Filomat 38:32 (2024), 11239–11246 https://doi.org/10.2298/FIL2432239C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Classes of transforms associated with bounded linear operators on abstract Wiener spaces

Seung Jun Chang^a, Jae Gil Choi^{a,*}

^aDepartment of Mathematics, Dankook University, Cheonan 31116, Republic of Korea

Abstract. In this article, we study an algebraic structure of the analytic Fourier–Feynman transform (FFT) associated with bounded linear operators on abstract Wiener space (AWS). It turned out in this paper that a class of the analytic FFTs forms a monoid and that a quotient monoid is isomorphic to the monoid of the FFTs. Additionally, we provide a transformation group freely generated by FFTs. Any transforms in the free group are linear operator isomorphisms.

1. Introduction and preliminaries

The aim of this article is to clarify a class of "analytic FFTs associated with bounded linear operators" for certain bounded functionals on AWS.

The analytic FFT is a well-known transform defined on Wiener spaces. For a historical survey and a rigorous definition of the FFT of functionals on classical and abstract Wiener spaces, we refer the reader to [12] and the references cited therein. In [4], Choi defined an analytic FFT associated with a bounded linear operator on AWS and establish the fact that iterated FFTs can be represented by a single FFT.

We in this article investigate a deep structure of the class of analytic FFTs on AWS. Precisely speaking, we study a new algebraic structure of our FFTs. It turned out in this paper that a class of the analytic FFTs forms a monoid (and hence a semigroup). Moreover, it also turned out that a quotient monoid is isomorphic to the monoid of the FFTs. We also provide a transformation group freely generated by the FFTs.

In order to provide our assertions for the FFTs, we first follow the expositions of [5–9].

1.1. Abstract Wiener space

Let \mathbb{H} be a real separable Hilbert space with norm $|\cdot|$ induced by the inner product $\langle \cdot, \cdot \rangle$, and let \mathbb{B} be a real separable Banach space with norm $||\cdot||$. It is assumed that \mathbb{H} is continuously, linearly, and densely embedded in \mathbb{B} by a natural injection. Let ν be a centered Gaussian probability measure on $(\mathbb{B}, \mathcal{B}(\mathbb{B}))$, where $\mathcal{B}(\mathbb{B})$ denotes the Borel σ -algebra of \mathbb{B} . The triple $(\mathbb{H}, \mathbb{B}, \nu)$ is called an AWS if

$$\int_{\mathbb{B}} \exp\left(i(h, x)\right) d\nu(x) = \exp\left(-\frac{1}{2}|h|^2\right)$$

²⁰²⁰ Mathematics Subject Classification. Primary 46G12, 54H15; Secondary 46B09, 28C20.

Keywords. Abstract Wiener space, bounded linear operator, Fourier–Feynman transform, transform monoid, free group. Received: 03 December 2023; Accepted: 04 October 2024

Communicated by Dragan S. Djordjević

^{*} Corresponding author: Jae Gil Choi

Email addresses: sejchang@dankook.ac.kr (Seung Jun Chang), jgchoi@dankook.ac.kr (Jae Gil Choi)

for any $h \in \mathbb{B}^*$, where (\cdot, \cdot) denotes the \mathbb{B}^* - \mathbb{B} -pairing, and where \mathbb{B}^* is the topological dual of \mathbb{B} . Also, let \mathbb{H}^* be the topological dual of \mathbb{H} . Then the space \mathbb{B}^* is identified as a dense subspace of $\mathbb{H}^* \approx \mathbb{H}$ in the sense that, for all $y \in \mathbb{B}^*$ and $x \in \mathbb{H}$, $\langle y, x \rangle = (y, x)$. Thus we have the triple

$$\mathbb{B}^* \subset \mathbb{H}^* \approx \mathbb{H} \subset \mathbb{B}. \tag{1.1}$$

Given a Banach space X, let $\mathcal{L}(X)$ denote the class of bounded linear operators from X to itself. Then $\mathcal{L}(\mathbb{B}^*)$, $\mathcal{L}(\mathbb{H})$, and $\mathcal{L}(\mathbb{B})$ are Banach spaces. By the concept of the Banach space adjoint operator, given an operator $A \in \mathcal{L}(\mathbb{B})$, there exists an operator A^* in $\mathcal{L}(\mathbb{B}^*)$ such that for all $\theta \in \mathbb{B}^*$ and $x \in \mathbb{B}$,

$$(A^*\theta)x = \theta(Ax). \tag{1.2}$$

By the structure of the \mathbb{B}^* – \mathbb{B} -pairing and the triple (1.1), equation (1.2) can be rewritten by ($A^*\theta$, x) = (θ , Ax).

1.2. Fourier–Feynman transforms associated with bounded linear operators

In order to define an analytic FFT associated with bounded linear operators on the AWS (\mathbb{H} , \mathbb{B} , ν), we need the concept of the "scale-invariant measurability".

Let $\mathcal{W}(\mathbb{B})$ be the class of *v*-Carathéodory measurable subsets of \mathbb{B} . A subset *S* of \mathbb{B} is said to be scaleinvariant measurable (s.i.m.) [5] provided ρS is $\mathcal{W}(\mathbb{B})$ -measurable for every $\rho > 0$, and an s.i.m. subset *N* of \mathbb{B} is said to be scale-invariant null provided $v(\rho N) = 0$ for every $\rho > 0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). A functional *F* on \mathbb{B} is said to be s.i.m. provided *F* is defined on an s.i.m. set and $F(\rho \cdot)$ is $\mathcal{W}(\mathbb{B})$ -measurable for every $\rho > 0$. If two functionals *F* and *G* on \mathbb{B} are equal s-a.e., we write $F \approx G$. The symbols " \approx " is an equivalence relation. For an s.i.m. functional *F* on \mathbb{B} , we denote by $[F]_s$ the equivalence class of functionals which are equal to *F* s-a.e.. For more details, see [5].

The definition of the analytic FFT on AWS B is based on the analytic Feynman integral and the scaleinvariant measurability [1–3]. We now state the definition of the analytic FFT associated with bounded linear operator.

Definition 1.1. Let $\mathbb{C}_+ := \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ and let $\mathbb{C}_+ := \{\lambda \in \mathbb{C} \setminus \{0\} : \operatorname{Re}(\lambda) \ge 0\}$. Given a bounded linear operator A on \mathbb{B} , let $F : \mathbb{B} \to \mathbb{C}$ be an s.i.m. functional such that

$$J_{F(y+\cdot)}(A;\lambda) := \int_{\mathbb{B}} F(y+\lambda^{-1/2}Ax)d\nu(x)$$

exists as a finite number for all $\lambda > 0$. If there exists a function $J_{F(y+\cdot)}^*(A; \lambda)$ analytic on \mathbb{C}_+ such that $J_{F(y+\cdot)}^*(A; \lambda) = J_{F(y+\cdot)}(A; \lambda)$ for all $\lambda > 0$, then $J_{F(y+\cdot)}^*(A; \lambda)$ is defined to be the analytic transform (associated with the operator A) of F over \mathbb{B} with parameter λ . For $\lambda \in \mathbb{C}_+$ we write

$$T_{\lambda,A}(F)(y) := J^*_{F(y+\cdot)}(A;\lambda).$$

Let q be a non-zero real number. We define the L_1 *analytic FFT associated with the operator A,* $T_{q,A}^{(1)}(F)$ *of F, by the formula (if it exists)*

$$T_{q,A}^{(1)}(F)(y) := \lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} T_{\lambda,A}(F)(y)$$

for s-a.e. $y \in \mathbb{B}$.

Remark 1.2. If A is the identity operator on \mathbb{B} , then this definition agrees with the previous definition of the (ordinary) analytic FFT studied in [1–3]. We note that if $T_{q,A}^{(1)}(F)$ exists and if $F \approx G$, then $T_{q,A}^{(1)}(G)$ exists and $T_{q,A}^{(1)}(G) \approx T_{q,A}^{(1)}(F)$.

2. Fourier-Feynman transforms of bounded functionals

We now introduce the class $\mathcal{F}(\mathbb{B}^*)$ of functionals on \mathbb{B} , which forms a Banach algebra. Let $\mathcal{M}(\mathbb{B}^*)$ denote the class of complex-valued Borel measures on \mathbb{B}^* . Under total variation norm $\|\cdot\|$ with convolution as multiplication, $\mathcal{M}(\mathbb{B}^*)$ is a commutative Banach algebra with identity. The class $\mathcal{F}(\mathbb{B}^*)$ is defined as the space of all s-equivalence classes of stochastic Fourier transforms of elements of $\mathcal{M}(\mathbb{B}^*)$, that is,

$$\mathcal{F}(\mathbb{B}^*) := \left\{ [F_\sigma]_{\mathrm{s}} : F_\sigma(x) = \int_{\mathbb{B}^*} \exp\{i(g, x)\} d\sigma^*(g), \ x \in \mathbb{B}, \ \sigma^* \in \mathcal{M}(\mathbb{B}^*) \right\}.$$

We will identify a functional with its s-equivalence class and think of $\mathcal{F}(\mathbb{B}^*)$ as a collection of functionals on \mathbb{B}^* rather than as a collection of s-equivalence classes. The class $\mathcal{F}(\mathbb{B}^*)$ is a Banach algebra with the norm

$$||F_{\sigma}|| := ||\sigma^*|| = \int_{\mathbb{B}^*} d|\sigma^*|(g)$$

and the mapping $\sigma^* \mapsto F_{\sigma}$ is a Banach algebra isomorphism where $\sigma^* \in \mathcal{M}(\mathbb{B}^*)$ is related to F_{σ} by

$$F_{\sigma}(x) = \int_{\mathbb{B}^*} \exp\{i(g, x)\} d\sigma^*(g)$$
(2.3)

for s-a.e. $x \in \mathbb{B}$. For more details, see [4].

In [4], Choi established the existence of the L_1 analytic FFT of functionals in $\mathcal{F}(\mathbb{B}^*)$ as follows.

Theorem 2.1. Let F_{σ} be a functional in $\mathcal{F}(\mathbb{B}^*)$, and let A be an operator in $\mathcal{L}(\mathbb{B})$. Then the following assertions hold true:

(i) The L_1 analytic FFT associated with the operator A, $T_{q,A}^{(1)}(F_{\sigma})$ exists for each non-zero real q, and is given by

$$T^{(1)}_{q,A}(F_{\sigma})(y) = \int_{\mathbb{B}^*} \exp\{i(g,y)\} d(\sigma^*)^A_t(g)$$

for s-a.e. $y \in \mathbb{B}$, where $(\sigma^*)_t^A$ is the complex measure on \mathbb{B}^* defined by

$$(\sigma^*)^A_t(U) = \int_U \exp\left\{-\frac{i}{2q}(g, AA^*g)\right\} d\sigma^*(g)$$

for $U \in \mathcal{B}(\mathbb{B}^*)$. Thus $T_{q,A}^{(1)}(F_{\sigma})$ is an element of $\mathcal{F}(\mathbb{B}^*)$.

(ii) For all non-zero real q,

$$T^{(1)}_{-q,A} \left(T^{(1)}_{q,A}(F_{\sigma}) \right) \approx F_{\sigma}.$$
 (2.4)

That is, the analytic FFT, $T_{q,A}^{(1)}: \mathcal{F}(\mathbb{B}^*) \to \mathcal{F}(\mathbb{B}^*)$ has the inverse transform $\{T_{q,A}^{(1)}\}^{-1} = T_{-q,A}^{(1)}$.

In order to provide a transform monoid and a free group of the FFTs, we quote the following expositions from [4].

(O1) Let *A* be an operator in $\mathcal{L}(\mathbb{B})$ such that $A(\mathbb{H}) \subseteq \mathbb{H}$. Then *A* is an element of $\mathcal{L}(\mathbb{H})$. Let

 $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H}) := \{ A \in \mathcal{L}(\mathbb{B}) : A(\mathbb{H}) \subseteq \mathbb{H} \}.$

Then the class $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$ is a linear space. For any *A* in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, *AA*^{*} is positive definite on \mathbb{H} . Thus, by the square root lemma [10], there exists a positive operator |A| on \mathbb{H} such that $|A| = \sqrt{AA^*}$.

(O2) Given operators A_1 and A_2 in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, it follows that the operator $A_1A_1^* + A_2A_2^*$ is positive definite on \mathbb{H} . Thus, by the square root lemma, there is an operator $\sqrt{A_1A_1^* + A_2A_2^*}$, uniquely, in $\mathcal{L}(\mathbb{H})$. It is clear that the operator $\sqrt{A_1A_1^* + A_2A_2^*}$ is in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$.

In order to identify these operators, we consider the relation $\stackrel{\text{op}}{\sim}$ on $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$ given by

$$A_1 \stackrel{\text{op}}{\sim} A_2 \iff A_1 A_1^* = A_2 A_2^* \text{ on } \mathbb{H}.$$

Then $\stackrel{\text{op}}{\sim}$ is an equivalence relation. Let [*A*] denote the equivalence class of an operator *A* in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$. In view of the observation (O1), it follows that there exists a positive definite operator $\mathfrak{S}(A)$ such that $A \stackrel{\text{op}}{\sim} \mathfrak{S}(A)$.

Given two operators A_1 and A_2 in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, we will use the symbol ' $\mathfrak{S}(A_1, A_2)$ ' to indicate the representative element of the equivalence class

$$\left[\mathfrak{S}(A_1,A_2)\right] = \left\{\mathfrak{S} \in \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H}) : \mathfrak{S} \stackrel{\text{op}}{\sim} \sqrt{A_1 A_1^* + A_2 A_2^*} \text{ on } \mathbb{H}\right\}.$$

Then, in view of (O2), we see that for any \mathfrak{S} in $[\mathfrak{S}(A_1, A_2)]$ and all $g \in \mathbb{B}^*$,

$$|\mathfrak{S}^*g|^2 = (\mathfrak{S}^*g, \mathfrak{S}^*g) = (g, \mathfrak{S}\mathfrak{S}^*g) = (g, (A_1A_1^* + A_2A_2^*)g)$$

For a notational convenience, we will regard $[\mathfrak{S}(A_1, A_2)] \equiv \mathfrak{S}(A_1, A_2)$ as an operator in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$. Then we see that

$$\mathfrak{S}(A_1, A_2)\mathfrak{S}(A_1, A_2)^* = A_1A_1^* + A_2A_2^*.$$

(O3) Given a finite sequence $O = (A_1, \ldots, A_n)$ of operators in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, let $\mathfrak{S}(O) \equiv \mathfrak{S}(A_1, A_2, \ldots, A_n)$ be the positive operators \mathfrak{S} which satisfy the relation

$$\mathfrak{S}\mathfrak{S}^* = A_1 A_1^* + \dots + A_n A_n^* \text{ on } \mathbb{H}.$$
(2.5)

By an induction argument, it follows that

$$\mathfrak{S}(\mathfrak{S}(A_1, A_2, \dots, A_{k-1}), A_k) = \mathfrak{S}(A_1, A_2, \dots, A_k)$$

$$(2.6)$$

for all $k \in \{2, ..., n\}$. Also, for any permutation π of $\{1, ..., n\}$, we also see that

$$\mathfrak{S}(A_1, A_2, \dots, A_n) = \mathfrak{S}(A_{\pi(1)}, A_{\pi(2)}, \dots, A_{\pi(n)}).$$
(2.7)

Under these observations, Choi established the following theorem in [4].

Theorem 2.2. Let F_{σ} be a functional in $\mathcal{F}(\mathbb{B}^*)$, let $\{q_1, q_2, \ldots, q_n\}$ be a set of non-zero real numbers with $\frac{1}{q_1} + \frac{1}{q_2} + \cdots + \frac{1}{q_k} \neq 0$ for each $k \in \{2, \ldots, n\}$, and let $O = \{A_1, \ldots, A_n\}$ be a finite set of operators in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$. Then for all non-zero real q,

$$T_{q,A_n}^{(1)} \Big(T_{q,A_{n-1}}^{(1)} \Big(\cdots \Big(T_{q,A_2}^{(1)} \Big(T_{q,A_1}^{(1)}(F_{\sigma}) \Big) \Big) \cdots \Big) \Big) (y) \approx T_{q,\mathfrak{S}(O)}^{(1)}(F_{\sigma}),$$
(2.8)

where $\mathfrak{S}(O)$ is an operator in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$ which satisfies the relation (2.5).

3. Monoids of Fourier–Feynman transforms

We in this section will provide a deep algebraic structure of classes of the FFTs. To do this, for any $A \in \mathcal{L}(\mathbb{B})$, let $T_{0,A}^{(1)}$ denote the identity transform on $\mathcal{F}(\mathbb{B}^*)$.

Firstly, for $q \in \mathbb{R}$, let

$$\mathsf{T}(q;\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})) := \big\{ T_{q,A}^{(1)} : A \in \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H}) \big\}.$$

By (i) of Theorem 2.1 and Theorem 2.2, it follows that for all $A_1, A_2 \in \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$ and all $F_{\sigma} \in \mathcal{F}(\mathbb{B}^*)$,

$$\left(T_{q,A_2}^{(1)} \circ T_{q,A_1}^{(1)}\right)(F_{\sigma}) = T_{q,A_2}^{(1)}\left(T_{q,A_1}^{(1)}(F_{\sigma})\right) \approx T_{q,\mathfrak{S}(A_1,A_2)}^{(1)}(F_{\sigma})$$

is in $\mathcal{F}(\mathbb{B}^*)$. One can see that the composition \circ of FFTs is associative, because for all $A_1, A_2, A_3 \in \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$,

$$\mathfrak{S}(\mathfrak{S}(A_1,A_2),A_3)=\mathfrak{S}(A_1,A_2,A_3)=\mathfrak{S}(A_1,\mathfrak{S}(A_2,A_3)).$$

Also, one can see that

$$\left(T^{(1)}_{q,A_1} \circ T^{(1)}_{q,A_2}\right)(F_{\sigma}) \approx \left(T^{(1)}_{q,A_2} \circ T^{(1)}_{q,A_1}\right)(F_{\sigma}),$$

for any A_1 and A_2 in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$ and every $F_{\sigma} \in \mathcal{F}(\mathbb{B}^*)$, because $\mathfrak{S}(A_1, A_2) = \mathfrak{S}(A_2, A_1)$. Clearly,

$$(T^{(1)}_{q,O} \circ T^{(1)}_{q,A})(F_{\sigma}) \equiv T^{(1)}_{q,A}(F_{\sigma})$$

for any *A* in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, where *O* indicates the trivial operator in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$. Thus we have the following theorem.

Theorem 3.1. For any non-zero real q, the space $(\mathsf{T}(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})), \circ)$ forms a commutative monoid (and hence semigroup). Indeed, the monoid $\mathsf{T}(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H}))$ acts on the Banach space $\mathcal{F}(\mathbb{B}^*)$ in the sense that $(T_{q,A}^{(1)}, F_{\sigma}) \mapsto T_{q,A}^{(1)}(F_{\sigma})$.

Let S_f denote the set of all finite sequences in $\mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})$, and let

$$M_{q,O_n}^{(1)} \equiv T_{q,A_n}^{(1)} \circ \dots \circ T_{q,A_1}^{(1)}$$
(3.9)

for any real *q* and any $O = (A_1, \ldots, A_n) \in S_f$. Next, for $q \in \mathbb{R}$, let

$$M(q; S_f) := \{M_{q,O}^{(1)} : O \in S_f\}$$

Then, by Theorem 2.2, it follows that

$$\mathsf{M}(q; \mathsf{S}_{\mathsf{f}}) = \left\{ T_{q, \mathfrak{S}(O)}^{(1)} : O \in \mathsf{S}_{\mathsf{f}} \right\}.$$

Thus we have the inclusions

$$\mathsf{T}(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})) \subset \mathsf{M}(q; \mathsf{S}_{\mathsf{f}}) \subset \mathsf{T}(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})).$$

From this, one can see that $T(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H}))$ and $M(q; S_f)$ coincide as sets. However, we will consider other operation on $M(q; S_f)$ defined as follows: for $O_1 = (A_{11}, \ldots, A_{1n_1})$ and $O_2 = (A_{21}, \ldots, A_{2n_2})$ in S_f , let

 $O_1 \wedge O_2 \equiv (A_{11}, \dots, A_{1n_1}) \wedge (A_{21}, \dots, A_{2n_2}) := (A_{11}, \dots, A_{1n_1}, A_{21}, \dots, A_{2n_2})$

and for $M^{(1)}_{q,O_1}$ and $M^{(1)}_{q,O_2}$ in $\mathsf{M}(q;\mathsf{S}_{\mathrm{f}})$, let

$$M_{q,O_1}^{(1)} \odot M_{q,O_2}^{(1)} := M_{q,O_1 \land O_2}^{(1)}$$

In view of Theorem 2.2 and the observation (O3), we see that for a permutation π of $\{1, ..., n\}$,

$$M_{q,(A_1,A_2,\ldots,A_n)}^{(1)} = M_{q,(A_{\pi(1)},A_{\pi(2)},\ldots,A_{\pi(n)})}^{(1)}.$$

Thus we have

$$M_{q,O_1}^{(1)} \otimes M_{q,O_2}^{(1)} = M_{q,O_2}^{(1)} \otimes M_{q,O_1}^{(1)}$$

for all $M_{q,O_1}^{(1)}$ and $M_{q,O_2}^{(1)}$ in $M(q; S_f)$, and so we conclude that the operation \odot is well defined and is commutative. Clearly, $M_{q,O_2}^{(1)} = T_{q,O}^{(1)}$ gives an identity transform. Next, note that, by (2.6),

$$\mathfrak{S}(\mathfrak{S}(O_1),\mathfrak{S}(O_2)) = \mathfrak{S}(O_1 \wedge O_2). \tag{3.10}$$

From this, we also see that for all $O_1, O_2, O_3 \in S_f$,

$$\mathfrak{S}\big(\mathfrak{S}(O_1 \wedge O_2), \mathfrak{S}(O_3)\big) = \mathfrak{S}\big(O_1 \wedge O_2 \wedge O_3\big) = \mathfrak{S}\big(\mathfrak{S}(O_1), \mathfrak{S}(O_2 \wedge O_3)\big)$$

and so the operation \odot is associative. In view of these observations, we get the following theorem.

Theorem 3.2. Given any real q, the space $(M(q; S_f), \odot)$ is a commutative monoid. Indeed, the monoid $M(q; S_f)$ acts on the space $\mathcal{F}(\mathbb{B}^*)$ in the sense that

$$(M_{q,O}^{(1)}, F_{\sigma}) \mapsto M_{q,O}^{(1)}(F_{\sigma}) \equiv T_{q,\mathfrak{S}(O)}^{(1)}(F_{\sigma}).$$

Remark 3.3. The operation \otimes is a semigroup action of $M(q; S_f)$, *i.e.*, $M(q; S_f)$ is a transform semigroup.

Define a relation $\stackrel{\mathfrak{S}}{\sim}$ on S_f by

$$O_1 \stackrel{\sim}{\sim} O_2$$
 if and only if $\mathfrak{S}(O_1) = \mathfrak{S}(O_2)$. (3.11)

Then $\stackrel{\mathfrak{S}}{\sim}$ is an equivalence relation on S_f. Next, define a relation $\stackrel{\mathsf{M}}{\sim}$ on M(*q*; S_f) by

 $M_{q,O_1}^{(1)} \stackrel{\mathbf{M}}{\sim} M_{q,O_2}^{(1)}$ if and only if $O_1 \stackrel{\mathfrak{S}}{\sim} O_2$.

From (3.9), (2.8), (2.7), and (3.11), we see that the relation $\stackrel{M}{\sim}$ is a well-defined equivalence relation. Consequently, we can obtain the quotient space

$$\mathfrak{G}(q; \mathbf{S}_{\mathrm{f}}) := \mathbf{M}(q; \mathbf{S}_{\mathrm{f}}) / \stackrel{\mathbf{M}}{\sim}$$

with the operation

$$[M_{q,O_1}^{(1)}] \otimes_{\mathbf{M}} [M_{q,O_2}^{(1)}] := [M_{q,O_1 \wedge O_2}^{(1)}].$$
(3.12)

These settings yield the result as the main theorem of this paper.

Theorem 3.4. Define a map $\mathfrak{P} : (\mathfrak{G}^{(1)}(q; S_f), \mathfrak{O}_M) \to (\mathsf{T}^{(1)}(q; \mathcal{L}(\mathbb{B}) \cap \mathcal{L}(\mathbb{H})), \circ)$ by

$$\mathfrak{P}([M_{a,O}^{(1)}]) := T_{a,\mathfrak{S}(O)}^{(1)}.$$
(3.13)

Then \mathfrak{P} *is a monoid isomorphism.*

Proof. Clearly, the space $(\mathfrak{G}^{(1)}(q; S_f), \odot_M)$ is a commutative monoid and the map \mathfrak{P} given by equation (3.13) is bijective. Next, applying (3.12) and (3.10), we obtain

$$\begin{aligned} \mathfrak{P}([M_{q,O_{1}}^{(1)}] \odot_{\mathbf{M}} [M_{q,O_{2}}^{(1)}]) &= \mathfrak{P}([M_{q,O_{1}\wedge O_{2}}^{(1)}]) \\ &= T_{q,\mathfrak{S}(O_{1}\wedge O_{2})}^{(1)} \\ &= T_{q,\mathfrak{S}(\mathcal{O}_{1}),\mathfrak{S}(\mathcal{O}_{2}))} \\ &= T_{q,\mathfrak{S}(\mathcal{O}_{1})} \circ T_{q,\mathfrak{S}(\mathcal{O}_{2})} \\ &= \mathfrak{P}([M_{q,O_{1}}^{(1)}]) \circ \mathfrak{P}([M_{q,O_{2}}^{(1)}]) \end{aligned}$$

as desired. \Box

4. A free group

In view of equation (2.4), the class $\mathfrak{G}^{(1)}(q; \mathbf{S}_f)$ is not a group if $q \neq 0$. In this section, we will clarify a transformation group freely generated by $\mathfrak{G}^{(1)}(q; S_f)$.

We recall the fact that the class $\mathcal{F}(\mathbb{B}^*)$ is a Banach algebra with the norm $||F_{\sigma}|| = ||\sigma^*|| = \int_{\mathbb{B}^*} d|\sigma^*|(g)$ and the mapping $\sigma^* \mapsto F_{\sigma}$ by (2.3) is a Banach algebra isomorphism between $\mathcal{M}(\mathbb{B})^*$ and $\mathcal{F}(\mathbb{B}^*)$. In view of these facts and the assertion (i) of Theorem 2.1, one can see that

$$||F_{\sigma}|| = ||\sigma^*|| = \int_{\mathbb{B}^*} d|\sigma^*|(g) = \int_{\mathbb{B}^*} d|(\sigma^*)_t^A|(g) = ||(\sigma^*)_t^A|| = ||T_{q,A}^{(1)}(F)||$$

for any $A \in \mathcal{L}(\mathbb{B})$, and every $F_{\sigma} \in \mathcal{F}(\mathbb{B}^*)$. Thus we can assert the following theorem.

Theorem 4.1. For any $q \in \mathbb{R} \setminus \{0\}$ and let $A \in \mathcal{L}(\mathbb{B})$, the L_1 analytic FFT associated with $A, T_{q,A}^{(1)} : \mathcal{F}(\mathbb{B}^*) \to \mathcal{F}(\mathbb{B}^*)$ is a linear operator isomorphism. Furthermore, $\|T_{q,A}^{(1)}\|_{o} = 1$, where $\|\cdot\|_{o}$ means the operator norm.

For any non-zero real *q*, let $\mathfrak{G}^{(1)}(q; \mathbf{S}_{f})^{*} := \mathfrak{G}^{(1)}(q; \mathbf{S}_{f}) \setminus \{[M_{a,(O)}^{(1)}]\}$. Define a map

$$\mathcal{W}:\mathfrak{G}^{(1)}(q;\mathsf{S}_{\mathrm{f}})^*\longrightarrow\mathfrak{G}^{(1)}(-q;\mathsf{S}_{\mathrm{f}})^*$$

by $\mathcal{W}([M_{q,\mathfrak{S}(O)}^{(1)}]) = [M_{-q,\mathfrak{S}(O)}^{(1)}]$. Then, the mapping \mathcal{W} is an one-to-one correspondence. Thus, by the usual argument in the free group theory [11], one can obtain the group $F(\mathfrak{G}^{(1)}(q; S_f))$ freely generated by $\mathfrak{G}^{(1)}(q; S_f)^*$. Note th

$$[M_{q,O_1}^{(1)}] \odot_{\mathbf{M}} [M_{q,O_2}^{(1)}] = [M_{q,O_1 \land O_2}^{(1)}] = [T_{q, \mathfrak{S}(O_1 \land O_2)}]$$

for $[M_{q,O_1}^{(1)}]$ and $[M_{q,O_2}^{(1)}]$ in $\mathfrak{G}^{(1)}(q; \mathsf{S}_f)$. Given two transforms \mathcal{T}_1 and \mathcal{T}_2 in $\mathsf{F}(\mathfrak{G}^{(1)}(q; \mathsf{S}_f))$, let the group operation between \mathcal{T}_1 and \mathcal{T}_2 be given by

$$(\mathcal{T}_1 \circ \mathcal{T}_2)(F_{\sigma}) \equiv \mathcal{T}_1(\mathcal{T}_2(F_{\sigma})), \quad F_{\sigma} \in \mathcal{F}(\mathbb{B}).$$

For an element \mathcal{T} of $\mathsf{F}(\mathfrak{G}^{(1)}(q; \mathsf{S}_{\mathsf{f}}))$, let $\mathsf{I}_w(\mathcal{T})$ denote the length of the word \mathcal{T} . Given $\mathcal{T} \in \mathsf{F}(\mathfrak{G}^{(1)}(q; \mathsf{S}_{\mathsf{f}}))$, assume that \mathcal{T} is not the empty word (i.e., it is not the identity transform $[M_{q,(O)}^{(1)}]$). In the case that $I_w(\mathcal{T}) = 1$, the transform \mathcal{T} is a member of the set

$$\mathfrak{G}^{(1)}(q;\mathsf{S}_{\mathrm{f}}) \stackrel{.}{\cup} \mathfrak{G}^{(1)}(-q;\mathsf{S}_{\mathrm{f}}).$$

Alternatively, in the case that $I_w(\mathcal{T}) > 1$, \mathcal{T} may not be expressed as an equivalence class of a single FFT. However, in view of Theorem 4.1, we can assert the fact that for any $\mathcal{T} \in \mathsf{F}(\mathfrak{G}^{(1)}(q; \mathsf{S}_{\mathsf{f}}))$, \mathcal{T} is a linear operator isomorphism from $\mathcal{F}(\mathbb{B}^*)$ into itself.

References

- [1] J. M. Ahn, K. S. Chang, B. S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar. 100 (2003), 215-235.
- [2] K. S. Chang, B. S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation of functional on abstract Wiener space, Integral Transforms Spec. Funct. 10 (2000), 179–200.
- [3] K. S. Chang, T. S. Song and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), 485–501.
- [4] J. G. Choi, Analytic Fourier-Feynman transforms associated with bounded linear operators on abstract Wiener spaces, J. Math. Anal. Appl. 521 (2023), Article ID 126952.
- [5] D. M. Chung, Scale-invariant measurability in abstract Wiener space, Pacific J. Math. 130 (1987), 27-40.
- [6] L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probab. (Berkeley, Calif., 1965/66), pp. 31-42, Univ. California Press, Berkeley, CA, 1967.

- [7] G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Analysis and Applications, pp. 217–267, Adv. Probab. Related Topics, 7, Dekker, New York, 1984.
- [8] G. Kallianpur, D. Kannan and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron–Martin formula, Ann. Inst. Henri Poincaré Probab. Statist. 21 (1985), 323–361.
 [9] H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math., Vol. 463, Springer-Verlag, Berlin, 1975.
- [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.
- [11] D. Robinson, A Course in the Theory of Groups, 2nd edition, Graduate texts in mathematics, Vol. 80, Springer-Verlag, Berlin, 1996.
- [12] D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147–1175.