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Abstract. The current article is about almost Schouten solitons and gradient Schouten solitons on contact
geometry. At first, we demonstrate that if a compact K-contact manifold admits an almost Schouten soliton,
then the soliton is shrinking and the manifold is an Einstein manifold. Moreover, we show that if a K-contact
manifold admits a gradient Schouten soliton, then the manifold becomes an Einstein manifold. Next, we
investigate almost Schouten solitons and gradient Schouten solitons on (k, µ)-contact manifolds. Finally,
we show that if a complete H-contact manifold M2n+1 satisfying certain restriction on the scalar curvature
and the soliton function admits an almost Schouten soliton whose potential vector field V is collinear with
ζ, then M2n+1 is compact Einstein and Sasakian.

1. Introduction

On a (2n + 1)-dimensional Riemannian manifold, Schouten solitons are the self-similar solutions of an
intrinsic flow named as a Schouten flow ([7], [9]), that is defined by

£V1 + 2St + 2α1 = 0, (1)

where St is the Schouten tensor given by

St =
1

2n − 1
(S −

r
4n
1), (2)

α ∈ R, S indicates the Ricci tensor and r denotes the scalar curvature. V is called the potential vector field.
This soliton is referred to be shrinking, stable or expanding for α < 0, α = 0 or α > 0, respectively. For,
n = 1 and r = 0, this soliton turns into Ricci soliton. The simplest example of Schouten soliton is an Einstein
manifold. In [7], the author cited an example of a Schouten soliton in a Riemannian manifold.

We generalize the above notion, named almost Schouten solitons assuming α is a smooth function.
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Catino and Mazzieri[9] introduced the concept of gradient Schouten solitons, defined by

S + ∇2 f = (
r

4n
+ α)1, (3)

f being a smooth function andα a real constant. Gradient Schouten solitons and compact gradient Schouten
solitons are both studied in [9]. They proved the triviality of every compact gradient Schouten solitons.
They also demonstrated that a complete gradient steady Schouten soliton is trivial and Ricci flat. Moreover,
they established that every complete three dimensional gradient shrinking Schouten soliton is isometric to a
finite quotient of either S3 orR3 orR×S2. Complete gradient Schouten solitons have been characterized by
Pina and Menezes in [26]. Very recently, one research article based on gradient Schouten solitons has been
published by Borges [7]. For r = 0, (3) implies that gradient Schouten solitons become gradient Ricci solitons.

A K-contact manifold is an initial idea between a contact and a Sasakian manifold. (As for example,
A Sasakian structure is the normal contact metric structure on an odd-dimensional sphere). A K-contact
structure is carried by a compact regular contact manifold.

Ricci solitons and almost Ricci solitons have been explored during the past several years by a number
of researchers (see [10]-[20], [25]-[29], [31]-[36]). In [29] Sharma started the investigation of Ricci solitons
on K-contact manifold and demonstrated that “any complete K-contact metric admitting a Ricci soliton of
gradient type is Einstein and Sasakian”. Moreover, Cho and Sharma [14] proved that a compact contact
metric manifold admitting a Ricci soliton with a non-zero potential vector field which is collinear with ζ at
each point is Einstein and Sasakian.

Recently, geometric flows are initiated in the investigation of the cosmological model such as perfect
fluid spacetime. In [2] , Blaga studied η-Ricci and η-Einstein soliton in perfect fluid spacetime and obtained
the Poisson equation from the soliton equation when the potential vector field ζ is of gradient type. Kumara
and Venkatesha [32] analyzed Ricci soliton in perfect fluid spacetime with torse-forming vector field. Very
recently, we have studied almost Schouten solitons in spacetimes ([17], [27]). Therefore almost Schouten
solitons have applications in theory of relativity.

The above studies encourage us to characterize almost Schouten solitons and gradient Schouten solitons
in contact geometry. We specifically achieve the following results:

Theorem 1.1. If a compact K-contact manifold admits an almost Schouten soliton whose potential vector field is ζ,
then the soliton is shrinking and the manifold becomes an Einstein Sasakian.

Theorem 1.2. If a K-contact manifold admits a gradient Schouten soliton, then the manifold becomes an Einstein
manifold.

Theorem 1.3. If a (k, µ)-contact manifold admits an almost Schouten soliton whose potential vector field is ζ, then the
soliton becomes Schouten soliton and the soliton is shrinking, steady and expanding for 2(n−1)+ (1−8n)k−nµ < 0,
2(n − 1) + (1 − 8n)k − nµ = 0 and 2(n − 1) + (1 − 8n)k − nµ > 0, respectively.

Theorem 1.4. Let (M2n+1, 1) be a (k, µ)-contact manifold. If M2n+1 admits a gradient Schouten soliton, then either
(i) for n = 1, M3 is flat and for n > 1, M2n+1 is locally isometric to En+1

× Sn(4) or 1rad f is pointwise collinear with
ζ or,
(ii) M2n+1 is an Einstein manifold, provided k2 + µ2(k − 1) ̸= 0.

Theorem 1.5. Let (M2n+1, 1) be a compact contact metric manifold such that 1 is an almost Schouten soliton with
nonzero potential vector field V is collinear with ζ at each point. Then (M2n+1, 1) is Einstein and Sasakian, provided
ζr + 8n(1 − 2n)ζα = 0.

In [24], Perrone introduced H-contact manifold. A contact metric manifold whose Reeb vector field is
harmonic is called an H-contact manifold. In [14] Cho and Sharma investigated Ricci solitons in a complete
H-contact manifold. Here we intend to study almost Schouten solitons in a complete H-contact manifold,
which generalizes the Proposition 1 of [14].
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Theorem 1.6. Let (M2n+1, 1) be a complete H-contact manifold. If 1 is an almost Schouten soliton with nonzero
potential vector field V is collinear with ζ, then (M2n+1, 1) is compact Einstein and Sasakian, provided ζr + 8n(1 −
2n)ζα = 0.

2. Preliminaries

Let M2n+1 be an almost contact manifold with almost contact structure (φ, ζ,η), ζ being a unit vector
field, φ is a (1, 1)-tensor field and η being a 1-form satisfying

φ2E1 = −E1 + η(E1)ζ, η(ζ) = 1. (4)

A Riemannian metric 1 on M2n+1 is compatible with the almost contact structure if

1(φE1, φE2) = 1(E1,E2) − η(E1)η(E2) (5)

for any E1,E2 ∈ χ(M2n+1). If the associated complex structure J on M2n+1
×R is integrable, an almost contact

structure (φ, ζ,η, 1) is said to be normal.

If a Riemannian manifold M2n+1 and its almost contact metric structure (φ, ζ,η, 1) satisfies the condition
([3], p. 47) dη(E2,E3) = 1(E2, φE3) for all vector fields E2, E3, it is said to be a contact metric manifold. The
contact metric structure’s associated metric is 1. Two self-adjoint operators, h = 1

2 £ζφ and l = R(., ζ)ζ, are
taken into consideration on the contact metric manifold M2n+1(φ, ζ,η, 1), £ζ is the Lie-derivative along ζ.
The two operators h and l satisfy ([3], p. 84-85)

tr h = tr hφ = 0, hζ = lζ = 0, hφ = −φh. (6)

Lemma 2.1. ([3]) On a contact metric manifold M2n+1(φ, ζ,η, 1)

∇E2ζ = −φE2 − φhE2, (7)

S(ζ, ζ) = 1(Qζ, ζ) = tr l = 2n − tr h2, (8)

(div(hφ))E2 = 1(Qζ,E2) − 2nη(E2), (9)

where Q is the Ricci operator defined by 1(QE1,E2) = S(E1,E2) for all E1, E2.

If ζ is Killing, equivalently h = 0 ([3], p. 87), a contact metric manifold is said to be K-contact. Therefore,
on a K-contact manifold equation (7) turns into

∇E2ζ = −φE2. (10)

Furthermore, the following formulas are also valid on a K-contact manifold.

Lemma 2.2. ([3], p.113-116) A K-contact manifold M2n+1(φ, ζ,η, 1) obeys

S(E2, ζ) = 2nη(E2), (11)

Qζ = 2nζ, (12)
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R(ζ,E2)E3 = (∇E2φ)E3 (13)

(∇E3φ)E2 + (∇φE3φ)φE2 = 21(E2,E3)ζ − η(E2)(E3 + η(E3)ζ) (14)

for all vector fields E2, E3.

Blair et al. [5] introduced and studied a particular class of contact metric manifolds, called (k, µ)-
contact manifolds. In [6], Boeckx properly characterized these manifolds. A (k, µ)-contact manifold is a
M2n+1(φ, ζ,η, 1) contact metric manifold. It’s curvature tensor fulfills

R(E2,E3)ζ = k[η(E3)E2 − η(E2)E3] + µ[η(E3)hE2 − η(E2)hE3] (15)

for all E2, E3 and k, µ ∈ R. A (k, µ)-contact manifold is called an N(k)-contact metric manifold if µ = 0([1],
[4]).

The preceding formulas are used for non-Sasakian (k, µ)-manifolds [5]:

S(E2,E3) = [2(n − 1) − nµ]1(E2,E3) + [2(n − 1) + µ]1(hE2,E3) (16)
+[2(1 − n) + n(2k + µ)]η(E2)η(E3),

Qζ = 2nkζ, (17)

h2 = (k − 1)φ2, k ≤ 1, (18)

when k = 1, M2n+1 is Sasakian. The (k, µ)-nullity condition completely determines the curvature of M2n+1 in
the non-Sasakian case, that is, k < 1. Furthermore, the scalar curvature r is obtained by

r = 2n(2(n − 1) + k − nµ). (19)

Lemma 2.3. On a (k, µ)-contact manfold M2n+1(φ, ζ,η, 1) one has

R(ζ,E2)E3 = k[1(E2,E3)ζ − η(E3)E2] + µ[1(hE2,E3)ζ − η(E3)hE2], (20)

(∇ζQ)E2 = µ[2(n − 1) + µ]hφE2, (21)

(∇ζh)E2 = µhφE2, (22)

(∇E2 Q)ζ = (φ + φh)QE2 − 2nk(φ + φh)E2. (23)

In the sequel we will use the following results:

Theorem A. ([30]) For dimension ≥ 5, an Einstein N(k)-contact metric manifold is necessarily Sasakian.

Theorem B. ([23]) A Ricci soliton on a compact manifold is a gradient Ricci soliton.

Theorem C. ([29]) A compact Ricci soliton of constant scalar curvature is Einstein.
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Lemma 2.4. If a compact K-contact manifold admits an almost Schouten soliton, then the following integral formula

∫
M

[
(6n − 1)r

8n(2n − 1)
+ α(2n + 1)]dM = 0 (24)

holds where dM stands for M2n+1’s volume form.

Proof. Equations (1) and (2) imply

(£V1)(E1,E2) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0, (25)

which implies

1(∇E1 V,E2) + 1(E1,∇E2 V) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0. (26)

Contracting E1 and E2 in (26) entails that

div V = −[
(6n − 1)r

8n(2n − 1)
+ α(2n + 1)]. (27)

Integrating (26) and using divergence theorem, we provide

0 =
∫

M
[

(6n − 1)r
8n(2n − 1)

+ α(2n + 1)]dM, (28)

where dM stands for M2n+1’s volume form.
Thus the proof is completed.

3. Proof of the Main Results

Proof of Theorem 1.1. Setting V = ζ in (26) and using (10) gives

2
2n − 1

S(E1,E2) + [2α −
r

4n(2n − 1)
]1(E1,E2) = 0. (29)

Therefore, M2n+1 is an Einstein manifold. Contracting (29), we infer

r
4n(2n − 1)

= −2α
(2n + 1)
(6n − 1)

(30)

Putting E1 = ζ in (29), we find

4n
2n − 1

+ 2α −
r

4n(2n − 1)
= 0. (31)

Using (30) in (29) entails that

α = −
6n − 1

4(2n − 1)
. (32)

Therefore, α < 0, hence the soliton is shrinking.
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It is widely known that an Einstein compact K-contact manifold is a Sasakian manifold [8]. Hence, the
manifold becomes a Sasakian manifold.
Hence the result follows.

In particular, for n = 1 and r = 0, equation (30) implies α = 0. Therefore, from (29) we get S(E1,E2) = 0
and hence the manifold is flat, since R(E1,E2)E3 = 0 for 3-dimension. Hence we have:

Corollary 3.1. If a 3-dimensional K-contact manifold admits a Ricci soliton, then the soliton is steady and the
manifold is flat.

Proof of Theorem 1.2. From (3), we get

∇E1 D f +QE1 = (
r

4n
+ α)E1. (33)

Above equation implies

∇E2∇E1 D f + ∇E2 QE1 =
E2r
4n

E1 + (
r

4n
+ α)∇E2 E1. (34)

Interchanging E1 and E2 in (34) gives

∇E1∇E2 D f + ∇E1 QE2 =
E1r
4n

E2 + (
r

4n
+ α)∇E1 E2. (35)

From (33), we get

∇[E1,E2]D f +Q([E1,E2]) = (
r

4n
+ α)([E1,E2]). (36)

With the help of (34)-(36), we find

R(E1,E2)D f =
E1r
4n

E2 −
E2r
4n

E1 − (∇E1 Q)E2 + (∇E2 Q)E1. (37)

In a K-contact manifold, we have [21]

(∇E1 Q)ζ = QφE1 − 2nφE1 and (38)

(∇ζQ)E1 = QφE1 − φQE1. (39)

Putting E1 = ζ in (37) and using (38) and (39), we provide

R(ζ,E2)D f = −[2nφE2 − φQE2] (40)

+
(ζr)
4n

Y −
(E2r)

4n
ζ.

Consider the inner product of (40) and we know ζ is Killing in K-cm (ζr = 0), hence we get

1(R(ζ,E2)E3,D f ) − [2n1(φE2,E3) − 1(φQE2,E3)] (41)

−
(E2r)

4n
η(E3) = 0.
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Using (13) in (41) gives

1((∇E2φ)E3,D f ) − [2n1(φE2,E3) − 1(φQE2,E3)] (42)

−
(E2r)

4n
η(E3) = 0.

Replacing E2 by φE2 and E3 by φE3 in (42), we get

1((∇φE2φ)φE3,D f ) − [2n1(φE2,E3) − 1(QφE2,E3)] = 0. (43)

In view of (14), (42) and (43), we find

(ζ f )1(E2,E3) − (E2 f )η(E3) − (ζ f )η(E2)η(E3) (44)
−[2n1(φE2,E3) − 1(φQE2,E3)] − [2n1(φE2,E3) − 1(QφE2,E3)]

−
(E2r)

4n
η(E3) = 0.

Replacing E2 by φE2 and E3 by φE3 in (44), we provide

(ζ f )1(φE2, φE3) − 4n1(φE2,E3) + 1(QφE2,E3) − 1(QE2, φE3) = 0. (45)

Interchanging E1 and E2 in (45) and then substructing from (45), we get

4n1(φE2,E3) = 1(QφE2,E3) + 1(φQE2,E3), (46)

which implies

QφE2 + φQE2 = 4nφE2. (47)

Let (ui, φui, ζ), i = 1, 2, ...,n be a φ-basis of M2n+1 such that Qui = wiui. From which we deduce that
φQui = wiφui. Setting ui for E2 in (47), we get Qφui = (4n − wi)φui. Hence we have

r = 1(Qζ, ζ) +
n∑

i=1

[1(Qui,ui) + 1(Qφui, φui)] (48)

= 1(Qζ, ζ) +
n∑

i=1

[wi1(ui,ui) + (4n − wi)1(φui, φui)] (49)

= 2n(2n + 1) = constant. (50)

Contracting E1 in (37) and using (48) entails that

S(E2,D f ) = 0. (51)

In view of (13), (40) and (48), we obtain

(E2 f )ζ − (ζ f )E2 = −[2nφE2 − φQE2]. (52)

From the above equation, we infer

(E2 f )η(E4) − (ζ f )1(E2,E4) = [1(φQE2,E4) − 2n1(φE2,E4)]. (53)

Interchanging E2 and E4 in (53) and adding with (53), we get

(E2 f )η(E4) + (E4 f )η(E2) − 2(ζ f )1(E2,E4) (54)
= [1(φQE2,E4) + 1(φQE4,E2)].

Using (47) in the foregoing equation, we get

(E2 f )η(E4) + (E4 f )η(E2) − 2(ζ f )1(E2,E4) = 4n1(φE2,E4). (55)
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Contracting E2 and E4 from the above equation, we get

ζ f = 0. (56)

Puting E4 = ζ and using (56) in (55), we get

E2 f = 0, (57)

which implies f = constant. Hence equation (33) implies

S(E1,E2) = (
r

4n
+ α)1(E1,E2). (58)

Thus, the manifold is an Einstein manifold.
Hence the result follows.

It is widely circulated that an Einstein compact K-contact manifold is a Sasakian manifold [8]. As a
result, we have:

Corollary 3.2. A compact Einstein K-contact manifold obeying gradient Schouten soliton is Sasakian.

Proof of Theorem 1.3. From (1) and (2), we get

(£V1)(E1,E2) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0, (59)

which implies

1(∇E1 V,E2) + 1(E1,∇E2 V) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0. (60)

Putting V = ζ and using (7) yields

21(φhE1,E2) −
2

2n − 1
S(E1,E2) − [2α −

r
4n(2n − 1)

]1(E1,E2) = 0. (61)

Setting E1 = E2 = ζ in the above equation provides

α =
2(n − 1) + (1 − 8n)k − nµ

2(2n − 1)
, (62)

which is a constnat and the solitons are shrinking, steady and expanding for 2(n − 1) + (1 − 8n)k − nµ < 0,
2(n − 1) + (1 − 8n)k − nµ = 0 and 2(n − 1) + (1 − 8n)k − nµ > 0, respectively.
Hence completes the proof.

Contracting (61), we get

2r
2n − 1

+ (2n + 1)[2α −
r

4n(2n − 1)
]. (63)

Taking n = 1 and r = 0 in (63), we get α = 0. Hence the solioton is steady. As a result, we have:

Corollary 3.3. If a 3-dimensional (k, µ)-contact manifold admits a Ricci soliton, then the soliton is steady.
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Again, if 1 is a compact Ricci soliton, then from Theorem C, we get it is an Einstein manifold. It is well
known that a non-Sasakian Einstein (k, µ)-manifold is 3-dimensional and flat. Hence, we have:

Corollary 3.4. If a 3-dimensional compact non-Sasakian (k, µ)-contact manifold admits a Ricci soliton, then the
manifold is flat.

In particular, for µ = 0, equation (62) implies

α =
2(n − 1) + (1 − 8n)k

2(2n − 1)
. (64)

Since k < 1, for non-Sasakian (k, µ)-manifold, then (64) implies α < 0. Hence the soliton is shrinking.
Therefore we have:

Corollary 3.5. If an N(k)-contact metric manifold admits an almost Schouten soliton, then the soliton is shrinking.

Proof of Theorem 1.4. From (3), we get

∇E1 D f +QE1 = (
r

4n
+ α)E1. (65)

As similar to the proof of Theorem 2, we get from the above equation

R(E1,E2)D f =
E1r
4n

E2 −
E2r
4n

E1 − (∇E1 Q)E2 + (∇E2 Q)E1. (66)

Using (19) in (66) yields

R(E1,E2)D f = −(∇E1 Q)E2 + (∇E2 Q)E1. (67)

Putting E1 = ζ in (67) and using (21) and (23) provides

R(ζ,E2)D f = −µ[2(n − 1) + µ]hφE2 (68)
+Q(φ + φh)E2 − 2nk(φ + φh)E2.

Using (20) in (68) entails that

k[(E2 f )ζ − (ζ f )E2] + µ[1(hE2,D f )ζ − (ζ f )hE2] (69)
= −µ[2(n − 1) + µ]hφE2 +Q(φ + φh)E2 − 2nk(φ + φh)E2.

Consider the innerproduct of (69) with E3, we deduce

k[(E2 f )η(E3) − (ζ f )1(E2,E3)] (70)
+µ[1(hE2,D f )η(E3) − (ζ f )1(hE2,E3)]
= −µ[2(n − 1) + µ]1(hφE2,E3)
+1(QφE2,E3) + 1(QφhY,E3) − 2nk1(φE2,E3) − 2nk1(φhE2,E3).

Replacing E2 by φE2 and E3 by φE3 in (70), we obtain

−k(ζ f )1(φE2, φE3) − µ(ζ f )1(hφE2,E3) (71)
= µ[2(n − 1) + µ]1(E2, φE3) − 1(QE2, φE3) + 1(QhE2, φE3)
+2nk1(E2, φE3) − 2nk1(hE2, φE3).
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Interchanging E2 and E3 in (71) and substructing from (71) gives

2µ[2(n − 1) + µ]1(E2, φE3) + 4nk1(E2, φE3) (72)
−S(E2, φE3) + S(E3, φE2) + S(hE2, φE3) − S(hE3, φE2) = 0.

Using (16) in (72) yields

[2µ − 2(k − 1)][2(n − 1) + µ] − 2[2(n − 1) − nµ] + 4nk = 0. (73)

Putting E3 = ζ in (70) entails that

k[E2 f − (ζ f )η(E2)] + µ1(hE2,D f ) = 0. (74)

Replacing E2 by hE2 in (74), we infer

k1(hE2,D f ) − µ(k − 1)1(E2,D f ) + µ(k − 1)(ζ f )η(E2) = 0. (75)

In view of (74) and (73), we find

[k2 + µ2(k − 1)][E2 f − (ζ f )η(E2)] = 0. (76)

Contracting E1 in (67) and using (19) gives

S(E2,D f ) = 0. (77)

Replacing E3 by D f in (16) and comparing with (77), we get

[2(n − 1) − nµ]E2 f + [2(n − 1) + µ]1(hE2,D f ) (78)
+[2(1 − n) + n(2k + µ)](ζ f )η(E2) = 0.

Putting E2 = ζ in (78) yields

k(ζ f ) = 0, (79)

which implies either k = 0 or, k ̸= 0.

Case I: If k = 0, then (76) implies
(i) either µ = 0 which means the manifold is flat for n = 1 and n > 1 it is locally isometric to En+1

× Sn(4)
(ii) or, E2 f − (ζ f )η(E2) = 0, that is, 1rad f is pointwise collinear with ζ.

Case II: If k ̸= 0, then (79) implies ζ f = 0. Hence (76) implies

E2 f = 0 f or k2 + µ2(k − 1) ̸= 0. (80)

The above equation implies f = constant. Hence (65), we get

S(E1,E2) = (
r

4n
+ α)1(E1,E2), (81)

which is an Einstein manifold.
Hence the proof is completed.

In particular, for µ = 0 and k ̸= 0, (76) implies

E2 f − (ζ f )η(E2) = 0. (82)
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Again, from (79) we get

ζ f = 0. (83)

Above two equations together imply E2 f = 0, which means that f = constant. Hence, (65) implies

S(E1,E2) = (
r

4n
+ α)1(E1,E2), (84)

which is an Einstein manifold. Hence from Theorem A, we get it is a Sasakian manifold. Therefore we
have:

Corollary 3.6. If an N(k)-contact metric manifold admits a gradient Schouten soliton, then the manifold becomes an
Einstein and Sasakian.

Again, if we put r = 0 in (84), we get

S(E1,E2) = α1(E1,E2), (85)

which is an Einstein manifold and after contracting the above equation, we get α = 0. Hence the soliton is
steady. Therefore, from Theorem A, we have:

Corollary 3.7. If an N(k)-contact metric manifold admits a gradient Ricci soliton, then the soliton is steady and the
manifold is an Einstein and Sasakian.

From Theorem B and the above corollary, we have:

Corollary 3.8. If a compact N(k)-contact metric manifold admits a Ricci soliton, then the soliton is steady and the
manifold is an Einstein Sasakian.

Proof of Theorem 1.5. From equations (1) and (2), we get

(£V1)(E1,E2) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0, (86)

which implies

1(∇E1 V,E2) + 1(E1,∇E2 V) +
2

2n − 1
S(E1,E2) + [2α −

r
4n(2n − 1)

]1(E1,E2) = 0. (87)

Putting V = bζ in the foregoing equation gives

(E1b)η(E2) + (E2b)η(E1) + 2b1(hφE1,E2) +
2

2n − 1
S(E1,E2) (88)

+[2α −
r

4n(2n − 1)
]1(E1,E2) = 0.

Above equation implies

(E1b)ζ + (Db)η(E1) + 2bhφE1 +
2

2n − 1
QE1 (89)

+[2α −
r

4n(2n − 1)
]E1 = 0.

Contracting (88), we infer

ζb = −α(2n + 1) −
(6n − 1)r

8n(2n − 1)
. (90)
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Differentiating (89), we obtain

(E2(E1b))ζ − (φE2 + φhE2)E1b − [1(φE2,E1) + 1(φhE2,E1)]Db (91)
+η(E1)∇E2 Db + 2(E2b)φhE1 + 2b(∇E2φh)E1

+
2

2n − 1
(∇E2 Q)E1 + [2α −

r
4n(2n − 1)

]∇E2 E1

−
(E2r)

4n(2n − 1)
E1 + 2(E2α)E1 = 0.

Contracting E2 from (91) and using (9) entails that

ζ(E1b) + [1(φE1,Db) − 1(φhE1,Db)] − η(E1)△b (92)

+2b1(φE1,Db) + 2b[1(Qζ,E1) − 2nη(E1)] +
4n − 1

4n(2n − 1)
E1r + 2(E1α) = 0,

where △b = −div(Db).
Putting E1 = ζ in (92) and using (8), we find

ζ(ζb) − △b − 2b(∥h∥2) +
4n − 1

4n(2n − 1)
(ζr) + 2(ζα) = 0. (93)

From (90), we get

ζ(ζb) = −(ζα)(2n + 1) −
6n − 1

8n(2n − 1)
(ζr). (94)

The above two equations together imply

△b = −2b(∥h∥2), (95)

where we take ζr + 8n(1 − 2n)ζα = 0.
Now,

△(b2) = −

2n+1∑
i=1

1(∇eiDb2,ui) (96)

= −2(∥Db2
∥) + 2b△b.

From the above two equations we find

△(b2) = −2(∥Db2
∥) − 4(∥h∥2)b2. (97)

The divergence theorem and integration of the preceding equation over the compact M2n+1 lead us to the
conclusions that b is a nonzero constant and h = 0, that is, M2n+1 is K-contact. As V = bζ is Killing, equation
(86) implies 2

2n−1 S(E1,E2) = −[2α − r
2n(2n−1) ]1(E1,E2), which is an Einstein manifold. From [8], we know

that a compact Einstein K-contact manifold is Sasakian. Hence M2n+1 is Sasakian. Therefore, the proof is
completed.

Finally, we investigate almost Schouten solitons on H-contact manifolds. A H-contact manifold [24] is
a contact manifold with harmonic Reeb vector field.

Proof of Theorem 1.6. Let M2n+1 be H-contact, then Qζ = (tr.l)ζ [24]. Substituting E1 = E2 = ζ in (88),
we get

ζb = −
1

2n − 1
(2n − ∥h∥2) −

1
2

[2α −
r

4n(2n − 1)
]. (98)
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Putting E1 = ζ in (89) and using (98) entails that

E1b = −[
1

2n − 1
(2n − ∥h∥2) +

1
2

(2α −
r

4n(2n − 1)
)]η(E1), (99)

which implies

db = −[
1

2n − 1
(2n − ∥h∥2) +

1
2

(2α −
r

4n(2n − 1)
)]η. (100)

Applying d on (100) and using (d2 = 0) provides

d[
1

2n − 1
(2n − ∥h∥2) +

1
2

(2α −
r

4n(2n − 1)
)] ∧ η (101)

+[
1

2n − 1
(2n − ∥h∥2) +

1
2

(2α −
r

4n(2n − 1)
)]dη = 0. (102)

Taking exterior product of (101) with η, we find

[
1

2n − 1
(2n − ∥h∥2) +

1
2

(2α −
r

4n(2n − 1)
)]η ∧ dη = 0. (103)

By definition of contact manifold η ∧ dη ̸= 0, hence (103) implies

1
2n − 1

(2n − ∥h∥2) +
1
2

(2α −
r

4n(2n − 1)
) = 0. (104)

Using (104) in (99), we get E1b = 0, which implies b = constant. Since b is nonzero constant function, then
(95) implies h = 0. Hence it is K-contact. Also, since V = bζ is Killing, equation (86) reduces to Einstein
manifold. From [18], it is known that a complete Einstein K-contact manifold is compact. Hence M2n+1 is
compact Einstein and Sasakian. Therefore, the result follows.

Conclusions

A K-contact manifold is an initial idea between a contact and a Sasakian manifold. As for example,
A Sasakian structure is the normal contact metric structure on an odd-dimensional sphere. A K-contact
structure is carried by a compact regular contact manifold.

In their purest form, solitons are nothing more than waves. After colliding with another wave of the
same kind, waves physically propagate with the least amount of energy loss and maintain their speed and
shape. Solitons play a key role in the resolution of initial-value problems for wave propagation-related
nonlinear PDEs. Furthermore, it explains the Fermi-Pasta-Ulam system’s [22] recurrence.

The several researchers have studied different types of solitons in contact geometry. In this study, we
investigate the almost Schouten solitons and gradient Schouten solitons in contact geometry.

Here we show that if a compact K-contact manifold admits an almost Schouten soliton, then the soliton
is shrinking and the manifold becomes an Einstein manifold. Amongothers, if a K-contact manifold admits
a gradient Schouten soliton, then the manifold becomes an Einstein manifold. Next, we prove that if a
(k, µ)-contact manifold admits an almost Schouten soliton, then the soliton becomes Schouten soliton and
the soliton is shrinking, steady and expanding for 2(n − 1) + (1 − 8n)k − nµ < 0, 2(n − 1) + (1 − 8n)k − nµ = 0
and 2(n − 1) + (1 − 8n)k − nµ > 0, respectively. Lastly, it is prove that if a complete H-contact manifold
admits an almost Schouten soliton with nonzero potential vector field V collinear with ζ, then the manifold
is compact Einstein and Sasakian under a restriction of potential function and scalar curvature.
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