and b = 8 approximation ζn convergence to f (x) = cos(7x)

2+cos(x) .

Example 6.3. The last example is illustrated in Figure 3 to demonstrate the impact of the shape parameters a. For
b = 10 and n = 100 are fixed and a = 1, a = 3 and a = 9 approximation ζn convergence to f (x) = cos(7x)

2+cos(x) .
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Figure 1:

Figure 2:
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Figure 3:

References

[1] M. Abramowitz, I.A. Stegun, [June 1964]. Chapter 13, in: Handbook of Mathematical Functions with Formulas, Graphs, and Mathemat-
ical Tables, in: Applied Mathematics Series, vol. 55, United States Department of Commerce, National Bureau of Standards; Dover
Publications, Washington D.C.; New York, ISBN: 978-0-486-61272-0, 1983, p. 504, (Ninth reprint with additional corrections of
tenth original printing with corrections (1972); first ed.).

[2] F. Altomare.; M. Campiti, Korovkin-type approximation theory and its applications. De Gruyter Studies in Mathematics; Walter de
Gruyter & Co.: Berlin, Germany, 1994.

[3] R. A. DeVore, G. G. Lorentz, Constructive approximation. Springer Science - Business Media; 1993 Nov 4.
[4] A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of PP.

Korovkin. Doklady Akademii Nauk SSSR 1974; 218 (5):1001-1004
[5] P. Gupta, A.M. Acu, P.N. Agrawal, Jakimovski–Leviatan operators of Kantorovich type involving multiple Appell polynomials. Georgian

Mathematical Journal. 2021 Feb 1;28(1):73-82.
[6] V. Gupta, R. P. Agarwal, Convergence estimates in approximation theory. Cham: Springer; 2014 Jan 8.
[7] M. E. Ismail, On a generalization of Szász operators. Mathematica (Cluj). 1974;39(2):259-267.
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