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Abstract. In this paper, we study the concept of r-ideal (a proper ideal I in a ring R is said to be an r-ideal
if ra ∈ I with Ann(r) = (0), implies that a ∈ I for each a, r ∈ R) in the ring R(L), as the point-free counterpart
of C(X) and a reduced commutative ring. We investigate the behavior of this type of ideal in the ring R(L)
for cozero complemented frames, P-frames, almost P-frames, and weakly almost P-frames. We prove the
characterization of these frames via the concept of r-ideal in the ring R(L).

We examine other groups of ideals, namely zr-ideal and sr-ideal in the ring R(L), by combining the
concept of r-ideal with z-ideal and also with the semiprime ideal. We show that the sum of the zr-ideals
in the ring R(L) has the same behavior as the z0-ideals in this ring in a simple way: The sum of every two
zr-ideals in R(L) is a zr-ideal or all of R(L) if and only if L is a quasi-F-frame. Here, this fact is also proved
for sr-ideals.

1. Introduction

The abstract lattice of open sets can contain a lot of information about a topological space. By this fact,
the point-free topology provides a good constructive foundation for topological theories, as argued by Ball
and Walters-Wayland [9]: “... what the point-free formulation adds to the classical theory is a remarkable
combination of elegance of statement, simplicity of proof, and increase of extent.” In an overview of
the historical development of this theory, it can be seen the works of [9, 10, 20, 22, 23, 29], as some of
the pioneers that made a point-free approach to C(X), the ring of real-valued continuous functions on a
completely regular Hausdorff space X.

Dube is one who played an effective role in extending the study of ringR(L). He introduced and charac-
terized some frames related to R(L) and determined their properties, especially the cozero complemented
frames and weakly almost P-frames [11–17].

Ideals play a fundamental role in studying the structure of C(X). In this paper, we consider R(L), with
a completely regular frame L and study some types of the ideals in it. One of these is r-ideal, introduced
in the context of the theory of commutative ring by Mohamadian [26] in 2015. He investigated generally
the behavior of r-ideals in commutative rings. Also, as a significant result, he considered C(X) and proved
that every ideal in C(X) is an r-ideal if and only if X is almost P-space. Moreover, he showed that in cozero
complemented spaces (m-spaces), every prime r-ideal of C(X) is a z0-ideal. Inspired by it, we determine the
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r-ideals in R(L) and their properties. We establish similar results, as in C(X), and we characterize the frame
L with respect to the behavior of r-ideal in it.

In 2021, Azarpanah, Mohamadian, and Monjezi [8] introduced another class of ideals based on the
r-ideal concept called zr-ideal and sr-ideal in a ring C(X). The class of zr-ideals can be considered between
the two classes of z0-ideals and z-ideals. They showed that the sum of zr-ideals in the ring C(X) behaves
similarly to the sum of z0-ideals in the ring C(X). They investigated the properties of zr-ideals and sr-ideals
in the ring C(X) and obtained interesting results. Also, they showed that a space is the cozero complemented
space if and only if every zr-ideal of C(X) is an sr-ideal of C(X).

The plan of this paper is as follows:
In Section 2, we present the basic concepts of frames and ring R(L), which are needed in this paper.
In Section 3, we examine r-ideals in cozero complemented frames. We express and prove equivalences

for these frames based on the concept of r-ideals. Also, we show that in cozero complemented frames,
every r-ideal is a z-ideal and every prime r-ideal is a z0-ideal of the ring R(L). We discuss the above in
Proposition 3.2 and in Corollaries 3.3 and 3.6.

In Section 4, we examine r-ideals in P-frames and almost P-frames. To learn about these frames, see
[9, 12, 13, 15, 16]. We express and prove equivalences for almost P-frames based on the concept of r-ideal.
We show that in P-frames, the set of all r-ideals coincides with the set of all z-ideals of R(L). We discuss the
above in Proposition 4.1 and in Corollary 4.3.

In the last section, we define the concept of zr-ideals and sr-ideals in the ring R(L) and examine the
characteristics of these types of ideals. We show in Theorem 5.10 that a frame L is a quasi-F-frame if and
only if the sum of both zr-ideals in R(L) is a zr-ideal or the whole ring. We also propose and prove this
statement about sr-ideals in Theorem 5.24. To learn about these frames, see [14]. Also, after examining the
relationship of r-ideals, zr-ideals, and sr-ideals with each other as well as with other known ideals in the
ring R(L), we present a regular chain of these ideals in Corollaries 5.22, 5.25, and 5.26.

2. Preliminaries

2.1. Ring
A ring R is reduced if it has no nonzero nilpotent elements. The principal ideal of a ring generated by

an element a in R is denoted by (a), and for S ⊆ R, the set
{
x ∈ R : xs = 0 for each s ∈ S

}
is the annihilator of

S, which is denoted by Ann(S).
From [26], we recall that a proper ideal I in a commutative ring R is said to be an r-ideal if ra ∈ I with

r ∈ r(R) :=
{
x ∈ R : Ann(x) = (0)

}
implies that a ∈ I for each a, r ∈ R.

Also, we recall from [27] that for any multiplicative closed set S of a ring R, the S-component of an ideal
I is defined by IS :=

{
x ∈ R : There exists s ∈ S for some xs ∈ I

}
. Since the set r(R) is a multiplicative closed

set, similarly it is defined the set Ir :=
{
a ∈ R : There exists r ∈ r(R) for some ra ∈ I

}
of I.

Clearly, if I ∩ r(R) , ∅, then Ir = R. In [8, Lemma 2.2 ], it was shown, for an ideal I of a reduced ring R
with I ∩ r(R) = ∅, that the set Ir is the smallest r-ideal containing I. Also, they showed in the same lemma
that I is an r-ideal if and only if I = Ir.

2.2. Frame L and the ring R(L)
For a general theory of frames, we refer to [22]. Also, for more information about frames and ring R(L),

refer to [29]. Here we collect a few facts that will be relevant for our discussion.
Recall that a frame (locale) is a complete lattice L in which the distributive law a∧

∨
S =
∨
{a∧ x|x ∈ S}

holds for all a×S ∈ L×P(L). We denote the top element and the bottom element of L by⊤ and⊥, respectively.
The pseudocomplement of an element a in a frame L is the element a∗ that is

a∗ =
∨
{x ∈ L | x ∧ a = ⊥}.

An element a of frame L is complemented if a ∨ a∗ = ⊤, and it is dense if a∗ = ⊥.
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A frame homomorphism is a map between frames that preserves finite meets including the top element,
and arbitrary joins including the bottom element.

Regarding the frame of reals L(R) and the f -ring R(L) of continuous real-valued functions on L, we use
the notation of [10]. A continuous real function on a frame is a homomorphism L(R) → L. The set of all
continuous real functions on a frame L is denoted by R(L).

It is known that the mapping coz : R(L) −→ L is given by

coz(α) =
∨{

α(p, 0) ∨ α(0, q) | p, q ∈ Q
}
.

A cozero element of L is an element of the form coz(α) for some α ∈ R(L). The cozero part of L is denoted
by Coz (L). For every α, β ∈ R(L), we frequently use the following properties:

(1) coz(αβ) = coz(α) ∧ coz(β),

(2) coz(α + β) ≤ coz(α) ∨ coz(β) = coz(α2 + β2),

(3) α ∈ R(L) is invertible if and only if coz(α) = ⊤,

(4) coz(α) = ⊥ if and only if α = 0.

From (1) and (4), it follows thatR(L) has no nonzero nilpotent element. Consequently, a prime ideal P ∈ R(L)
is minimal prime if and only if for every φ ∈ P, there exists ψ < P such that φψ = 0.

For any x and y in a frame L, we say that x is completely below y in L and write x ≺≺ y if there exists a
trail {xi}i∈[0,1]∩Q ⊆ L such that x0 = x, x1 = y, and for everyp, q ∈ [0, 1] ∩ Q with p < q, xp ≺ xq. A frame L is
called completely regular if for every a ∈ L, we have a =

∨
b≺≺a b. An ideal I of L is called completely regular

if for any a ∈ I, there exists b ∈ I such that a ≺≺ b. The frame βL is the frame of all completely regular ideals
of L, and βL is the Stone-C̆ech compactification of a completely regular frame L. The map

rL

(
x 7→

{
a ∈ L : a ≺≺ x

})
: L→ βL

is the right adjoint of the join map ∨(
I 7→
∨

I
)

: βL→ L.

We recall from [13, Definition 4.10] that an ideal I of R(L) is called a z-ideal if, for any α ∈ R(L) and β ∈ I,
coz(α) = coz(β) implies α ∈ I and it is called d-ideal (it is discussed in this paper under the title z0-ideal)
if, for any α ∈ R(L) and β ∈ I, coz(α) ≤

(
coz(β)

)∗∗
implies α ∈ I. Also, we can see equivalence for it in [1,

Proposition 4.1]; for example, an ideal I of R(L) is a z0-ideal if, for any (α, β) ∈ I × R(L),
(
coz(α)

)∗
=
(
coz(β)

)∗
implies β ∈ I. Also, we remember from [13] that for each I ∈ βL, the ideal MI of R(L) is defined by
MI :=

{
α ∈ R(L) : rL

(
coz(α)

)
⊆ I
}
, which is a z-ideal, and the ideal OI of R(L) is defined by

OI :=
{
α ∈ R(L) : rL

(
coz(α)

)
≺≺ I
}
, which is a z0-ideal.

2.3. Sublocale
For a locale L, a subset S ⊆ L is a sublocale if and only if

M ⊆ L⇒
∧

M ∈ S and (x ∈ L, s ∈ S)⇒ x→ s ∈ S.

The subset S is a frame in the order of L and inherits its Heyting structure. The smallest sublocale of L
is O = {⊤} and is called the void sublocale, and the largest sublocale of L is L. The open and the closed
sublocales corresponding to each a ∈ L are, respectively, the sublocales

oL(a) = {a→ x | x ∈ L} = {x | x = a→ x} and cL(a) =↑ a = {x ∈ L | x ≥ a}.

Some of their properties, which we shall freely use, are as follows:
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(1) oL(⊥) = cL(⊤) = O and oL(⊤) = cL(⊥) = L.

(2) cL(a) ⊆ oL(b) if and only if a ∨ b = ⊤ and oL(a) ⊆ cL(b) if and only if a ∧ b = ⊥.

(3) oL(a) ∩ oL(b) = oL(a ∧ b) and cL(a) ∨ cL(b) = cL(a ∧ b).

(4)
∨

i oL(ai) = oL

(∨
i ai

)
and
⋂

i cL(ai) = cL
(∨

i ai

)
.

(5) intL

(
cL(a)
)
= oL(a∗).

(6) clL

(
oL(a)

)
= cL(a∗).

3. On cozero complemented frames

In this section, we examine the r-ideals in the cozero complemented frames. We show that in these
frames, every prime r-ideal of R(L) is a z0-ideal, and every prime z0-ideal in R(L) is a minimal prime ideal
of R(L). Also, based on the r-ideal concept, we state and prove other equivalents for cozero complemented
frames.

We recall from [21] that a space X is called a cozero complemented space if, for each cozero set B of X,
there exists a cozero set D in X such that B∩D = ∅ and B∪D is dense in X. These spaces were first studied
in [21, 24], and they were also studied under the name of m-space in [6].

The cozero complemented frame was introduced and reviewed in [15]. A frame L has been defined in
[15] to be cozero complemented if for every c ∈ Coz(L), there is d ∈ Coz(L) such that c ∧ d = ⊥ and c ∨ d is
dense. In [15], it was shown that a frame L is cozero complemented if and only if for each α ∈ R(L), there is
an element β in R(L) \ Zdv

(
R(L)
)

such that αβ = α2 if and only if for every α ∈ R(L), there is β ∈ R(L) such
that coz(α)∗∗ = coz(β)∗ (see [15, Corollary 3.2]).

Throughout this paper, for every α ∈ R(L), we define

h(α) :=
{
P ∈Min

(
R(L)
)
: α ∈ P

}
Then, we use the following lemma many times in proving propositions.

Lemma 3.1. Let α ∈ R(L) be given. Then, the following statements are equivalent:

(1) Ann(α) = (0).

(2) intL

(
cL

(
coz(α)

))
= O.

(3)
(
coz(α)

)∗
= ⊥.

(4) h(α) = ∅.

Proof. (1) ⇒ (2). We argue by contradiction. Let us assume that intL

(
cL

(
coz(α)

))
, O. Then, there exists

an element b , ⊤ in intL

(
cL

(
coz(α)

))
= oL

(
coz(α)∗

)
. Hence, by [18, Proposition 3.4], there exists an element

0 , δ in R∗(L) such that

cL

((
coz(α)

)∗)
⊆ intL

(
cL

(
coz(δ)

))
⊆ cL

(
coz(δ)

)
.

Therefore, we have

L = cL
(
coz(α)∗

)
∨ oL

(
coz(α)∗

)
⊆ cL

(
coz(δ)

)
∨ intL

(
cL

(
coz(α)

))
⊆ cL

(
coz(δ)

)
∨ cL

(
coz(α)

)
= cL
(
coz(δ) ∧ coz(α)

)
= cL
(
coz(δα)

)
,
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which implies that δα = 0, and this is a contradiction.

(2)⇒ (3). It is evident.

(3) ⇒ (4). We suppose, by way of contradiction, that h(α) , ∅. Then there exists an element P in
Min
(
R(L)
)

such that α ∈ P, which implies from [19, Corollary 1.2] that there is an element β in R(L) \ P such
that αβ = 0, and we obtain

coz(β) ≤
(
coz(β)

)∗∗
=
(
coz(α)

)∗∗
∧

(
coz(β)

)∗∗
=
(
coz(α) ∧ coz(β)

)∗∗
= ⊥,

and this is a contradiction.

(4) ⇒ (1). Let us assume that Ann(α) , (0). We are seeking a contradiction. Then there exists an
element 0 , β in R(L) such that αβ = 0, which implies from h(α) = ∅ that β ∈

⋂
Min
(
R(L)
)
= (0), which is a

contradiction.

In the following proposition, we examine the relationship between r-ideals and z-ideals in cozero
complemented frames, and we give equivalent definitions for these frames.

Proposition 3.2. The following statements are equivalent for a completely regular frame L:

(1) Every r-ideal of R(L) is a z-ideal.

(2) Every prime r-ideal of R(L) is a z-ideal.

(3) For every α ∈ R(L), there exists an element β in R(L) such that

cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= L and intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O.

(4) For every α ∈ R(L), there exists an element β in R(L) such that

clL

(
intL

(
cL(coz(α))

))
= clL

(
oL(coz(β))

)
.

(5) The frame L is a cozero complemented frame.

(6) For every α ∈ R(L), there exists an element β in R(L) such that

clL

(
oL

(
coz(α)

)
∨ oL

(
coz(β)

))
= L and oL

(
coz(α)

)
∧ oL

(
coz(β)

)
= O.

(7) For each α ∈ R(L), (α)r = (α2)r.

Proof. (1)⇒ (2). It is evident.
(2)⇒ (3). If α ∈ r

(
R(L)
)
, then it is enough to consider β = 0. Thus, let α ∈ R(L) \ r

(
R(L)
)

be given. Then,
by [26, Theorem 2.20], if P ∈ Min((α)r), then it is an r-ideal of R(L), which implies from our hypothesis
that it is a z-ideal of R(L). Hence, by [28, Corollary 7.2.2], (α)r is a z-ideal, which implies that α

1
3 ∈ (α)r. In

consequence, there exists an element γ in r
(
R(L)
)

such that γα
1
3 ∈ (α), and we deduce that there exists an

element δ in R(L) such that γα
1
3 = αδ. We set β := γ − α

2
3 δ. Now it is trivial that

cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= cL
(
coz(αβ)

)
= cL(0) = L.

Let a ∈ cL
(
coz(α)

)
∧ cL

(
coz(γ)

)
be given. Then

coz(β) = coz(γ − α
2
3 δ) ≤

(
coz(γ) ∨ coz(α)

)
∧

(
coz(γ) ∨ coz(δ)

)
≤

(
coz(γ) ∨ coz(α)

)
≤ a,



Z. N. Khoshmardan et al. / Filomat 38:33 (2024), 11711–11729 11716

which implies that a ∈ cL
(
coz(α)

)
∧ cL

(
coz(β)

)
. Now, suppose that a ∈ cL

(
coz(α)

)
∧ cL

(
coz(β)

)
. Then

coz(γ) = coz(β + α
2
3 δ) ≤

(
coz(β) ∨ coz(α)

)
∧

(
coz(β) ∨ coz(δ)

)
≤

(
coz(β) ∨ coz(α)

)
≤ a,

which implies that a ∈ cL
(
coz(α)

)
∧ cL

(
coz(γ)

)
. Therefore,

intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= intL

(
cL

(
coz(α)

)
∧ cL

(
coz(γ)

))
≤ intLcL

(
coz(γ)

)
= O.

(3)⇒ (4). Let α ∈ R(L) be given. Then, by our hypothesis, there exists an element β in R(L) such that
cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= L and intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O, which implies that coz(α) ∧ coz(β) = ⊥

and
(
coz(α)

)∗
∧

(
coz(β)

)∗
= ⊥. We deduce that

(
coz(α)

)∗∗
=
(
coz(β)

)∗
. Therefore, clL

(
intL

(
cL

(
coz(α)

)))
=

clL

(
oL

(
coz(β)

))
.

(4)⇒ (5). Let α ∈ R(L) be given. Then, by our hypothesis, there exists an element β in R(L) such that
clL

(
intL

(
cL

(
coz(α)

)))
= clL

(
oL

(
coz(β)

))
, which implies that

(
coz(α)

)∗∗
=
(
coz(β)

)∗
. Therefore, L is a cozero

complemented frame.
(5)⇒ (6). Let α ∈ R(L) be given. Then, by our hypothesis, there exists an element β in R(L) such that

coz(α) ∧ coz(β) = ⊥ and coz(α) ∨ coz(β) is a dense element of L, which implies that

clL

(
oL

(
coz(α)

)
∨ oL

(
coz(β)

))
= cL
((

coz(α) ∨ coz(β)
)∗)
= L

and

oL

(
coz(α)

)
∧ oL

(
coz(β)

)
= oL

(
coz(α) ∧ coz(β)

)
= O.

(6)⇒ (5) and (6)⇒ (7). Let α ∈ R(L) be given. Then, by our hypothesis, there exists an element β in R(L)
such that

cL

((
coz(α) ∨ coz(β)

)∗)
= clL

(
oL

(
coz(α)

)
∨ oL

(
coz(β)

))
= L

and

oL

(
coz(α) ∧ coz(β)

)
= oL

(
coz(α)

)
∧ oL

(
coz(β)

)
= O,

which implies that coz(α) ∧ coz(β) = ⊥ and coz(α) ∨ coz(β) is a dense element of L. Therefore, L is a cozero
complemented frame. Thus, by [15, Proposition 1.1], there is a nonzero-divisor γ in R(L) such that αγ = α2.
It is evident that (α2)r ⊆ (α)r. Now, suppose that µ ∈ (α)r. Then there exists an element τ in r(R(L)) such
that µτ ∈ (α), which implies that there exists an element δ in R(L) such that µτ = δα. We conclude that
µτγ = δαγ = δα2

∈ (α2), and so µ ∈ (α2)r. Therefore, (α2)r = (α)r.
(7) ⇒ (5) and (7) ⇒ (1). Let α ∈ R(L) be given. Then, by our hypothesis, there exists an element β in

r
(
R(L)
)

such that α2 = βα. Therefore, L is a cozero complemented frame.
Now, suppose that I is an r-ideal of R(L). Let α, γ ∈ I × R(L) with coz(α) = coz(γ) be given. Then,

there exists an element β in R(L) such that coz(α) ∧ coz(β) = ⊥ and coz(α) ∨ coz(β) is a dense element of L,
which implies from Lemma 3.1 that αβ = 0 and δ := α2 + β2

∈ r
(
R(L)
)
. We deduce that γβ = 0, and so from

γδ = γα2
∈ I, we conclude that γ ∈ I. Therefore, I is a z-ideal of R(L).

In the following corollary, according to Proposition 3.2, for an arbitrary ideal I in R(L), where L is a
cozero complemented frame, we express the relationship between the smallest r-ideal containing I and the
smallest z-ideal containing I.

Corollary 3.3. The following statements are equivalent for a completely regular frame L:
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(1) A frame L is a cozero complemented frame.

(2) Every r-ideal of R(L) is semiprime.

(3) For each ideal I of R(L), Iz ⊆ Ir.

Proof. (1)⇒ (2). Let I be an r-ideal of R(L). Then, by Proposition 3.2, I is a z-ideal of R(L), which implies
that it is a semiprime ideal of R(L).

(2)⇒ (1). By our hypothesis, (α2)r is semiprime for eachα ∈ R(L), which implies thatα ∈ (α2)r. Therefore,
for each α ∈ R(L), (α)r = (α2)r and by using Proposition 3.2, L is a cozero complemented frame.

(2) ⇒ (3). Let I be an ideal of R(L). Then, by Proposition 3.2, every prime r-ideal of R(L) is a z-ideal,
which implies that Iz ⊆ Ir.

(3)⇒ (2). If I is an r-ideal of R(L), then, by our hypothesis, Iz ⊆ Ir = I, which implies that I = Iz, that is, I
is a z-ideal. We deduce that I is a semiprime ideal of R(L).

To state the next proposition, we first prove the following lemma and show that a frame L is a cozero
completed frame if and only if every prime z0-ideal in R(L) is a minimal prime ideal.

Lemma 3.4. The following statements are true, for every α, β ∈ R(L):

(1) h(α) ∩ h(β) = ∅ if and only if h(β) ⊆ h
(
Ann(α)

)
.

(2) h
(
Ann(α)

)
⊆ h(β) if and only if cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= L.

(3) h(β) ⊆ h
(
Ann(α)

)
if and only if intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O.

Proof. (1). Necessity. Let P ∈ h(β) be given. Then, by our hypothesis, α < P. Hence, we have

δ ∈ Ann(α)⇒ δα = 0 ∈ P⇒ δ ∈ P.

Therefore, h(β) ⊆ h
(
Ann(α)

)
.

Sufficiency. We proceed by contradiction. Assume that h(α) ∩ h(β) , ∅. Then there exists an element
P in h(α) ∩ h(β), which implies from our hypothesis that P ∈ h

(
Ann(α)

)
. By [19, Theorem 2.3 ], h(α) and

h
(
Ann(α)

)
are disjoint open and closed sets, but this is a contradiction to the fact that P ∈ h(α) ∩ h

(
Ann(α)

)
.

(2). Necessity. Since Ann(α) is a z-ideal of R(L), we infer from our hypothesis that

β ∈
⋂

h(β) ⊆
⋂

h
(
Ann(α)

)
= Ann(α)

which implies that

cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= cL
(
coz(αβ)

)
= cL(0) = L.

Sufficiency. Let P ∈ h
(
Ann(α)

)
be given. Then, by [19, Theorem 2.3], P ∈Min

(
R(L)
)
\ h(α), which implies

that α < P. Since, by our hypothesis, αβ = 0 ∈ P, we conclude that P ∈ h(β). Thus, h
(
Ann(α)

)
⊆ h(β).

(3). We always have h(β) ⊆ h
(
Ann(α)

)
if and only if h(α) ∩ h(β) = ∅ if and only if h(α2 + β2) = ∅ if and

only if, by Lemma 3.1,

intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= intLcL

(
coz(α2 + β2)

)
= O.
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We recall from [5] that for every a in a ring R, Pa =
⋂

h(a). Also, an ideal I in a commutative ring R is
said to be a z0-ideal if I consists of zero-divisors and for each a ∈ I, the intersection of all minimal prime
ideals containing a is contained in I (for any a ∈ I implies that Pa ⊆ I). In a ring R(L), by [4, Proposition 1.5],
we have

Pα =
{
β ∈ R(L) : Ann(α) ⊆ Ann(β)

}
,

and by [13, Lemma 4.1], we have

Pα =
{
β ∈ R(L) :

(
coz(α)

)∗
≤

(
coz(β)

)∗}
for every α ∈ R(L). Also, we recall from [1] that Pα ∩ Pβ = Pαβ and Pα + Pβ ⊆ Pα2+β2 for every α, β ∈ R(L).

Proposition 3.5. The following statements are equivalent for a completely regular frame L:

(1) The frame L is a cozero complemented frame.

(2) Every prime z0-ideal in R(L) is a minimal prime ideal.

(3) For every α ∈ R(L), there exists an element β in R(L) such that

cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= L and intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O.

Proof. (1)⇒ (2). Let a prime z0-ideal P be given. Suppose that prime ideal Q in R(L) such that Q ⊆ P with
Q , P. Then, there exists an element α ∈ P \ Q, which implies by our hypothesis that there is an element
β in R(L) such that cL

(
coz(αβ)

)
= cL
(
coz(α)

)
∨ cL

(
coz(β)

)
= L and intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

)
= O. Since

0 = αβ ∈ Q ⊆ P, we deduce that β ∈ Q ⊆ P. Hence α2 + β2
∈ P. On the other hand, we have

intL

(
cL

(
coz(α2 + β2)

))
= intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O = intL

(
cL(1)
)
.

Since P is a z0-ideal, it follows that 1 ∈ P, and this is a contradiction. Therefore, P is a minimal prime ideal.
(2)⇒ (3). Let α ∈ R(L) be given. Then, by [6, Proposition 1.5], there exists an element β in R(L) such that

Ann(α) = Pβ. It is evident that h(β) = h(Pβ) = h
(
Ann(α)

)
, which implies from Lemma 3.4 that

cL

(
coz(α)

)
∨ cL

(
coz(β)

)
= L and intL

(
cL

(
coz(α)

)
∧ cL

(
coz(β)

))
= O.

(3)⇒ (1). By Proposition 3.2, it is evident.

In the last result of this section, we derive another equivalent for cozero complemented frames based
on the notion of r-ideal, which shows that there exists a prime r-ideal that is not z0-ideal.

Corollary 3.6. A frame L is a cozero complemented frame if and only if every prime r-ideal of R(L) is a z0-ideal.

Proof. Necessity. Let I be a prime r-ideal of R(L) with
(
coz(α)

)∗
=
(
coz(β)

)∗
for (α, β) ∈ I × R(L). According to

our assumption and Proposition 3.2, there exists δ ∈ R(L) such that

cL

(
coz(β)

)
∨ cL

(
coz(δ)

)
= L and intL

(
cL

(
coz(β)

))
∧ intL

(
cL

(
coz(δ)

))
= O.

Thus, βδ = 0 and (β2 + δ2) ∈ r
(
R(L)
)
. Since intL

(
cL

(
coz(β)

))
= intL

(
cL

(
coz(α)

))
, it is obtained that (α2 + δ2) ∈

r
(
R(L)
)
. Since I is a prime ideal of R(L) and βδ ∈ I, it is obtained that β ∈ I or δ ∈ I. If δ ∈ I, then (α2 + δ2) ∈ I,

which contradicts with I being an r-ideal. Therefore, β ∈ I.

Sufficiency. It is clear by Proposition 3.2.
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Remark 3.7. The converse of parts (1) and (6) of [8, Lemma 2.2] is not necessarily true. For this, since
coz(α)∨

(
coz(α)

)∗
= ⊤ for every α ∈ R(L) if and only if cL

(
coz(α)

)
⊆ oL

((
coz(α)

)∗)
= intL

(
cL

(
coz(α)

))
, therefore

cL

(
coz(α)

)
is open for every α ∈ R(L) if and only if L is a P-frame (see [9, Defnition 8.4.6]).

Now suppose that L is a cozero complemented frame and it is not a P-frame. Therefore, there exists
a nonzero element α ∈ R(L) ∖ r

(
R(L)
)

such that cL
(
coz(α)

)
is not open. Since L is a cozero complemented

frame by Proposition 3.2,
(
coz(α)

)
r

is a z-ideal. Indeed
(
coz(α)

)
is not a semiprime ideal because cL

(
coz(α)

)
is not open.

4. Some of the connections between almost P-frames and r-ideals

We recall from [9, Defnition 8.4.6] that a frame L is called a P-frame if a ∨ a∗ = ⊤ for every a ∈ Coz(L).
A frame L is said to be an almost P-frame if a = a∗∗ for all a ∈ Coz(L). Almost P-frames first appeared in
[9] and were also studied in [13, 20]. Dube [13] showed that a frame L is an almost P-frame if and only
if R(L) = Zdv(R(L)) ∪ Inv

(
R(L)
)
, where Zdv

(
R(L)
)

denotes the set of all zero-divisor elements of R(L) and

Inv
(
R(L)
)

denotes the set of all invertible elements of R(L).
It has already been shown that frame L is an almost P-frame if and only if every z-ideal is a z0-ideal

(see [13, Proposition 4.13]). In the following proposition, we state another proof based on the concept of
r-ideals. We also express and prove other equivalents for these frames in the following proposition.

Proposition 4.1. The following statements are equivalent for a completely regular frame L:

(1) A frame L is an almost P-frame.

(2) Every proper ideal in R(L) is an r-ideal.

(3) Every z-ideal in R(L) is a z0-ideal.

(4) Every z-ideal in R(L) is an r-ideal.

(5) For each ideal I of R(L), Ir ⊆ Iz.

(6) Every prime z-ideal of R(L) is an r-ideal.

(7) Every maximal ideal of R(L) is an r-ideal.

Proof. (1)⇒ (2). Let I be an ideal in R(L) and let (α, τ) ∈ R(L) × r(R(L)) with ατ ∈ I be given. Then, by our
hypothesis, τ is an invertible element in R(L), which implies that α ∈ I. Therefore, I is an r-ideal.

(2)⇒ (3). First, we show that for every α ∈ R(L), if
(
coz(α)

)∗
= ⊥, then coz(α) = ⊤. Then we show that

for every α ∈ R(L),
(
coz(α)

)∗∗
= coz(α). Let α ∈ R(L) with

(
coz(α)

)∗
= ⊥ be given. Then

intL

(
cL

(
coz(α)

))
= oL

((
coz(α)

)∗)
= oL(⊥) = O,

which implies that α ∈ r
(
R(L)
)
. If coz(α) , ⊤, then (α) is a proper ideal, which implies from our hypothesis

that (α) is an r-ideal in R(L). Since (α) ∩ r
(
R(L)
)
, ∅, we conclude that (α) = (α)r = R(L), which is a

contradiction. Therefore, coz(α) = ⊤.
Let α ∈ R(L) be given. Then, we have

x ≺≺
(
coz(α)

)∗∗
⇒ There exists β ∈ R(L)

(
coz(β) ∧ x = ⊥ and coz(β) ∨

(
coz(α)

)∗∗
= ⊤
)

⇒ There exists β ∈ R(L)
(
coz(β) ∧ x = ⊥ and(

coz(β) ∨ coz(α)
)∗
=
(
coz(β) ∨

(
coz(α)

)∗∗)∗
= ⊥
)

⇒ There exists β ∈ R(L)
(
coz(β) ∧ x = ⊥ and coz(β) ∨ coz(α) = ⊤

)
⇒ x ≺ coz(α).
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Hence,
(
coz(α)

)∗∗
=
∨

x≺≺
(

coz(α)
)∗∗ x ≤

∨
x≺coz(α) x = coz(α) ≤

(
coz(α)

)∗∗
, which implies that coz(α) =

(
coz(α)

)∗∗
.

Let I be a z-ideal and let (α, β) ∈ I×R(L) with
(
coz(α)

)∗
=
(
coz(β)

)∗
be given. Then coz(α) = coz(β), which

implies that β ∈ I. Hence, I is a z0-ideal.
(3)⇒ (4). It is evident.
(4)⇒ (5). Using our hypothesis, Iz is an r-ideal containing I, and so Ir ⊆ Iz.
(5)⇒ (6). If P is a prime z-ideal, then Pr ⊆ Pz = P, which implies that P is an r-ideal.
(6)⇒ (7). It is evident.
(7)⇒ (1). Suppose that L is not an almost P-frame. Then, there is an element α in r(R(L)) \ Inv

(
R(L)
)
,

which implies that there is a maximal ideal M of R(L) such that (α) ⊆ M. Now, by our hypothesis, M is
an r-ideal. This is a contradiction, since α ∈ M is a nonzero-divisor element. Therefore, L is an almost
P-frame.

Example 4.2. Suppose that L is not an almost P-frame. Then, there exists an element α in r
(
R(L)
)

such that
it is a noninvertible element in R(L). Consequently, there is a maximal ideal M in R(L) such that (α) ⊆ M.
So, M is a prime z-ideal, which is not an r-ideal.

According to Proposition 3.2, if a frame L is not a cozero complemented frame, then there is a prime
r-ideal such that is not a z-ideal, or if the frame L is not a P-frame but is an almost P-frame, then by [3,
Theorem 4.1], there is a prime ideal Q such that it is not a z-ideal. On the other hand, by Proposition 4.1, Q
is an r-ideal. Then Q is a prime r-ideal such that it is not a z-ideal. Also, according to Proposition 4.1, if a
frame L is not an almost P-frame, then there is a prime z-ideal such that it is not an r-ideal.

For an arbitrary ideal I in the ring R(L), we see the relation between Ir and Iz in Corollary 3.3 and
Proposition 4.1. In the next corollary, we show that, in P-frames, every r-ideal is a z-ideal and vice versa,
that is, Ir = Iz.

Corollary 4.3. The following statements are equivalent for a completely regular frame L:

(1) The frame L is a P-frame.

(2) The frame L is a cozero complemented frame and almost P-frame.

(3) For every ideal I of R(L), it is a z-ideal of R(L) if and only if it is an r-ideal of R(L).

(4) For each ideal I of R(L), Iz = Ir.

Proof. (1) ⇒ (2). From [12, Proposition 3.9] and Proposition 3.2, L is a cozero complemented frame. Also,
from [13, Proposition 3.3 ], L is an almost P-frame.

(2)⇒ (3). Let I be an ideal of R(L). Then, by Proposition 4.1, I is an r-ideal of R(L), which implies form
Proposition 3.2 that I is a z-ideal of R(L). Hence, for every ideal I of R(L), it is an r-ideal of R(L) and also, it
is a z-ideal of R(L).

(3)⇒ (4). It is evident.

(4) ⇒ (2) and (4) ⇒ (1). By Propositions 3.3 and 4.1, L is a cozero complemented frame and an almost
P-frame. Let I be a proper ideal of R(L). Then, by Proposition 4.1, I is an r-ideal of R(L), which implies form
Proposition 3.2 that I is a z-ideal of R(L). Therefore, by [12, Proposition 3.9], L is a P-frame.

It was shown in [26] that the intersection of any family of r-ideals is an r-ideal, but their product and sum
are not necessarily an r-ideal. In the following lemma and proposition, we will investigate what happens
if the product or sum of a prime ideal in another ideal becomes an r-ideal. For frames that are almost
P-frames, we give another equivalent.

Lemma 4.4. Let R be a reduce commutative ring and let (I,P) ∈ Id(R) × Spec(R). Then, the following statements
are true:
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(1) If IP is an r-ideal, then I or P is an r-ideal.

(2) If IP is an r-ideal and I ⊈ P, then P is an r-ideal.

(3) If I ∩ P is an r-ideal, then I or P is an r-ideal.

(4) Let I and P be prime ideals that are not in a chain. If I ∩ P is an r-ideal, then I and P are r-ideals.

Proof. (1). It is evident that if P ∩ r(R) = ∅, then P is an r-ideal. Now, suppose that r ∈ P ∩ r(R). Then for
every i ∈ I, ir ∈ IP, which implies that i ∈ IP, and we get that IP = I is an r-ideal.

(2). Let (a, b) ∈ r(R) × R with ab ∈ P be given. By our hypothesis, there exists an element i in I \ P, such
that iab ∈ IP, which implies that ib ∈ IP ⊆ P. We obtain b ∈ P. Therefore, P is an r-ideal.

(3). If I ⊆ P, that is I ∩ P = I, then, by our hypothesis, I is an r-ideal. Now, suppose that I ⊈ P. Then,
there exists an element i in I \ P. Let (a, b) ∈ r(R) × R with ab ∈ P be given. Then, iab ∈ I ∩ P, which implies
that ib ∈ I ∩ P ⊆ P, and we obtain b ∈ P. Therefore, P is an r-ideal.

(4). The proof is similar to the proof of part (3).

Proposition 4.5. The following statements are equivalent for a completely regular frame L:

(1) The frame L is an almost P-frame.

(2) For every (I,P) ∈ Id
(
R(L)
)
× Spec

(
R(L)
)
, if I ∩ P is an r-ideal in R(L), then I and P are r-ideals.

(3) For every (I,P) ∈ Id
(
R(L)
)
× Spec

(
R(L)
)
, if IP is an r-ideal in R(L), then I and P are r-ideals.

Proof. By proposition 4.1, (1)⇒ (2) and (1)⇒ (3) are evident.
(2)⇒ (1). Suppose that L is not an almost P-frame. Then, there is an element α in r(R(L)) \ Inv

(
R(L)
)
,

which implies that there is a maximal ideal M of R(L) such that (α) ⊆M and Mr = R(L). Let Q be a minimal
prime ideal of R(L) such that Q ⊆ M. Then, by [26, Remark 2.3], Q ∩M = Q is an r-ideal, which implies
from our hypothesis that M is an r-ideal, and this is a contradiction.

(3)⇒ (1). Suppose that L is not an almost P-frame. Then, there exists an element α in r
(
R(L)
)
\ Inv

(
R(L)
)
,

which implies that there exists an element I inΣβL such that (α) ⊆MI. It is evident that OI = OI
∩MI = OIMI

is a z0-ideal in R(L), which implies from [26, Theorem 2.19] that OIMI is an r-ideal in R(L). Then, by our
hypothesis, MI is an r-ideal in R(L), and this is a contradiction to the fact that α ∈ MI

∩ r
(
R(L)
)
. Therefore,

L is an almost P-frame.

A weakly almost P-space is a topological space X such that for every two zerosets Z and F with
int Z ⊆ int F, there exists a zeroset E in X with empty interior such that Z ⊆ F ∪ E. This space was studied
for the first time in [6]. Every almost P-space is a weakly almost P-space. More generally, any space in
which every closed set (boundary of any zeroset) is contained in a zeroset with empty interior (for example,
a metric space), is a weakly almost P-space. In 2015, the concept of weak almost P-frame and some of its
features were studied and investigated [16]. It was shown that if βL is a weak almost P-frame, so is L (see
[16, Corollary 2.10]), and conversely, if L is a continuous Lindeläof frame, so is βL (see [16, Proposition
2.12]). We recall from [16, Definition 2.1] that a completely regular frame L is a weak almost P-frame if a
and b are cozero elements of L with a∗ ≤ b∗, then there is a dense cozero element c such that b∧ c ≤ a. Every
almost P-frame and every cozero complemented frame is a weakly almost P-frame (see [16, Examples 2.2
and 2.3]).

In the following proposition, we express and prove a definition equivalent to weakly almost P-frames
based on closed sublocales.

Proposition 4.6. A frame L is a weakly almost P-frame if and only if for every α, β ∈ R(L) with intL

(
cL

(
coz(α)

))
⊆

intL

(
cL

(
coz(β)

))
, there exists an element γ in r

(
R(L)
)

such that cL
(
coz(α)

)
⊆ cL

(
coz(β)

)
∨ cL

(
coz(γ)

)
.
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Proof. Necessity. Suppose L is a weakly almost P-frame. Letα, β ∈ R(L) with intL

(
cL

(
coz(α)

))
⊆ intL

(
cL

(
coz(β)

))
be given. Then

(
coz(α)

)∗
≤

(
coz(β)

)∗
, which implies from our hypothesis that there exists an element γ in

R(L) with
(
coz(γ)

)∗
= ⊥ such that coz(γ) ∧ coz(β) ≤ coz(α). We deduce that γ ∈ r

(
R(L)
)

and

cL

(
coz(α)

)
⊆ cL

(
coz(β)

)
∨ cL

(
coz(γ)

)
.

Sufficiency. Let α, β ∈ R(L) with
(
coz(α)

)∗
≤

(
coz(β)

)∗
be given. Then,

intL

(
cL

(
coz(α)

))
= oL

((
coz(α)

)∗)
⊆ oL

((
coz(β)

)∗)
= intL

(
cL

(
coz(β)

))
,

which implies from our hypothesis that there exists an elementγ in r
(
R(L)
)

such that cL
(
coz(α)

)
⊆ cL

(
coz(β)

)
∨

cL

(
coz(γ)

)
. We deduce that

(
coz(γ)

)∗
= ⊥ and coz(γ) ∧ coz(β) ≤ coz(α). Therefore, L is a weakly almost

P-frame.

Below we give an example of the connection between the r-ideal and the classical ideals of the ring R(L)
in weakly almost P-frames.

Example 4.7. By [16, Proposition 3.1], if L is not a weakly almost P-frame, then there exists a prime z-ideal
P in R(L) with P ∩ r

(
R(L)
)
= ∅, which is not a z0-ideal. On the other hand, by [26, Remark 2.3(f)], P is an

r-ideal. So if L is not a weakly almost P-frame, there exists an r-ideal that is a z-ideal but not a z0-ideal.

Examples 4.8. By the definition of an r-ideal, every element of a proper r-ideal is a zero-divisor element.
Below are some examples that show that the above statement is not always true in the ring R(L).

• For each (a, r) ∈ Zdv(R),×r(R) in any reduced ring R, we have (a)r = (ra)r (see [8, Remark 2.4]). Now,
we assume that (α, β) ∈ r

(
R(L)
)
×Zdv

(
R(L)
)

such that coz(α) ≰ coz(β). Therefore, every element of (αβ)
is a zero-divisor element, but (αβ) is not an r-ideal. Since if (αβ) is an r-ideal, then (α)r = (αβ)r = (αβ)
implies (α) ⊆ (αβ), which is a contradiction.

• Suppose α < r
(
R(L)
)

and β ∈ r
(
R(L)
)

such that
(
coz(α)∨ coz(β)

)
= ⊤. Therefore, every element I = (αβ)

is a zero-divisor element, but I is not an r-ideal. For this, suppose I is an r-ideal. Then Ir = I implies
that αβ ∈ I. Since β ∈ r

(
R(L)
)

implies that α ∈ I. Therefore, there is δ ∈ R(L) such that α = αβδ, which
implies coz(α) ≤ coz(β). So it is followed

cL

(
coz(β)

)
= cL
(
coz(α)

)
∧ cL

(
coz(β)

)
= cL
(
coz(α) ∨ coz(β)

)
= cL(⊤) = O.

Therefore, (coz(β) = ⊤, which is a contradiction.

• Suppose that (α, β) ∈ r
(
R(L)
)
×R(L) are noninvertible such that cL

(
coz(β)

)
⊆ oL

(
coz(α)

)
and
(
coz(β)

)∗∗
=

coz(β). We consider J :=
{
γ ∈ R(L) : coz(γ) ≤ coz(αβ)

}
. Therefore, J is a z-ideal of R(L) consisting

entirely of zero-divisors which it is not r-ideal. It is clear that J is a z-ideal and αβ ∈ J. Now suppose
by contradiction that γ ∈ J ∩ r

(
R(L)
)
. So, by Proposition 3.1, we have

⊥ =
(
coz(γ)

)∗
≥

(
coz(αβ)

)∗
≥

(
coz(α) ∧ coz(β)

)∗
≥

(
coz(α)

)∗
∨

(
coz(β)

)∗
,

which implies that coz(β) =
(
coz(β)

)∗∗
= ⊤, which contradicts our assumption. Now suppose by

contradiction that J is an r-ideal. Since α ∈ r
(
R(L)
)

implies that β ∈ J, therefore, coz(β) ≤ coz(αβ) ≤
coz(α). On the other hand, according to the assumption, we have coz(α) ∨ coz(β) = ⊤, which is
obtained coz(β) = ⊤, a contradiction.
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5. The concept of zr-ideal and sr-ideal in the ring R(L)

The concept of zr-ideal and sr-ideals in the ring C(X) was studied for the first time in [8]. They investigated
the properties of these ideals in the ring C(X) and stated some of their properties in any reduced ring.

In this section, we determine the concept of zr-ideals and sr-ideals in the ring R(L) according to the
concept of r-ideals and examine their characteristics and relationships with each other. We also indicate the
frames L for which zr-ideals coincide with some other types of ideals.

Definition 5.1. An ideal I of R(L) is said to be a zr-ideal if it is an r-ideal which is also a z-ideal.

Remark 5.2. Let L be a completely regular frame. Then we have:

(1) By [26, Theorem 2.19(a)], every z0-ideal in a ring R is an r-ideal which implies that every z0-ideal of
R(L) is a zr-ideal of R(L). Also, by [26, Remark 2.3(f)], every minimal prime ideal is an r-ideal in R(L).
Hence, every minimal prime ideal in R(L) is a zr-ideal of R(L).

(2) It is well known that the intersection of any family of z-ideals is a z-ideal. Also, by [26, Remark 2.3]
the intersection of any family of r-ideals is an r-ideal. Hence, the intersection of any family of zr-ideals
of R(L) is a zr-ideal of R(L).

(3) It is well known that if I and J are z-ideals of R(L), then IJ = I ∩ J. Hence, the product of two zr-ideals
in R(L) is a zr-ideal.

By Remark 5.2, the smallest zr-ideal containing a given ideal I exists and we denote it by Izr . In fact Izr is the
intersection of all zr-ideals containing I.

Proposition 5.3. For each ideal I of R(L), the following statements are true.

(1) Izr =
(
(Ir)z

)
r
= (Iz)r =

(
(Iz)r

)
z
.

(2) Izr =
{
α ∈ R(L) : coz(τα) ≤ coz(β) for some (β, τ) ∈ I × r

(
R(L)
}
.

Proof. (1). Let I be a proper ideal of R(L). If I ∩ r
(
R(L) , ∅, then Izr =

(
(Ir)z

)
r
= (Iz)r = R(L). Now, we can

choose I ∩ r
(
R(L) = ∅. Let (α, β) ∈ (Iz)r × R(L) with coz(α) = coz(β) be given. Then there exists an element τ

in r
(
R(L)
)

such that τα ∈ Iz, and from coz(τα) = coz(τβ), we conclude that τβ ∈ Iz ⊆ (Iz)r, which implies that
β ∈ (Iz)r. Thus (Iz)r is a zr-ideal. Now suppose J is a zr-ideal contains I. Take α ∈ (Iz)r, then τα ∈ Iz for some
τ ∈ r

(
R(L)
)
. But Iz ⊆ J, so τα ∈ J. Since J is an r-ideal, then α ∈ J. Therefore, (Iz)r = Izr .

Since I ⊆ Ir, we infer that (Iz)r ⊆
(
(Ir)z

)
r
. On the other hand, if α ∈ (Ir)z, then there exists an element β in Ir

such that coz(α) = coz(β), which implies that for some γ ∈ r
(
R(L), γβ ∈ I ⊆ Iz and coz(γβ) = coz(γα), and we

deduce that α ∈ (Iz)r. Thus we have (Ir)z ⊆ (Iz)r, which implies that
(
(Ir)z

)
r
⊆ (Iz)r. Therefore,

(
(Ir)z

)
r
= (Iz)r.

The rest is trivial.
(2). We set

T :=
{
α ∈ R(L) : coz(τα) ≤ coz(β) for some (β, τ) ∈ I × r

(
R(L)
}
.

If α ∈ (Iz)r, then there exists an element τ in r
(
R(L)
)

such that τα ∈ Iz, which implies that there exists an
element β in I such that coz(τα) = coz(β), and we deduce that α ∈ T. Hence, (Iz)r ⊆ T. On the other hand, if
α ∈ T, then there exists an element (β, τ) in I× r

(
R(L)
)

such that coz(τα) ≤ coz(β), which implies that τα ∈ Iz,
and so α ∈ (Iz)r. Hence, (Iz)r = T.

In the following remark, we intend to provide a basic zr-ideal with respect to the basic z-ideal and use it to
express and prove an algebraic equivalent for the concept of zr-ideal.
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Remark 5.4. It is well known that Mα :=
{
β ∈ R(L) : coz(β) ≤ coz(α)

}
is a basic z-ideal of R(L) for every

α ∈ R(L). Then, by Proposition 5.3,

(Mα)zr = (Mα)r =
{
β ∈ R(L) : γβ ∈Mα for some γ ∈ r

(
R(L)
}

=
{
β ∈ R(L) : coz(γβ) ≤ coz(α) for some γ ∈ r

(
R(L)
}
.

Suppose that β ∈ (Mα)r, then there is an element δ in r
(
R(L)
)

such that

coz(δ) ∧ coz(β) = coz(δβ) ≤ coz(α),

which implies from δ ∈ r
(
R(L)
)

that

coz(β)∗∗ = coz(δ)∗∗ ∧ coz(β)∗∗ =
(
coz(δ) ∧ coz(β)

)∗∗
≤

(
coz(α)

)∗∗
,

and we deduce from [13, Lemma 4.1] that Ann(α) ⊆ Ann(β). Therefore, β ∈ Pα. Hence, Mα ⊆ (Mα)r ⊆ Pα for
each α ∈ R(L).

Lemma 5.5. An ideal I in the ring R(L) is a zr-ideal if and only if (Mα)r ⊆ I for each α ∈ I.

Proof. Necessity. Suppose α ∈ I. By remark 5.4, if β ∈ (Mα)r, there is γ ∈ r
(
R(L)
)

such that coz(γβ) ≤ coz(α).
Since I is a zr-ideal, we infer that β ∈ I. Hence, (Mα)r ⊆ I.

Sufficiency. Suppose (α, β) ∈ R(L)×r
(
R(L)
)

such thatαβ ∈ I. Since coz(αβ) ≤ coz(αβ) by remark 5.4 implies
that α ∈ (Mαβ)r. It follows from the assumption that α ∈ I and I is an r-ideal. Now suppose coz(β) ≤ coz(α)
and α ∈ I. Since ⊤ ∈ r

(
R(L)
)
, by remark 5.4 and our assumption implies that β ∈ I. Therefore I is a zr-ideal.

Lemma 5.6. If I is an ideal of R(L) and β ∈
∑
α∈I(Mα)r. Then, there is α ∈ I such that β ∈ (Mα)r.

Proof. Suppose β ∈
∑
α∈I(Mα)r. Therefore, there are α1, · · · , αn ∈ I such that β ∈

∑n
i=1(Mαi )r. For every

1 ≤ i ≤ n, there exists an element βi ∈ (Mαi )r such that β = β1 + · · · + βn. By remark 5.4, there is γi ∈ r
(
R(L))

such that coz(γiβi) ≤ coz(αi). If we put γ := γ1γ2 · · ·γn ∈ r
(
R(L)), then coz(γβi) ≤ coz(γiβi) ≤ coz(αi) for

every i. Therefore,

coz(γβ) = coz
(
γ(β1 + · · · + βn)

)
≤

n∨
i=1

coz(γβi) ≤
n∨

i=1

coz(αi) = coz(α2
1 + · · · + α

2
n).

Since γ ∈ r
(
R(L)), we conclude from remark 5.4 that β ∈ (Mα2

1+···+α
2
n
)r and α2

1 + · · · + α
2
n ∈ I.

Corollary 5.7. An ideal I of R(L) is a zr-ideal if and only if I =
∑
α∈I(Mα)r.

Proof. It is evident by using Lemmas 5.5 and 5.6.

Now, in the next proposition, we present other equivalents for the concept of zr-ideals based on cozero
elements.

Proposition 5.8. The following statements are equivalent for an ideal I of R(L).

(1) The ideal I is a zr-ideal.

(2) If (α, β, τ) ∈ I × R(L) × r
(
R(L)
)

with coz(τα) = coz(τβ), then β ∈ I.
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(3) If (α, β, τ) ∈ I × R(L) × r
(
R(L)
)

with coz(τβ) ⩽ coz(α), then β ∈ I.

Proof. (1)⇒ (2). Let (α, β, τ) ∈ I × R(L) × r
(
R(L)
)

with coz(τα) = coz(τβ) be given. Since I is a z-ideal and
τα ∈ I, we infer that τβ ∈ I, which implies that β ∈ I, because I is an r-ideal.

(2)⇒ (3). Let (α, β, τ) ∈ I×R(L)× r
(
R(L)
)

with coz(τβ) ≤ coz(α). Then coz(τβ) = coz(τβα), which implies

from (αβ, β, τ) ∈ I × R(L) × r
(
R(L)
)

that β ∈ I.

(3)⇒ (1). If we put τ = ⊤ in (3), we deduce that I is a z-ideal. Let (α, τ) ∈ R(L) × r
(
R(L)
)

with τα ∈ I be
given. From coz(τα) ⩽ coz(τα), we infer from part (3) that α ∈ I. Hence, I is a zr-ideal.

Proposition 5.9. Let I be an ideal of R(L) with I ∩ r
(
R(L) = ∅. If I is a zr-ideal, then P is a zr-ideal for every

P ∈Min(I). The converse is also true if I is a semiprime ideal.

Proof. The first part is evident by [26, Theorem 2.20] and [25, corollary after Theorem 1.1 ]. Now, let I be a
semiprime ideal of R(L) such that P is a zr-ideal for every P ∈Min(I). Since any intersection of zr-ideals is a
zr-ideal of R(L), we conclude that I is a zr-ideal of R(L) and we are through.

We recall from [9] that if the open quotient of every dense cozero element is a C∗-quotient, the frame L is
called quasi F-frame. In [14], the properties of quasi-F-frame were investigated and equivalents for these
frames were proved, which we use to prove the following theorem. In the following theorem, we show
that the sum of zr-ideals in R(L) behaves similar to the sum of z0-ideals in R(L).

Theorem 5.10. The sum of every two zr-ideals in R(L) is a zr-ideal or all of R(L) if and only if L is a quasi-F-frame.

Proof. Necessity. Let α, β ∈ R(L) with
(
coz(α) ∨ coz(β)

)∗
= ⊥ be given. If α ∈ r

(
R(L)
)

or β ∈ r
(
R(L)
)
, then, by

Lemma 3.1,
(
coz(α)

)∗∗
∨

(
coz(β)

)∗∗
= ⊤. Now, suppose that α and β are zero-divisors in R(L). Then, by [4,

Remark 1.1 ], Pα and Pβ are z0-ideal, which implies from remark 5.2 that they are zr-ideal. Thus, according
to the assumption, Pα + Pβ is a zr-ideal or all of R(L). Since α2 + β2

∈ r
(
R(L)
)

and α2 + β2
∈ Pα + Pβ, so

Pα + Pβ = R(L). Hence, there exists δ ∈ Pα and γ ∈ Pβ such that δ + γ = 1. So we have

⊤ = coz(1) = coz(δ + γ) ≤ coz(δ) ∨ coz(γ).

On the other hand, by [1, proposition 4.2],(
coz(α)

)∗
≤

(
coz(δ)

)∗
and
(
coz(β)

)∗
≤

(
coz(γ)

)∗
,

which implies that

⊤ = coz(δ) ∨ coz(γ) ≤
(
coz(δ)

)∗∗
∨

(
coz(γ)

)∗∗
≤

(
coz(α)

)∗∗
∨

(
coz(β)

)∗∗
.

Therefore, by [14, proposition 3.1], L is a quasi-F-frame.

Sufficiency. Let L be a quasi-F-frame and I, J be two zr-ideals of R(L) and I + J , R(L). Since, by [17,
Proposition 5.1], the sum of two z-ideals of R(L) is always a z-ideal of R(L), it suffices to show that I + J is
an r-ideal of R(L). Let T ∈ Min(I + J) be given. Since T is a prime ideal and I ⊆ T, we infer that there exists
an element P in Min(I) such that P ⊆ T. Thus, by [26, Theorem 2.20], P is an r-ideal of R(L), and by [28,
Corollary 7.2.2], P is a zr-ideal of R(L). Similarly, there exists an element Q in Min(J) with Q ⊆ T such that
Q is a zr-ideal of R(L). If P and Q are in a chain, say P ⊆ Q, we have I + J ⊆ P + Q = Q ⊆ T, which implies
from T ∈ Min(I + J) that T = Q is a zr-ideal of R(L). Now, we suppose that P and Q are not in a chain.
Let IP and IQ are minimal prime ideals of R(L) such that IP ⊆ P and IQ ⊆ Q. Then, by [2, Lemma 4.8], [17,
Proposition 5.1], and [25, corollary after Theorem 1.1], IP + IQ is a prime z-ideal of R(L), which implies from
[11, Proposition 3.7] that P + Q = IP + IQ, and because T is a minimal prime over I + J, we conclude that T
is equal to P + Q. Consequently, in both cases T is a zr-ideal of R(L) and this means that T is a zr-ideal of
R(L) for every T ∈Min(I + J). Since I + J is a z-ideal of R(L), we conclude from proposition 5.9 that I + J is a
zr-ideal of R(L).



Z. N. Khoshmardan et al. / Filomat 38:33 (2024), 11711–11729 11726

Corollary 5.11. In every almost P-frame the sum of every two zr-ideals in R(L) is a zr-ideal or all of R(L).

Proof. According to [14, Corollary 3.3] and Theorem 5.10, it is obvious.

According to the Theorem 5.10, whenever L is a quasi-F-frame, then there is the largest zr-ideal included
in I for every ideal I of R(L), that with Izr it is displayed. Actually Izr , the sum of all zr-ideals included in I.

Corollary 5.12. If L is a quasi-F-frame and I is an ideal in R(L), then

Izr =
∑

(Mα)r⊆I

(Mα)r

Proof. Suppose that J :=
∑

(Mα)r⊆I(Mα)r. Since L is a quasi-F-frame, we conclude from Theorem 5.10 that J is
a zr-ideal in R(L). On the other hand, if K is a zr-ideal in R(L) included in I and β ∈ K, then, by Lemma 5.5,
(Mβ)r ⊆ K. Since K ⊆ I implies that β ∈ J. Therefore, K ⊆ J.

Proposition 5.13. For two ideals I and J in R(L), the following relations hold:

(1) ((I ∩ J)z)r = (Iz)r ∩ (Jz)r = ((IJ)z)r = (Iz)r(Jz)r.

(2) (Iz)r + (Jz)r ⊆ ((I + J)z)r.

Proof. According to the definition and properties r-ideals and z-ideals, relationships are established.

As we observed every z0-ideal in R(L) is a zr-ideal. The following theorem, characterizes the frames L for
which the converse also holds, i.e., every zr-ideal of R(L) is a z0-ideal.

Theorem 5.14. A frame L is a weakly almost P-frame if and only if every zr-ideal in R(L) is a z0-ideal of R(L).

Proof. Necessity. Let I be a zr-ideal in R(L) and P ∈ Min(I). Then, by Proposition 5.9, P is a zr-ideal, which
implies from [16, Proposition 3.1] that P is a z0-ideal ofR(L). Since I =

⋂
P∈Min(I) P, we infer that I is a z0-ideal

of R(L).

Sufficiency. Let α, β ∈ R(L) with
(
coz(α)

)∗
≤

(
coz(β)

)∗
be given. According to our hypothesis, (Mα)r is a

z0-ideal. From α ∈ (Mα)r and
(
coz(α)

)∗
≤

(
coz(β)

)∗
, we infer that β ∈ (Mα)r, which implies that there exists

an element γ in r
(
R(L)
)

such that

coz(β) ∧ coz(γ) = coz(βγ) ≤ coz(α).

Therefore, by Lemma 3.1 and definition, L is an weakly almost P-frame.

Corollary 5.15. If L is a weakly almost P-frame, then every z-ideals in the class of all r-ideals of R(L) is a z0-ideal

Proof. It is evident by Proposition 5.14.

Corollary 5.16. A frame L is an almost P-frame if and only if every z-ideal of R(L) is a zr-ideal.

Proof. By Proposition 4.1, it is evident.

Corollary 5.17. For an ideal I and a prime ideal Q in R(L), if I ∩Q is a zr-ideal, then one of them is a zr-ideal.

Proof. By [7, Proposition 2.8] and Proposition 4.4, it is evident.

In the continuation of this section, by introducing the concept of sr-ideal in the ring R(L), in the next remark
and proposition, we express the connection of this ideal with zr-ideals. We specify a frame where the
sr-ideals coincide with the zr-ideals.
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Definition 5.18. An ideal I of R(L) is said to be an sr-ideal if it is an r-ideal which is also a semiprime ideal.

Remark 5.19. It is clear that every zr-ideal is an sr-ideal. But every sr-ideal is not necessarily a zr-ideal. For
this, if a frame L is not a cozero complemented frame, then, by Proposition 3.2, there exists a prime r-ideal
Q that is not z-ideal. Therefore, Q is an sr-ideal that is not a zr-ideal.

Proposition 5.20. A frame L is a cozero complemented frame if and only if every sr-ideal in R(L) is a zr-ideal.

Proof. Necessity. By Proposition 3.2, it is evident that every sr-ideal in R(L) is a zr-ideal in R(L).

Sufficiency. Let P be a prime r-ideal inR(L). Then, by our hypothesis, P is a z-ideal. Hence, by Proposition
3.2, L is a cozero complemented frame.

The intersection of any family of sr-ideals is an sr-ideal. Therefore, for every proper ideal I in the ring
R(L) with r

(
R(L)
)
∩ I = ∅, there is the smallest sr-ideal including I, which we represent by Isr .

Corollary 5.21. For every ideal I of R(L), we have Isr =
√

Ir.

Proof. By definition, we always have Ir ⊆ Isr . Since Isr is an sr-ideal and according to [8, Lemma 4.1], implies
that

√
Ir ⊆ Isr . On the other hand, since Isr is the smallest sr-ideal including I, implies that Isr ⊆

√
Ir.

We recall from [4] that for a reduced ring R with the property A that for every ideal I with r(R) ∩ I = ∅ of
R there is a smallest z0-ideal including I. Therefore for every ideal I with r

(
R(L)
)
∩ I = ∅ of R(L), there is a

smallest z0-ideal including I which we denote by I0 and I0 = {α ∈ R(L) : Ann(β) ⊆ Ann(α) for some β ∈ I }.

Corollary 5.22. For every proper ideal I of R(L) with r
(
R(L)
)
∩ I = ∅,

I ⊆ Ir ⊆ Isr ⊆ Izr ⊆ I0.

Proof. It is evident.

We recall from [26] that the product of r-ideals is not necessarily an r-ideal, but by Remark 5.2, the product
of zr-ideals is a zr-ideal. In the following proposition, we state the condition that if the product of two ideals
becomes a zr-ideal (or an sr-ideal), then one of them is a zr-ideal (or an sr-ideal).

Proposition 5.23. Suppose that I and J are two ideals in R(L) and r
(
R(L)
)
∩ I , ∅. Then, the following statements

are true.

(1) If IJ is an sr-ideal of R(L), then J is a sr-ideal of R(L).

(2) If IJ is a zr-ideal of R(L), then J is a zr-ideal of R(L).

Proof. (1). Suppose that γ ∈ r
(
R(L)
)
∩ I. If J is not a semiprime ideal of R(L), then there exists an element α

in R(L) such that α < J and αn
∈ J for some n ∈ N, which implies that γnαn

∈ IJ, but IJ is a sr ideal, hence
α ∈ IJ ⊆ J and this is a contradiction. Accordingly, J is a semiprime ideal and it remains to show that J
is a r-ideal of R(L). Let (α, τ) ∈ R(L) × r

(
R(L)
)

with τα ∈ J be given. Then γτα ∈ IJ, which implies by our
hypothesis that α ∈ IJ ⊆ J.

(2). Suppose that γ ∈ r
(
R(L)
)
∩ I. Let (α, β) ∈ J × R(L) with coz(α) = coz(β) be given. Then coz(γα) =

coz(γβ), which implies from γα ∈ IJ and Proposition 5.8 that β ∈ IJ ⊆ J, because IJ is a zr-ideal of R(L).
Therefore, J is a z-ideal of R(L). The proof of r-ideality of J is similar to the proof of the part (1).

According to Theorem 5.10, in the next theorem, we show that the sum of sr-ideals in R(L) behaves similar
to the sum of zr-ideals in R(L).
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Theorem 5.24. A frame L is a quasi-F-frame if and only if the sum of every two sr-ideals in R(L) is a sr-ideal or all
of R(L).

Proof. Necessity. Suppose I and J are two sr-ideals of R(L) and I+ J , R(L). Thus, by [30, Lemma 5.1], I+ J is
a semiprime ideal of R(L). By a straightforward modification in the proof of Theorem 5.10, we obtain I + J
is an r-ideal of R(L). Therefore, I + J is an sr-ideal of R(L).

Sufficiency. Suppose I and J are two zr-ideals ofR(L). Then I and J are two sr-ideals ofR(L), and according
to our hypothesis, I + J is an sr-ideal of R(L). On the other hand, by [17, Proposition 5.1], I + J is a z-ideal,
which implies that I + J is a zr-ideal of R(L). Therefore, by Theorem 5.10, L is a quasi-F-frame.

We recall from [1] that for every ideal I with r
(
R(L)
)
∩ I = ∅ of R(L), if L is a quasi-F-frame, there is a

largest z0-ideal contained in I. We represent by I0 which it is largest z0-ideal contained in I and

I0 = {α ∈ R(L) : Ann(β) ⊆ Ann(α) implies β ∈ I for every β ∈ R(L)}

Also, for ideal I with r
(
R(L)
)
∩ I = ∅ of R(L) and using Theorem 5.24, if our frame is a quasi-F-frame,

then there exists the largest sr-ideal contained in I, which we denote by Isr .

Corollary 5.25. If L is a quasi-F-frame, then for every ideal I of R(L) with r
(
R(L)
)
∩ I = ∅, we have;

I0
⊆ Izr ⊆ Iz

∩ Isr ⊆ Iz + Isr ⊆ I.

Proof. According to definitions Izr and Isr and Remark 5.19, the proof is clear.

In Corollaries 5.22 and 5.25, we saw a chain of ideals. At the end of this section, a systematic chain of
well-known ideals and ideals introduced in this paper is presented in special frames.

Corollary 5.26. If L is a quasi-F-frame and almost P-frame, then

I0
⊆ Iz = Izr ⊆ Isr ⊆ I ⊆ Ir ⊆ Isr ⊆ Iz = Izr ⊆ I0

for every ideal I of R(L) with r
(
R(L)
)
∩ I = ∅.

Proof. Using Proposition 4.1 and Theorems 5.10 and 5.24, as well as the characteristics of this class of ideals,
the proof is obvious.
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