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abstract Wiener spaces
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Abstract. In this article, we study an algebraic structure of the analytic Fourier–Feynman transform (FFT)
associated with bounded linear operators on abstract Wiener space (AWS). It turned out in this paper that
a class of the analytic FFTs forms a monoid and that a quotient monoid is isomorphic to the monoid of the
FFTs. Additionally, we provide a transformation group freely generated by FFTs. Any transforms in the
free group are linear operator isomorphisms.

1. Introduction and preliminaries

The aim of this article is to clarify a class of “analytic FFTs associated with bounded linear operators”
for certain bounded functionals on AWS.

The analytic FFT is a well-known transform defined on Wiener spaces. For a historical survey and a
rigorous definition of the FFT of functionals on classical and abstract Wiener spaces, we refer the reader to
[12] and the references cited therein. In [4], Choi defined an analytic FFT associated with a bounded linear
operator on AWS and establish the fact that iterated FFTs can be represented by a single FFT.

We in this article investigate a deep structure of the class of analytic FFTs on AWS. Precisely speaking,
we study a new algebraic structure of our FFTs. It turned out in this paper that a class of the analytic FFTs
forms a monoid (and hence a semigroup). Moreover, it also turned out that a quotient monoid is isomorphic
to the monoid of the FFTs. We also provide a transformation group freely generated by the FFTs.

In order to provide our assertions for the FFTs, we first follow the expositions of [5–9].

1.1. Abstract Wiener space
Let H be a real separable Hilbert space with norm | · | induced by the inner product ⟨·, ·⟩, and let B be

a real separable Banach space with norm ∥ · ∥. It is assumed that H is continuously, linearly, and densely
embedded inB by a natural injection. Let ν be a centered Gaussian probability measure on (B,B(B)), where
B(B) denotes the Borel σ-algebra of B. The triple (H,B, ν) is called an AWS if∫

B

exp
(
i(h, x)

)
dν(x) = exp

(
−

1
2
|h|2
)
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for any h ∈ B∗, where (·, ·) denotes the B∗–B-pairing, and where B∗ is the topological dual of B. Also, letH∗

be the topological dual of H. Then the space B∗ is identified as a dense subspace of H∗ ≈ H in the sense
that, for all y ∈ B∗ and x ∈H, ⟨y, x⟩ = (y, x). Thus we have the triple

B∗ ⊂H∗ ≈H ⊂ B. (1.1)

Given a Banach space X, let L(X) denote the class of bounded linear operators from X to itself. Then
L(B∗), L(H), and L(B) are Banach spaces. By the concept of the Banach space adjoint operator, given an
operator A ∈ L(B), there exists an operator A∗ in L(B∗) such that for all θ ∈ B∗ and x ∈ B,

(A∗θ)x = θ(Ax). (1.2)

By the structure of theB∗–B-pairing and the triple (1.1), equation (1.2) can be rewritten by (A∗θ, x) = (θ,Ax).

1.2. Fourier–Feynman transforms associated with bounded linear operators

In order to define an analytic FFT associated with bounded linear operators on the AWS (H,B, ν), we
need the concept of the “scale-invariant measurability”.

LetW(B) be the class of ν-Carathéodory measurable subsets of B. A subset S of B is said to be scale-
invariant measurable (s.i.m.) [5] provided ρS isW(B)-measurable for every ρ > 0, and an s.i.m. subset N
of B is said to be scale-invariant null provided ν(ρN) = 0 for every ρ > 0. A property that holds except on
a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). A functional F on B is
said to be s.i.m. provided F is defined on an s.i.m. set and F(ρ · ) isW(B)-measurable for every ρ > 0. If
two functionals F and G on B are equal s-a.e., we write F ≈ G. The symbols “≈” is an equivalence relation.
For an s.i.m. functional F on B, we denote by [F]s the equivalence class of functionals which are equal to F
s-a.e.. For more details, see [5].

The definition of the analytic FFT on AWS B is based on the analytic Feynman integral and the scale-
invariant measurability [1–3]. We now state the definition of the analytic FFT associated with bounded
linear operator.

Definition 1.1. Let C+ := {λ ∈ C : Re(λ) > 0} and let C̃+ := {λ ∈ C \ {0} : Re(λ) ≥ 0}. Given a bounded linear
operator A on B, let F : B→ C be an s.i.m. functional such that

JF(y+·)(A;λ) :=
∫
B

F(y + λ−1/2Ax)dν(x)

exists as a finite number for all λ > 0. If there exists a function J∗F(y+·)(A;λ) analytic on C+ such that J∗F(y+·)(A;λ) =
JF(y+·)(A;λ) for all λ > 0, then J∗F(y+·)(A;λ) is defined to be the analytic transform (associated with the operator A) of
F over B with parameter λ. For λ ∈ C+ we write

Tλ,A(F)(y) := J∗F(y+·)(A;λ).

Let q be a non-zero real number. We define the L1 analytic FFT associated with the operator A, T(1)
q,A(F) of F, by the

formula (if it exists)

T(1)
q,A(F)(y) := lim

λ→−iq
λ∈C+

Tλ,A(F)(y)

for s-a.e. y ∈ B.

Remark 1.2. If A is the identity operator onB, then this definition agrees with the previous definition of the (ordinary)
analytic FFT studied in [1–3]. We note that if T(1)

q,A(F) exists and if F ≈ G, then T(1)
q,A(G) exists and T(1)

q,A(G) ≈ T(1)
q,A(F).
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2. Fourier–Feynman transforms of bounded functionals

We now introduce the class F (B∗) of functionals onB, which forms a Banach algebra. LetM(B∗) denote
the class of complex-valued Borel measures on B∗. Under total variation norm ∥ · ∥ with convolution as
multiplication, M(B∗) is a commutative Banach algebra with identity. The class F (B∗) is defined as the
space of all s-equivalence classes of stochastic Fourier transforms of elements ofM(B∗), that is,

F (B∗) :=
{
[Fσ]s : Fσ(x) =

∫
B∗

exp{i(1, x)}dσ∗(1), x ∈ B, σ∗ ∈ M(B∗)
}
.

We will identify a functional with its s-equivalence class and think of F (B∗) as a collection of functionals on
B∗ rather than as a collection of s-equivalence classes. The class F (B∗) is a Banach algebra with the norm

∥Fσ∥ := ∥σ∗∥ =
∫
B∗

d|σ∗|(1)

and the mapping σ∗ 7→ Fσ is a Banach algebra isomorphism where σ∗ ∈ M(B∗) is related to Fσ by

Fσ(x) =
∫
B∗

exp{i(1, x)}dσ∗(1) (2.3)

for s-a.e. x ∈ B. For more details, see [4].
In [4], Choi established the existence of the L1 analytic FFT of functionals in F (B∗) as follows.

Theorem 2.1. Let Fσ be a functional in F (B∗), and let A be an operator inL(B). Then the following assertions hold
true:

(i) The L1 analytic FFT associated with the operator A, T(1)
q,A(Fσ) exists for each non-zero real q, and is given by

T(1)
q,A(Fσ)(y) =

∫
B∗

exp{i(1, y)}d(σ∗)A
t (1)

for s-a.e. y ∈ B, where (σ∗)A
t is the complex measure on B∗ defined by

(σ∗)A
t (U) =

∫
U

exp
{
−

i
2q

(1,AA∗1)
}
dσ∗(1)

for U ∈ B(B∗). Thus T(1)
q,A(Fσ) is an element of F (B∗).

(ii) For all non-zero real q,

T(1)
−q,A

(
T(1)

q,A(Fσ)
)
≈ Fσ. (2.4)

That is, the analytic FFT, T(1)
q,A : F (B∗)→ F (B∗) has the inverse transform {T(1)

q,A}
−1 = T(1)

−q,A.

In order to provide a transform monoid and a free group of the FFTs, we quote the following expositions
from [4].

(O1) Let A be an operator in L(B) such that A(H) ⊆H. Then A is an element of L(H). Let

L(B) ⋒L(H) := {A ∈ L(B) : A(H) ⊆H}.

Then the classL(B)⋒L(H) is a linear space. For any A inL(B)⋒L(H), AA∗ is positive definite onH. Thus,
by the square root lemma [10], there exists a positive operator |A| onH such that |A| =

√
AA∗.
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(O2) Given operators A1 and A2 in L(B) ⋒ L(H), it follows that the operator A1A∗1 + A2A∗2 is positive
definite onH. Thus, by the square root lemma, there is an operator

√
A1A∗1 + A2A∗2, uniquely, in L(H). It is

clear that the operator
√

A1A∗1 + A2A∗2 is in L(B) ⋒L(H).

In order to identify these operators, we consider the relation
op
∼ on L(B) ⋒L(H) given by

A1
op
∼ A2 ⇐⇒ A1A∗1 = A2A∗2 onH.

Then
op
∼ is an equivalence relation. Let [A] denote the equivalence class of an operator A in L(B) ⋒ L(H).

In view of the observation (O1), it follows that there exists a positive definite operator S(A) such that
A

op
∼ S(A).
Given two operators A1 and A2 in L(B) ⋒ L(H), we will use the symbol ‘S(A1,A2)’ to indicate the

representative element of the equivalence class[
S(A1,A2)

]
=
{
S ∈ L(B) ⋒L(H) : S

op
∼

√
A1A∗1 + A2A∗2 onH

}
.

Then, in view of (O2), we see that for any S in [S(A1,A2)] and all 1 ∈ B∗,

|S∗1|2 = (S∗1,S∗1) = (1,SS∗1) = (1, (A1A∗1 + A2A∗2)1).

For a notational convenience, we will regard [S(A1,A2)] ≡ S(A1,A2) as an operator in L(B) ⋒ L(H).
Then we see that

S(A1,A2)S(A1,A2)∗ = A1A∗1 + A2A∗2.

(O3) Given a finite sequence O = (A1, . . . ,An) of operators in L(B) ⋒L(H), let S(O) ≡ S(A1,A2, . . . ,An)
be the positive operators Swhich satisfy the relation

SS∗ = A1A∗1 + · · · + AnA∗n onH. (2.5)

By an induction argument, it follows that

S(S(A1,A2, . . . ,Ak−1),Ak) = S(A1,A2, . . . ,Ak) (2.6)

for all k ∈ {2, . . . ,n}. Also, for any permutation π of {1, . . . ,n}, we also see that

S(A1,A2, . . . ,An) = S(Aπ(1),Aπ(2), . . . ,Aπ(n)). (2.7)

Under these observations, Choi established the following theorem in [4].

Theorem 2.2. Let Fσ be a functional in F (B∗), let {q1, q2, . . ., qn} be a set of non-zero real numbers with 1
q1
+ 1

q2
+

· · · + 1
qk
, 0 for each k ∈ {2, . . . ,n}, and let O = {A1, . . . ,An} be a finite set of operators in L(B)⋒L(H). Then for all

non-zero real q,

T(1)
q,An

(
T(1)

q,An−1

(
· · ·

(
T(1)

q,A2

(
T(1)

q,A1
(Fσ)
))
· · ·

))
(y) ≈ T(1)

q,S(O)(Fσ), (2.8)

where S(O) is an operator in L(B) ⋒L(H) which satisfies the relation (2.5).

3. Monoids of Fourier–Feynman transforms

We in this section will provide a deep algebraic structure of classes of the FFTs. To do this, for any
A ∈ L(B), let T(1)

0,A denote the identity transform on F (B∗).
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Firstly, for q ∈ R, let

T(q;L(B) ⋒L(H)) :=
{
T(1)

q,A : A ∈ L(B) ⋒L(H)
}
.

By (i) of Theorem 2.1 and Theorem 2.2, it follows that for all A1,A2 ∈ L(B) ⋒L(H) and all Fσ ∈ F (B∗),(
T(1)

q,A2
◦ T(1)

q,A1

)
(Fσ) = T(1)

q,A2

(
T(1)

q,A1
(Fσ)
)
≈ T(1)

q,S(A1,A2)(Fσ)

is inF (B∗). One can see that the composition ◦ of FFTs is associative, because for all A1,A2,A3 ∈ L(B)⋒L(H),

S(S(A1,A2),A3) = S(A1,A2,A3) = S(A1,S(A2,A3)).

Also, one can see that(
T(1)

q,A1
◦ T(1)

q,A2

)
(Fσ) ≈

(
T(1)

q,A2
◦ T(1)

q,A1

)
(Fσ),

for any A1 and A2 in L(B) ⋒L(H) and every Fσ ∈ F (B∗), because S(A1,A2) = S(A2,A1). Clearly,

(T(1)
q,O ◦ T(1)

q,A)(Fσ) ≡ T(1)
q,A(Fσ)

for any A inL(B)⋒L(H), where O indicates the trivial operator inL(B)⋒L(H). Thus we have the following
theorem.

Theorem 3.1. For any non-zero real q, the space (T(q;L(B) ⋒ L(H)), ◦) forms a commutative monoid (and hence
semigroup). Indeed, the monoid T(q;L(B) ⋒ L(H)) acts on the Banach space F (B∗) in the sense that (T(1)

q,A,Fσ) 7→

T(1)
q,A(Fσ).

Let Sf denote the set of all finite sequences in L(B) ⋒L(H), and let

M(1)
q,On
≡ T(1)

q,An
◦ · · · ◦ T(1)

q,A1
(3.9)

for any real q and any O = (A1, . . . ,An) ∈ Sf. Next, for q ∈ R, let

M(q; Sf) :=
{
M(1)

q,O : O ∈ Sf

}
.

Then, by Theorem 2.2, it follows that

M(q; Sf) =
{
T(1)

q,S(O) : O ∈ Sf

}
.

Thus we have the inclusions

T(q;L(B) ⋒L(H)) ⊂ M(q; Sf) ⊂ T(q;L(B) ⋒L(H)).

From this, one can see that T(q;L(B)⋒L(H)) and M(q; Sf) coincide as sets. However, we will consider other
operation on M(q; Sf) defined as follows: for O1 = (A11, . . . ,A1n1 ) and O2 = (A21, . . . ,A2n2 ) in Sf, let

O1 ∧ O2 ≡ (A11, . . . ,A1n1 ) ∧ (A21, . . . ,A2n2 ) := (A11, . . . ,A1n1 ,A21, . . . ,A2n2 )

and for M(1)
q,O1

and M(1)
q,O2

in M(q; Sf), let

M(1)
q,O1
⊚M(1)

q,O2
:=M(1)

q,O1∧O2
.

In view of Theorem 2.2 and the observation (O3), we see that for a permutation π of {1, . . . ,n},

M(1)
q,(A1,A2,...,An) =M(1)

q,(Aπ(1),Aπ(2),...,Aπ(n))
.
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Thus we have

M(1)
q,O1
⊚M(1)

q,O2
=M(1)

q,O2
⊚M(1)

q,O1

for all M(1)
q,O1

and M(1)
q,O2

in M(q; Sf), and so we conclude that the operation⊚ is well defined and is commutative.

Clearly, M(1)
q,(O) = T(1)

q,O gives an identity transform. Next, note that, by (2.6),

S
(
S(O1),S(O2)

)
= S(O1 ∧ O2). (3.10)

From this, we also see that for all O1,O2,O3 ∈ Sf,

S
(
S(O1 ∧ O2),S(O3)

)
= S
(
O1 ∧ O2 ∧ O3

)
= S
(
S(O1),S(O2 ∧ O3)

)
,

and so the operation ⊚ is associative. In view of these observations, we get the following theorem.

Theorem 3.2. Given any real q, the space (M(q; Sf),⊚) is a commutative monoid. Indeed, the monoid M(q; Sf) acts
on the space F (B∗) in the sense that

(M(1)
q,O,Fσ) 7→M(1)

q,O(Fσ) ≡ T(1)
q,S(O)(Fσ).

Remark 3.3. The operation ⊚ is a semigroup action of M(q; Sf), i.e., M(q; Sf) is a transform semigroup.

Define a relation S∼ on Sf by

O1
S
∼ O2 if and only if S(O1) = S(O2). (3.11)

Then S∼ is an equivalence relation on Sf. Next, define a relation M
∼ on M(q; Sf) by

M(1)
q,O1

M
∼ M(1)

q,O2
if and only if O1

S
∼ O2.

From (3.9), (2.8), (2.7), and (3.11), we see that the relation M
∼ is a well-defined equivalence relation. Conse-

quently, we can obtain the quotient space

G(q; Sf) := M(q; Sf)/
M
∼

with the operation

[M(1)
q,O1

] ⊚M [M(1)
q,O2

] := [M(1)
q,O1∧O2

]. (3.12)

These settings yield the result as the main theorem of this paper.

Theorem 3.4. Define a map P : (G(1)(q; Sf),⊚M)→ (T(1)(q;L(B) ⋒L(H)), ◦) by

P([M(1)
q,O]) := T(1)

q,S(O). (3.13)

Then P is a monoid isomorphism.

Proof. Clearly, the space (G(1)(q; Sf),⊚M) is a commutative monoid and the map P given by equation (3.13)
is bijective. Next, applying (3.12) and (3.10), we obtain

P([M(1)
q,O1

] ⊚M [M(1)
q,O2

]) = P([M(1)
q,O1∧O2

])

= T(1)
q,S(O1∧O2)

= T(1)
q,S(S(O1),S(O2))

= Tq,S(O1) ◦ Tq,S(O2)

= P([M(1)
q,O1

]) ◦P([M(1)
q,O2

])

as desired.
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4. A free group

In view of equation (2.4), the class G(1)(q; Sf) is not a group if q , 0. In this section, we will clarify a
transformation group freely generated by G(1)(q; Sf).

We recall the fact that the class F (B∗) is a Banach algebra with the norm ∥Fσ∥ = ∥σ∗∥ =
∫
B∗

d|σ∗|(1) and
the mapping σ∗ 7→ Fσ by (2.3) is a Banach algebra isomorphism betweenM(B)∗ and F (B∗). In view of these
facts and the assertion (i) of Theorem 2.1, one can see that

∥Fσ∥ = ∥σ∗∥ =
∫
B∗

d|σ∗|(1) =
∫
B∗

d|(σ∗)A
t |(1) = ∥(σ

∗)A
t ∥ = ∥T

(1)
q,A(F)∥

for any A ∈ L(B), and every Fσ ∈ F (B∗). Thus we can assert the following theorem.

Theorem 4.1. For any q ∈ R \ {0} and let A ∈ L(B), the L1 analytic FFT associated with A, T(1)
q,A : F (B∗)→ F (B∗)

is a linear operator isomorphism. Furthermore, ∥T(1)
q,A∥o = 1, where ∥ · ∥o means the operator norm.

For any non-zero real q, let G(1)(q; Sf)∗ := G(1)(q; Sf) \ {[M
(1)
q,(O)]}. Define a map

W : G(1)(q; Sf)∗ −→ G(1)(−q; Sf)∗

byW([M(1)
q,S(O)]) = [M(1)

−q,S(O)]. Then, the mappingW is an one-to-one correspondence. Thus, by the usual

argument in the free group theory [11], one can obtain the group F(G(1)(q; Sf)) freely generated byG(1)(q; Sf)∗.
Note that

[M(1)
q,O1

] ⊚M [M(1)
q,O2

] = [M(1)
q,O1∧O2

] = [Tq,S(O1∧O2)]

for [M(1)
q,O1

] and [M(1)
q,O2

] inG(1)(q; Sf). Given two transformsT1 andT2 in F(G(1)(q; Sf)), let the group operation
between T1 and T2 be given by

(T1 ◦ T2)(Fσ) ≡ T1(T2(Fσ)), Fσ ∈ F (B).

For an element T of F(G(1)(q; Sf)), let lw(T ) denote the length of the word T . Given T ∈ F(G(1)(q; Sf)),
assume thatT is not the empty word (i.e., it is not the identity transform [M(1)

q,(O)]). In the case that lw(T ) = 1,
the transform T is a member of the set

G(1)(q; Sf) ∪̇ G(1)(−q; Sf).

Alternatively, in the case that lw(T ) > 1, T may not be expressed as an equivalence class of a single FFT.
However, in view of Theorem 4.1, we can assert the fact that for anyT ∈ F(G(1)(q; Sf)), T is a linear operator
isomorphism from F (B∗) into itself.
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