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On r-ideals of R(L)
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Abstract. In this paper, we study the concept of r-ideal (a proper ideal I in a ring R is said to be an r-ideal
if ra € I with Ann(r) = (0), implies that a € I for each a,r € R) in the ring R(L), as the point-free counterpart
of C(X) and a reduced commutative ring. We investigate the behavior of this type of ideal in the ring R(L)
for cozero complemented frames, P-frames, almost P-frames, and weakly almost P-frames. We prove the
characterization of these frames via the concept of r-ideal in the ring R(L).

We examine other groups of ideals, namely z,-ideal and s,-ideal in the ring R(L), by combining the
concept of r-ideal with z-ideal and also with the semiprime ideal. We show that the sum of the z,-ideals
in the ring R(L) has the same behavior as the z’-ideals in this ring in a simple way: The sum of every two

z,-ideals in R(L) is a z,-ideal or all of R(L) if and only if L is a quasi-F-frame. Here, this fact is also proved
for s,-ideals.

1. Introduction

The abstract lattice of open sets can contain a lot of information about a topological space. By this fact,
the point-free topology provides a good constructive foundation for topological theories, as argued by Ball
and Walters-Wayland [9]: “... what the point-free formulation adds to the classical theory is a remarkable
combination of elegance of statement, simplicity of proof, and increase of extent.” In an overview of
the historical development of this theory, it can be seen the works of [9, 10, 20, 22, 23, 29], as some of
the pioneers that made a point-free approach to C(X), the ring of real-valued continuous functions on a
completely regular Hausdorff space X.

Dube is one who played an effective role in extending the study of ring R(L). He introduced and charac-
terized some frames related to R(L) and determined their properties, especially the cozero complemented
frames and weakly almost P-frames [11-17].

Ideals play a fundamental role in studying the structure of C(X). In this paper, we consider R(L), with
a completely regular frame L and study some types of the ideals in it. One of these is r-ideal, introduced
in the context of the theory of commutative ring by Mohamadian [26] in 2015. He investigated generally
the behavior of r-ideals in commutative rings. Also, as a significant result, he considered C(X) and proved
that every ideal in C(X) is an r-ideal if and only if X is almost P-space. Moreover, he showed that in cozero
complemented spaces (m-spaces), every prime r-ideal of C(X) is a z’-ideal. Inspired by it, we determine the
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r-ideals in R(L) and their properties. We establish similar results, as in C(X), and we characterize the frame
L with respect to the behavior of r-ideal in it.

In 2021, Azarpanah, Mohamadian, and Monjezi [8] introduced another class of ideals based on the
r-ideal concept called z,-ideal and s,-ideal in a ring C(X). The class of z,-ideals can be considered between
the two classes of z%-ideals and z-ideals. They showed that the sum of z,-ideals in the ring C(X) behaves
similarly to the sum of z%-ideals in the ring C(X). They investigated the properties of z,-ideals and s,-ideals
in the ring C(X) and obtained interesting results. Also, they showed that a space is the cozero complemented
space if and only if every z,-ideal of C(X) is an s,-ideal of C(X).

The plan of this paper is as follows:

In Section 2, we present the basic concepts of frames and ring R(L), which are needed in this paper.

In Section 3, we examine r-ideals in cozero complemented frames. We express and prove equivalences
for these frames based on the concept of r-ideals. Also, we show that in cozero complemented frames,
every r-ideal is a z-ideal and every prime r-ideal is a z’-ideal of the ring R(L). We discuss the above in
Proposition 3.2 and in Corollaries 3.3 and 3.6.

In Section 4, we examine r-ideals in P-frames and almost P-frames. To learn about these frames, see
[9, 12, 13, 15, 16]. We express and prove equivalences for almost P-frames based on the concept of r-ideal.
We show that in P-frames, the set of all r-ideals coincides with the set of all z-ideals of R(L). We discuss the
above in Proposition 4.1 and in Corollary 4.3.

In the last section, we define the concept of z,-ideals and s,-ideals in the ring R(L) and examine the
characteristics of these types of ideals. We show in Theorem 5.10 that a frame L is a quasi-F-frame if and
only if the sum of both z,-ideals in R(L) is a z,-ideal or the whole ring. We also propose and prove this
statement about s,-ideals in Theorem 5.24. To learn about these frames, see [14]. Also, after examining the
relationship of r-ideals, z,-ideals, and s,-ideals with each other as well as with other known ideals in the
ring R(L), we present a regular chain of these ideals in Corollaries 5.22, 5.25, and 5.26.

2. Preliminaries

2.1. Ring
A ring R is reduced if it has no nonzero nilpotent elements. The principal ideal of a ring generated by
an element a in R is denoted by (a), and for S C R, the set {x € R: xs = Ofor eachs € S} is the annihilator of

S, which is denoted by Ann(S).
From [26], we recall that a proper ideal I in a commutative ring R is said to be an r-ideal if ra € I with

rer(R) := {x € R: Ann(x) = (O)} implies thata € I for each a,r € R.
Also, we recall from [27] that for any multiplicative closed set S of a ring R, the S-component of an ideal
I'is defined by I := {x € R: There exists s € S for some xs € I}. Since the set r(R) is a multiplicative closed

set, similarly it is defined the set I, := {a € R: There exists ¥ € r(R) for some ra € I} of I.

Clearly, if INnr(R) # 0, then I, = R. In [8, Lemma 2.2 ], it was shown, for an ideal I of a reduced ring R
with I N r(R) = 0, that the set I, is the smallest r-ideal containing I. Also, they showed in the same lemma
that I is an r-ideal if and only if I = I,.

2.2. Frame L and the ring R(L)

For a general theory of frames, we refer to [22]. Also, for more information about frames and ring R(L),
refer to [29]. Here we collect a few facts that will be relevant for our discussion.

Recall that a frame (locale) is a complete lattice L in which the distributive lawa A \/ S = \/{a A x|x € S}
holds forallax$S € LxP(L). We denote the top element and the bottom element of L by T and L, respectively.

The pseudocomplement of an element a in a frame L is the element a* that is

a*:\/{xele/\a:J_}.

An element a of frame L is complemented if a V 4" = T, and it is dense if " = L.
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A frame homomorphism is a map between frames that preserves finite meets including the top element,
and arbitrary joins including the bottom element.

Regarding the frame of reals £(IR) and the f-ring R(L) of continuous real-valued functions on L, we use
the notation of [10]. A continuous real function on a frame is a homomorphism L(IR) — L. The set of all
continuous real functions on a frame L is denoted by R(L).

It is known that the mapping coz : R(L) — L is given by

coz(a) = \/ {a(p,0) v a(0,9) Ip,q € Q).

A cozero element of L is an element of the form coz(a) for some « € R(L). The cozero part of L is denoted
by Coz(L). For every a, g € R(L), we frequently use the following properties:

(1) coz(ap) = coz(a) A coz(B),

(2) coz(a + B) < coz(a) V coz(B) = coz(a® + B?),

(3) a € R(L) is invertible if and only if coz(a) = T,
(4) coz(a) = Lifand onlyifa = 0.

From (1) and (4), it follows that R(L) has no nonzero nilpotent element. Consequently, a prime ideal P € R(L)
is minimal prime if and only if for every ¢ € P, there exists ¢ ¢ P such that ¢ = 0.

For any x and y in a frame L, we say that x is completely below y in L and write x < v if there exists a
trail {x;}ico1]n@ € L such that xo = x, x; = y, and for everyp,q € [0,1] N Q with p < g, x, < x;. A frame L is
called completely regular if for every a € L, we havea = \/, ., b. Anideal ] of L is called completely regular
if for any a € I, there exists b € I such that 2 << b. The frame SL is the frame of all completely regular ideals
of L, and BL is the Stone-Cech compactification of a completely regular frame L. The map

rL(xH{aeL:a<<x}):L—>,BL

\ (1~ \/1):pL> L

We recall from [13, Definition 4.10] that an ideal I of R(L) is called a z-ideal if, for any @ € R(L) and € I,
coz(a) = coz(B) implies a € I and it is called d-ideal (it is discussed in this paper under the title z°-ideal)

is the right adjoint of the join map

if, for any a € R(L) and g € I, coz(a) < (coz(,B))H implies & € I. Also, we can see equivalence for it in [1,
Proposition 4.1]; for example, an ideal I of R(L) is a z-ideal if, for any (a, f) € I X R(L), (coz(a))* = (coz(ﬁ))’e
implies B € I. Also, we remember from [13] that for each I € BL, the ideal M of R(L) is defined by
M = {0( € R(L): rL(coz(ac)) c I}, which is a z-ideal, and the ideal O' of R(L) is defined by
o= {0( e R(L): rL(coz((x)) < I}, which is a z°-ideal.
2.3. Sublocale

For a locale L, a subset S C L is a sublocale if and only if

MgLﬁ/\MES and (xe€eL,seS)=x—>seS.

The subset S is a frame in the order of L and inherits its Heyting structure. The smallest sublocale of L
is O = {T} and is called the void sublocale, and the largest sublocale of L is L. The open and the closed
sublocales corresponding to each a € L are, respectively, the sublocales

op(@)=fa—-x|lxel}={x|lx=a—-x} and ¢ (a)=Ta={xeLlL|x>al.

Some of their properties, which we shall freely use, are as follows:
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(1) op(L)=¢(T)=0 and o, (T)= (L) =L.
(2) (@) Cor(b)ifand onlyifaVv b= T and o.(a) C ¢ (b)ifand onlyifa Ab = L.
(3) or(a) Nop(b) = or(a A b)and ¢ (a) V cr.(b) = ¢p(a A D).
4) Vo) = DL( Viﬂi) and (; er(a) = cL( Viai)-
(5) int;(cL(a)) = oL(a").

(6) cli(oc(a)) = cufa).

3. On cozero complemented frames

In this section, we examine the r-ideals in the cozero complemented frames. We show that in these
frames, every prime r-ideal of R(L) is a z-ideal, and every prime z’-ideal in R(L) is a minimal prime ideal
of R(L). Also, based on the r-ideal concept, we state and prove other equivalents for cozero complemented
frames.

We recall from [21] that a space X is called a cozero complemented space if, for each cozero set B of X,
there exists a cozero set D in X such that BN D = @ and BU D is dense in X. These spaces were first studied
in [21, 24], and they were also studied under the name of m-space in [6].

The cozero complemented frame was introduced and reviewed in [15]. A frame L has been defined in
[15] to be cozero complemented if for every ¢ € Coz(L), there is d € Coz(L) such thatc Ad = Land c Vv dis
dense. In [15], it was shown that a frame L is cozero complemented if and only if for each a € R(L), there is

an element § in R(L) \ ZdV(R(L)) such that af = a? if and only if for every a € R(L), there is € R(L) such

that coz(a)™ = coz(B)" (see [15, Corollary 3.2]).
Throughout this paper, for every a € R(L), we define

I(a) := {P € Min(R(L)): a € P}
Then, we use the following lemma many times in proving propositions.
Lemma 3.1. Let a € R(L) be given. Then, the following statements are equivalent:
(1) Ann(a) = (0).
) intL(cL(coz(a))) =0.
3 (coz(a))* =1
4) h(a) =0.

Proof. (1) = (2). We argue by contradiction. Let us assume that intL(tL(coz(a))) # O. Then, there exists

an element b # T in intL(cL(coz(a))) = DL(coz(a)*). Hence, by [18, Proposition 3.4], there exists an element
0 # 6 in R*(L) such that

cL((coz(a))*) - intL(cL(coz((S))) - cL(coz(é)).
Therefore, we have

L= cL(coz(a)*) \% 0L<coz(a)*) - cL(coz((S)) V intL(cL<coz(a))> - cL(coz((S)) \% cL(coz(a))
= cL(coz((S) A coz(ac)) = cL(coz((Sa)),
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which implies that 6o = 0, and this is a contradiction.
(2) = (3). Itis evident.

(3) = (4). We suppose, by way of contradiction, that i(a) # 0. Then there exists an element P in
Min(R(L)) such that a € P, which implies from [19, Corollary 1.2] that there is an element § in R(L) \ P such
that ap = 0, and we obtain

ok *%

coz(f) < (coz(ﬁ))** = (coz(oz))ﬂ A (coz(ﬁ)) = (coz(a) A coz(ﬁ)) =1,
and this is a contradiction.

(4) = (1). Let us assume that Ann(a) # (0). We are seeking a contradiction. Then there exists an
element 0 # f in R(L) such that ap = 0, which implies from h(a) = 0 that § € (\Min(R(L)) = (0), which is a
contradiction. [

In the following proposition, we examine the relationship between r-ideals and z-ideals in cozero
complemented frames, and we give equivalent definitions for these frames.

Proposition 3.2. The following statements are equivalent for a completely reqular frame L:
(1) Every r-ideal of R(L) is a z-ideal.
(2) Every prime r-ideal of R(L) is a z-ideal.
(3) For every o € R(L), there exists an element  in R(L) such that

cL(coz(a)) \Y cL(coz(,B)) = Land intL(cL(coz(ac)) A cL(coz(ﬁ))) =0.
(4) For every o € R(L), there exists an element  in R(L) such that
clL<intL(cL(coz(a)))> = clL(DL(coz(ﬁ))).

(5) The frame L is a cozero complemented frame.

(6) For every o € R(L), there exists an element  in R(L) such that
c1L<0L(coz(a)) \% DL(coz(ﬁ))) = Land DL(coz(a)) A DL(coz(ﬁ)) =0.

(7) Foreach a € R(L), (@), = (a?),.

Proof. (1) = (2). Itis evident.

2)=@3). Ifac r(R(L)), then it is enough to consider f = 0. Thus, let @ € R(L) \ r(R(L)) be given. Then,
by [26, Theorem 2.20], if P € Min((«),), then it is an r-ideal of R(L), which implies from our hypothesis
that it is a z-ideal of R(L). Hence, by [28, Corollary 7.2.2], (a), is a z-ideal, which implies that as € (a);. In
consequence, there exists an element y in r(R(L)) such that )/a% € (a), and we deduce that there exists an
element 6 in R(L) such that ya’s = ad. We set f := y — a36. Now it is trivial that

cL(coz(a)) \Y cL(coz(ﬁ)) = cL<coz(aﬁ)) =¢.(0) = L.
Leta e cL(coz(a)> A cL(coz(y)) be given. Then

coz(p) = coz(y — agé) < (coz(y) \% coz(oz)) A (coz(y) \% coz(é)) < (coz(y) V coz(a)) <a,
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which implies thata € cL(coz(a)) A cL(coz(ﬁ)). Now, suppose thata € cL<coz(a)) A cL<coz(ﬁ)). Then
coz(y) = coz(f + a3s) < (coz(ﬁ) \ coz(oc)) A (coz(ﬁ) \ coz(é)) < (Coz(ﬁ) \ coz(oz)) <a,
which implies thata € cL(coz(a)) A cL(coz(y)). Therefore,

intL(cL(coz(a)) A cL<coz(ﬁ)>) = intL(cL(coz(a)) A cL(coz()/))) < inthL(coz()/)) =0.

(3) = (4). Let a € R(L) be given. Then, by our hypothesis, there exists an element § in R(L) such that
cL(coz(a)) \% cL(coz(ﬁ)) = L and intL(cL(coz(a)) A cL(coz(ﬁ))) = O, which implies that coz(a) A coz(f) = L

E23 *

and (Coz(cv))’e A (coz(ﬁ))* = 1. We deduce that (coz(a)) = (coz(ﬁ)) Therefore, clL(intL(cL(coz(a)))) =
clL(DL(coz(ﬁ))).

(4) = (5). Let a € R(L) be given. Then, by our hypothesis, there exists an element f in R(L) such that
clL(intL(cL(coz(a)))) = c1L<0L(coz([3))), which implies that (coz(a))** = (coz(‘B))*. Therefore, L is a cozero
complemented frame.

(5) = (6). Let a € R(L) be given. Then, by our hypothesis, there exists an element  in R(L) such that
coz(a) A coz(f) = L and coz(a) V coz(f) is a dense element of L, which implies that

clL(oL(coz(a)) \Y DL(coz(ﬁ))) = cL(<coz(a) \% coz(ﬁ))*) =L
and
DL(coz(a)) A DL(coz(ﬁ)) = 0L<coz(a) A coz(ﬁ)) =0.

(6) = (5) and (6) = (7). Let a € R(L) be given. Then, by our hypothesis, there exists an element 8 in R(L)
such that

cL((coz(a) \% coz(ﬁ))*> = clL(oL(coz(a)) \% DL(coz(ﬁ))) =L
and
DL(COZ(O() A coz(ﬁ)) = DL(coz(a)) A DL(coz(ﬁ)) =0,

which implies that coz(a) A coz(f) = L and coz(a) V coz(p) is a dense element of L. Therefore, L is a cozero
complemented frame. Thus, by [15, Proposition 1.1], there is a nonzero-divisor y in R(L) such that ay = a?.
It is evident that (a?), C (a),. Now, suppose that u € (@),. Then there exists an element 7 in r(R(L)) such
that ut € (a), which implies that there exists an element 6 in R(L) such that ut = 6a. We conclude that
pty = day = 6a® € (a?), and so u € (a?),. Therefore, (a?), = (a),.

(7) = (5) and (7) = (1). Let @ € R(L) be given. Then, by our hypothesis, there exists an element f in
r(R(L)) such that a? = fa. Therefore, L is a cozero complemented frame.

Now, suppose that I is an r-ideal of R(L). Let a,y € I x R(L) with coz(a) = coz(y) be given. Then,
there exists an element § in R(L) such that coz(a) A coz(f) = L and coz(a) V coz(f) is a dense element of L,

which implies from Lemma 3.1 that ap = 0 and 6 := a® + g% € r(R(L)). We deduce that v = 0, and so from
y6 = ya? € I, we conclude that y € I. Therefore, I is a z-ideal of R(L). [

In the following corollary, according to Proposition 3.2, for an arbitrary ideal I in R(L), where L is a
cozero complemented frame, we express the relationship between the smallest r-ideal containing I and the
smallest z-ideal containing I.

Corollary 3.3. The following statements are equivalent for a completely reqular frame L:
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(1) A frame L is a cozero complemented frame.
(2) Every r-ideal of R(L) is semiprime.
(3) For each ideal I of R(L), I, C I,.

Proof. (1) = (2). Let I be an r-ideal of R(L). Then, by Proposition 3.2, I is a z-ideal of R(L), which implies
that it is a semiprime ideal of R(L).

(2) = (1). By our hypothesis, (a?), is semiprime for each & € R(L), which implies that & € (a?),. Therefore,
for each @ € R(L), (@), = (&), and by using Proposition 3.2, L is a cozero complemented frame.

(2) = (3). Let I be an ideal of R(L). Then, by Proposition 3.2, every prime r-ideal of R(L) is a z-ideal,
which implies that I, C I,.

(3) = (2). If I is an r-ideal of R(L), then, by our hypothesis, I, C I, = I, which implies that = I, that is,
is a z-ideal. We deduce that I is a semiprime ideal of R(L). O

To state the next proposition, we first prove the following lemma and show that a frame L is a cozero
completed frame if and only if every prime z-ideal in R(L) is a minimal prime ideal.

Lemma 3.4. The following statements are true, for every a, p € R(L):
(1) h(@) Nh() = 0 if and only if h(B) € h(Ann(a)).
(2) h(Ann(a)) € h(B) if and only if ¢ (coz(a)) V ¢.(coz(B)) = L.

(3) h(p) € h(Ann(a)) if and only ifintL<cL(coz(a)) A cL(coz(ﬁ))) =0.

Proof. (1). Necessity. Let P € h(f) be given. Then, by our hypothesis, @ ¢ P. Hence, we have
o€ Ann(a) = 6a=0€P=06€P.

Therefore, h() C h(Ann(a)).

Sufficiency. We proceed by contradiction. Assume that i(a) N h(B) # 0. Then there exists an element
P in h(a) N k(B), which implies from our hypothesis that P € h(Ann(a)). By [19, Theorem 2.3 ], h(a) and

h(Ann(a)) are disjoint open and closed sets, but this is a contradiction to the fact that P € h(a) N h(Ann(a)).

(2). Necessity. Since Ann(a) is a z-ideal of R(L), we infer from our hypothesis that

Be ﬂ h(p) ﬂ h(Ann(a)) = Ann(a)

which implies that
cL(coz(a)) V cL(coz(ﬁ)) = cL(coz(aﬁ)) =¢(0) =L.
Sufficiency. Let P € h(Ann(a)) be given. Then, by [19, Theorem 2.3], P € Min(R(L)) \ h(), which implies
that @ ¢ P. Since, by our hypothesis, a = 0 € P, we conclude that P € (). Thus, h(Ann(a)) C h(pB).

(3). We always have h(8) C h(Ann(a)) if and only if h(@) N h(B) = 0 if and only if h(a® + %) = 0 if and
only if, by Lemma 3.1,

intL(cL(coz(a)) A cL<coz(ﬁ))) = inthL(coz(oc2 + ﬁz)) =0.
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We recall from [5] that for every a in a ring R, P, = () h(a). Also, an ideal I in a commutative ring R is
said to be a z°-ideal if I consists of zero-divisors and for each a € I, the intersection of all minimal prime
ideals containing 4 is contained in I (for any a € I implies that P, C I). In a ring R(L), by [4, Proposition 1.5],
we have

P, = {B € R(L): Ann(a) € Ann(p)},

and by [13, Lemma 4.1], we have

P, = {,B e R(L): (coz(a))* < (coz(ﬁ))*}
for every a € R(L). Also, we recall from [1] that P, N Pg = Pyg and Py + Py C Py2,p for every a, f € R(L).
Proposition 3.5. The following statements are equivalent for a completely reqular frame L:
(1) The frame L is a cozero complemented frame.
(2) Every prime z°-ideal in R(L) is a minimal prime ideal.

(3) For every o € R(L), there exists an element  in R(L) such that
cL(coz(a)) \Y% cL(coz(ﬁ)) = Land intL(cL(coz(oz)) A cL(coz(ﬁ))) =0.

Proof. (1) = (2). Let a prime z°-ideal P be given. Suppose that prime ideal Q in R(L) such that Q C P with
Q # P. Then, there exists an element a € P \ Q, which implies by our hypothesis that there is an element

B in R(L) such that cL(coz(aﬁ)) = cL(Coz(a)) \Y cL(coz(ﬁ)) =L and intL(cL(coz(a)) A cL(coz(ﬁ)) = O. Since
0 = ap € Q € P, we deduce that f € Q C P. Hence a? + ? € P. On the other hand, we have

intL(cL(coz(a2 + ﬁz))) = intL(cL(coz(a)) A cL(coz(ﬁ))) =0= intL(cL(l)).

Since P is a z%-ideal, it follows that 1 € P, and this is a contradiction. Therefore, P is a minimal prime ideal.
(2) = (3). Leta € R(L) be given. Then, by [6, Proposition 1.5], there exists an element 8 in R(L) such that

Ann(a) = Pg. It is evident that h(B) = h(Pp) = h(Ann(a)), which implies from Lemma 3.4 that
cL(coz(oz)) \% cL(coz(ﬁ)) =L and intL(cL(coz(ac)) A cL(coz(ﬁ))) =0.
(3) = (1). By Proposition 3.2, it is evident. []

In the last result of this section, we derive another equivalent for cozero complemented frames based
on the notion of r-ideal, which shows that there exists a prime r-ideal that is not z’-ideal.

Corollary 3.6. A frame L is a cozero complemented frame if and only if every prime r-ideal of R(L) is a z°-ideal.

Proof. Necessity. Let I be a prime r-ideal of R(L) with (coz(a))* = (coz(ﬁ))* for (a, 5) € I X R(L). According to
our assumption and Proposition 3.2, there exists 6 € R(L) such that

cL(coz(ﬁ)) \Y cL(coz(é)) =L and intL(cL(coz(ﬁ))) A intL(cL<coz(6))) =0.

Thus, 86 = 0 and (8 + &%) € r(R(L)). Since intL(cL(coz(ﬁ))) = intL(cL(coz(a))), it is obtained that (a® + 6°) €

r(R(L)). Since [ is a prime ideal of R(L) and 6 € I, it is obtained that g € [or § € I. If 6 € I, then (a® + 6%) €1,
which contradicts with I being an r-ideal. Therefore, § € I.

Sufficiency. It is clear by Proposition 3.2.
0
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Remark 3.7. The converse of parts (1) and (6) of [8, Lemma 2.2] is not necessarily true. For this, since
coz(a)V (coz(a))* = T for every @ € R(L) if and only if cL<coz(a)) c DL((coz(a))*) = intL(cL(coz(a))), therefore
cL(COZ(a)) is open for every a € R(L) if and only if L is a P-frame (see [9, Defnition 8.4.6]).

Now suppose that L is a cozero complemented frame and it is not a P-frame. Therefore, there exists
a nonzero element @ € R(L) \ r(R(L)) such that cL(coz(oc)) is not open. Since L is a cozero complemented

frame by Proposition 3.2, (coz(a))r is a z-ideal. Indeed (coz(a)) is not a semiprime ideal because cL(coz(a))
is not open.

4. Some of the connections between almost P-frames and r-ideals

We recall from [9, Defnition 8.4.6] that a frame L is called a P-frame if a V a* = T for every a € Coz(L).
A frame L is said to be an almost P-frame if 2 = a™ for all 2 € Coz(L). Almost P-frames first appeared in
[9] and were also studied in [13, 20]. Dube [13] showed that a frame L is an almost P-frame if and only

if R(L) = Zdv(R(L)) U InV(R(L)), where ZdV(R(L)) denotes the set of all zero-divisor elements of R(L) and

Inv(R(L)) denotes the set of all invertible elements of R(L).

It has already been shown that frame L is an almost P-frame if and only if every z-ideal is a z%-ideal
(see [13, Proposition 4.13]). In the following proposition, we state another proof based on the concept of
r-ideals. We also express and prove other equivalents for these frames in the following proposition.

Proposition 4.1. The following statements are equivalent for a completely reqular frame L:
(1) A frame L is an almost P-frame.
(2) Every proper ideal in R(L) is an r-ideal.
(3) Every z-ideal in R(L) is a z°-ideal.
(4) Every z-ideal in R(L) is an r-ideal.
(5) For each ideal I of R(L), I, C L.
(6) Every prime z-ideal of R(L) is an r-ideal.
(7) Every maximal ideal of R(L) is an r-ideal.

Proof. (1) = (2). Let I be an ideal in R(L) and let (o, T) € R(L) X r(R(L)) with at € I be given. Then, by our
hypothesis, 7 is an invertible element in R(L), which implies that a € I. Therefore, I is an r-ideal.

(2) = (3). First, we show that for every a € R(L), if (c:oz(cv))’e = 1, then coz(a) = T. Then we show that
for every a € R(L), (COZ(O())** = coz(a). Let a € R(L) with (coz(a))* = 1 be given. Then

intL(cL(coz(a))) = DL((coz(a))*) =o.(L)=0,

which implies that a € r(R(L)). If coz(a) # T, then (a) is a proper ideal, which implies from our hypothesis
that (a) is an r-ideal in R(L). Since (a) N r(R(L)) # 0, we conclude that (@) = (a), = R(L), which is a
contradiction. Therefore, coz(a) = T.
Let a € R(L) be given. Then, we have
X << (coz(a))ﬁ = There exists § € R(L) (coz(ﬁ) Ax =1 and coz(f) V (coz(a))“ = T)
= There exists f € R(L) (coz(B) A x = Land

s

(coz(ﬁ) \% coz(a))* = (coz(ﬁ) \Y% (coz(a)) ) = J_)
= There exists $ € R(L) (coz(B) A x = L and coz(B) V coz(a) = T)
= x < coz(a).



Z. N. Khoshmardan et al. / Filomat 38:33 (2024), 11711-11729 11720

ok

Hence, (coz(oz))** = ) X < Vi<coz(a) X = coz(a) < (coz(a))**, which implies that coz(a) = (coz(oc))

x«(coz(a)

Let I be a z-ideal and let (, f) € I x R(L) with (coz(oz))* = (coz(ﬁ))* be given. Then coz(a) = coz(g), which
implies that g € I. Hence, I is a z%-ideal.

(3) = (4). It is evident.

(4) = (5). Using our hypothesis, I, is an r-ideal containing I, and so I, C .

(5) = (6). If P is a prime z-ideal, then P, C P, = P, which implies that P is an r-ideal.

(6) = (7). Itis evident.

(7) = (1). Suppose that L is not an almost P-frame. Then, there is an element « in r(R(L)) \ InV(R(L)),
which implies that there is a maximal ideal M of R(L) such that (¢) € M. Now, by our hypothesis, M is
an r-ideal. This is a contradiction, since @« € M is a nonzero-divisor element. Therefore, L is an almost
P-frame. O

Example 4.2. Suppose that L is not an almost P-frame. Then, there exists an element « in r(R(L)) such that
it is a noninvertible element in R(L). Consequently, there is a maximal ideal M in R(L) such that (a) € M.
So, M is a prime z-ideal, which is not an r-ideal.

According to Proposition 3.2, if a frame L is not a cozero complemented frame, then there is a prime
r-ideal such that is not a z-ideal, or if the frame L is not a P-frame but is an almost P-frame, then by [3,
Theorem 4.1], there is a prime ideal Q such that it is not a z-ideal. On the other hand, by Proposition 4.1, Q
is an r-ideal. Then Q is a prime r-ideal such that it is not a z-ideal. Also, according to Proposition 4.1, if a
frame L is not an almost P-frame, then there is a prime z-ideal such that it is not an r-ideal.

For an arbitrary ideal I in the ring R(L), we see the relation between I, and I, in Corollary 3.3 and
Proposition 4.1. In the next corollary, we show that, in P-frames, every r-ideal is a z-ideal and vice versa,
thatis, I, = I,.

Corollary 4.3. The following statements are equivalent for a completely regular frame L:
(1) The frame L is a P-frame.
(2) The frame L is a cozero complemented frame and almost P-frame.
(3) For every ideal I of R(L), it is a z-ideal of R(L) if and only if it is an r-ideal of R(L).
(4) For each ideal I of R(L), I, = I,.
Proof. (1) = (2). From [12, Proposition 3.9] and Proposition 3.2, L is a cozero complemented frame. Also,

from [13, Proposition 3.3 |, L is an almost P-frame.

(2) = (3). Let I be an ideal of R(L). Then, by Proposition 4.1, I is an r-ideal of R(L), which implies form
Proposition 3.2 that [ is a z-ideal of R(L). Hence, for every ideal I of R(L), it is an r-ideal of R(L) and also, it
is a z-ideal of R(L).

(3) = (4). It is evident.

(4) = (2) and (4) = (1). By Propositions 3.3 and 4.1, L is a cozero complemented frame and an almost
P-frame. Let I be a proper ideal of R(L). Then, by Proposition 4.1, [ is an r-ideal of R(L), which implies form
Proposition 3.2 that I is a z-ideal of R(L). Therefore, by [12, Proposition 3.9], L is a P-frame. [J

It was shown in [26] that the intersection of any family of r-ideals is an r-ideal, but their product and sum
are not necessarily an r-ideal. In the following lemma and proposition, we will investigate what happens
if the product or sum of a prime ideal in another ideal becomes an r-ideal. For frames that are almost
P-frames, we give another equivalent.

Lemma 4.4. Let R be a reduce commutative ring and let (I, P) € Id(R) X Spec(R). Then, the following statements
are true:
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(1) IfIP is an r-ideal, then I or P is an r-ideal.
(2) IfIP is an r-ideal and I € P, then P is an r-ideal.
(3) IfINPisan r-ideal, then I or P is an r-ideal.

(4) Let I and P be prime ideals that are not in a chain. If I N\ P is an r-ideal, then I and P are r-ideals.

Proof. (1). It is evident that if P N 7(R) = 0, then P is an r-ideal. Now, suppose that r € P N r(R). Then for
every i € I, ir € IP, which implies that i € IP, and we get that IP = [ is an r-ideal.

(2). Let (a,b) € r(R) x R with ab € P be given. By our hypothesis, there exists an element i in I \ P, such
that iab € IP, which implies that ib € IP C P. We obtain b € P. Therefore, P is an r-ideal.

(3). If I € P, thatis I N P = I, then, by our hypothesis, I is an r-ideal. Now, suppose that I ¢ P. Then,
there exists an element i in I \ P. Let (a,b) € r(R) X R with ab € P be given. Then, iab € I N P, which implies
thatibe INP C P, and we obtain b € P. Therefore, P is an r-ideal.

(4). The proof is similar to the proof of part (3). O

Proposition 4.5. The following statements are equivalent for a completely reqular frame L:

(1) The frame L is an almost P-frame.
(2) For every (I,P) € Id(R(L)) X Spec(‘R(L)), if [ N P is an r-ideal in R(L), then I and P are r-ideals.
(3) For every (I,P) € Id(R(L)) X Spec(‘R(L)), if IP is an r-ideal in R(L), then I and P are r-ideals.

Proof. By proposition 4.1, (1) = (2) and (1) = (3) are evident.

(2) = (1). Suppose that L is not an almost P-frame. Then, there is an element « in r(R(L)) \ InV(R(L)),
which implies that there is a maximal ideal M of R(L) such that (o) € M and M, = R(L). Let Q be a minimal
prime ideal of R(L) such that Q € M. Then, by [26, Remark 2.3], Q " M = Q is an r-ideal, which implies
from our hypothesis that M is an r-ideal, and this is a contradiction.

(3) = (1). Suppose that L is not an almost P-frame. Then, there exists an element « in r(R(L)) \ Inv(ﬁ(L)),
which implies that there exists an element I in 8L such that (@) € M!. Itis evident that O' = O'nM! = O'M!
is a z’-ideal in R(L), which implies from [26, Theorem 2.19] that O'M! is an r-ideal in R(L). Then, by our
hypothesis, M! is an r-ideal in R(L), and this is a contradiction to the fact that a € M' N r(R(L)). Therefore,
L is an almost P-frame. O

A weakly almost P-space is a topological space X such that for every two zerosets Z and F with
intZ C intF, there exists a zeroset E in X with empty interior such that Z C F U E. This space was studied
for the first time in [6]. Every almost P-space is a weakly almost P-space. More generally, any space in
which every closed set (boundary of any zeroset) is contained in a zeroset with empty interior (for example,
a metric space), is a weakly almost P-space. In 2015, the concept of weak almost P-frame and some of its
features were studied and investigated [16]. It was shown that if L is a weak almost P-frame, so is L (see
[16, Corollary 2.10]), and conversely, if L is a continuous Lindeldof frame, so is SL (see [16, Proposition
2.12]). We recall from [16, Definition 2.1] that a completely regular frame L is a weak almost P-frame if a
and b are cozero elements of L with a* < b", then there is a dense cozero element ¢ such that b A ¢ < a. Every
almost P-frame and every cozero complemented frame is a weakly almost P-frame (see [16, Examples 2.2
and 2.3]).

In the following proposition, we express and prove a definition equivalent to weakly almost P-frames
based on closed sublocales.

Proposition 4.6. A frame L is a weakly almost P-frame if and only if for every a, € R(L) with intL(CL(COZ(a))) c
intL(cL(coz(ﬁ))), there exists an element y in r(R(L)) such that CL(COZ(Oé)) c CL(COZ(ﬁ)) \% cL(coz(y)).



Z. N. Khoshmardan et al. / Filomat 38:33 (2024), 11711-11729 11722

Proof. Necessity. Suppose Lis a weakly almost P-frame. Leta, f € R(L) with intL<cL(coz(ac))) c intL<cL(coz(ﬁ)))
be given. Then (coz(oz))* < (coz(ﬁ))*, which implies from our hypothesis that there exists an element y in
R(L) with (coz(y))* = 1 such that coz(y) A coz(f) < coz(a). We deduce that y € r(R(L)) and

cL(coz(a)) C cL(COZ(ﬁ)) \% cL(coz(y)).
Sufficiency. Let a, B € R(L) with (coz(a))* < (coz(ﬁ))* be given. Then,

intL(cL(coz(a))) = oL((coz(a))*) C DL((COZ(ﬁ))*) = intL(cL(coz(ﬁ))),

which implies from our hypothesis that there exists an element y in r(R(L)) such that ¢, (coz(a)) C (Coz(ﬁ))\/

cL(coz(y)). We deduce that (coz(y))* = 1 and coz(y) A coz(f) < coz(a). Therefore, L is a weakly almost
P-frame. O

Below we give an example of the connection between the r-ideal and the classical ideals of the ring R(L)
in weakly almost P-frames.

Example 4.7. By [16, Proposition 3.1], if L is not a weakly almost P-frame, then there exists a prime z-ideal
Pin R(L) with P N r(R(L)) = (), which is not a z-ideal. On the other hand, by [26, Remark 2.3(f)], P is an
r-ideal. So if L is not a weakly almost P-frame, there exists an r-ideal that is a z-ideal but not a z%-ideal.

Examples 4.8. By the definition of an r-ideal, every element of a proper r-ideal is a zero-divisor element.
Below are some examples that show that the above statement is not always true in the ring R(L).

e For each (g,7) € Zdv(R), Xr(R) in any reduced ring R, we have (a), = (ra), (see [8, Remark 2.4]). Now,
we assume that (a, ) € r(R(L)) dev(R(L)) such that coz(a) £ coz(B). Therefore, every element of (af3)

is a zero-divisor element, but (af) is not an r-ideal. Since if (af) is an r-ideal, then (a), = (af), = (ap)
implies (@) C (@f), which is a contradiction.

e Suppose a ¢ r(R(L)) andp € r(R(L)) such that (coz(a) \Y coz(ﬁ)) = T. Therefore, every element I = (af5)
is a zero-divisor element, but I is not an r-ideal. For this, suppose I is an r-ideal. Then I, = I implies
that ap € I. Since § € r(R(L)) implies that a € I. Therefore, there is 6 € R(L) such that a = a5, which
implies coz(a) < coz(B). So it is followed

cL(coz(ﬁ)) = CL(COZ((X)) A cL(coz(ﬁ)) = cL(coz(ac) \ coz(ﬁ)) = (T)=0.

Therefore, (coz(B) = T, which is a contradiction.

Ex3

e Suppose that (a, f) € r(R(L)) X R(L) are noninvertible such that cL(coz(ﬁ)) c DL(coz(a)> and (coz(ﬁ)) =

coz(B). We consider | := {y € R(L): coz(y) < coz(aﬁ)}. Therefore, | is a z-ideal of R(L) consisting
entirely of zero-divisors which it is not r-ideal. It is clear that | is a z-ideal and af € J. Now suppose
by contradiction that y € ] N r(R(L)). So, by Proposition 3.1, we have

1= (COZ()/))* > (COZ(O(ﬁ))* > (COZ(D() A COZ(‘B))* > (coz(oz))’e \Y (coz([ﬂ))*,

which implies that coz(f) = (coz(ﬁ))ﬁ = T, which contradicts our assumption. Now suppose by

contradiction that | is an r-ideal. Since o € r(R(L)) implies that 8 € ], therefore, coz(B) < coz(af) <
coz(a). On the other hand, according to the assumption, we have coz(a) V coz(f) = T, which is
obtained coz(B) = T, a contradiction.
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5. The concept of z,-ideal and s,-ideal in the ring R(L)

The concept of z,-ideal and s,-ideals in the ring C(X) was studied for the first time in [8]. They investigated
the properties of these ideals in the ring C(X) and stated some of their properties in any reduced ring.

In this section, we determine the concept of z,-ideals and s,-ideals in the ring R(L) according to the
concept of r-ideals and examine their characteristics and relationships with each other. We also indicate the
frames L for which z,-ideals coincide with some other types of ideals.

Definition 5.1. An ideal I of R(L) is said to be a z,-ideal if it is an r-ideal which is also a z-ideal.

Remark 5.2. Let L be a completely regular frame. Then we have:

(1) By [26, Theorem 2.19(a)], every z%-ideal in a ring R is an r-ideal which implies that every z%-ideal of
R(L) is a z,-ideal of R(L). Also, by [26, Remark 2.3(f)], every minimal prime ideal is an r-ideal in R(L).
Hence, every minimal prime ideal in R(L) is a z,-ideal of R(L).

(2) It is well known that the intersection of any family of z-ideals is a z-ideal. Also, by [26, Remark 2.3]
the intersection of any family of r-ideals is an r-ideal. Hence, the intersection of any family of z,-ideals
of R(L) is a z,-ideal of R(L).

(3) Itis well known that if I and | are z-ideals of R(L), then I] = I N J. Hence, the product of two z,-ideals
in R(L) is a z,-ideal.

By Remark 5.2, the smallest z,-ideal containing a given ideal I exists and we denote it by I, . In fact L, is the
intersection of all z,-ideals containing I.

Proposition 5.3. For each ideal I of R(L), the following statements are true.
(1) L, = (1)) = @) = (L)) -
@) L, = {o € R(L): coz(ta) < coz(B) for some (B, 7) € I X f(R(L)}.

Proof. (1). Let I be a proper ideal of R(L). If I N r(R(L) # 0, then L, = ((Ir)z)r = (L), = R(L). Now, we can
choose I N r(R(L) = 0. Let (a, B) € (I.), X R(L) with coz(a) = coz(f) be given. Then there exists an element t
in r(ﬂ(L)) such that 7a € I, and from coz(ta) = coz(7f5), we conclude that 7 € I, C (I;),, which implies that

B € (I.)r. Thus (I,), is a z,-ideal. Now suppose ] is a z,-ideal contains I. Take a € (I;),, then ta € I, for some
TE r(R(L)). But I, C J, so ta € J. Since | is an r-ideal, then a € J. Therefore, (I,), = L, .

Since I C I,, we infer that (I,), C ((I’)Z)r’ On the other hand, if a € (I,),, then there exists an element § in I,
such that coz(a) = coz(g), which implies that for some y € r(‘R(L), yB €I C I, and coz(yp) = coz(ya), and we

deduce that « € (I;),. Thus we have (I;); C (I;);, which implies that ((Ir)z)r C (I,),. Therefore, ((I’)Z)y = (L,),.
The rest is trivial.
(2). We set

T:= {a € R(L): coz(tar) < coz(B) for some (B, 7) € I X r(R(L)}.

If a € (I,),, then there exists an element 7 in r(R(L)) such that o € I, which implies that there exists an
element § in I such that coz(ta) = coz(f), and we deduce that @ € T. Hence, (I;), C T. On the other hand, if

a € T, then there exists an element (§, 7) in I X r(R(L)) such that coz(ra) < coz(p), which implies that ta € I,
and so a € (I;),. Hence, (I,), =T. O

In the following remark, we intend to provide a basic z,-ideal with respect to the basic z-ideal and use it to
express and prove an algebraic equivalent for the concept of z,-ideal.
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Remark 5.4. It is well known that M, := {ﬁ € R(L): coz(B) < Coz((x)} is a basic z-ideal of R(L) for every
a € R(L). Then, by Proposition 5.3,

(My)z, = My), = {,B € R(L): yB € M, for some y € r(R(L)}
= {ﬁ € R(L): coz(yp) < coz(a) for some y € r(R(L)}.

Suppose that g € (M,),, then there is an element 6 in r(R(L)) such that
coz(6) A coz(p) = coz(6p) < coz(a),

which implies from 6 € r(R(L)) that

ok
7

coz(B)” = coz(0)" A coz(B)” = (coz(é) A coz(ﬁ))ﬂ < (coz(oz))

and we deduce from [13, Lemma 4.1] that Ann(a) € Ann(B). Therefore, § € P,. Hence, M, C (M,), € P, for
each a € R(L).

Lemma 5.5. An ideal I in the ring R(L) is a z,-ideal if and only if (M,), C I for each o € I.

Proof. Necessity. Suppose a € I. By remark 5.4, if § € (M,),, thereis y € r(R(L)) such that coz(yg) < coz(a).
Since I is a z,-ideal, we infer that g € I. Hence, (M,), C .

Sufficiency. Suppose (a, p) € R(L)xr(R(L)) such that af € I. Since coz(af) < coz(af) by remark 5.4 implies
that & € (M,p),. It follows from the assumption that a € I and [ is an r-ideal. Now suppose coz(f) < coz(a)
anda € I. Since T € r(R(L)), by remark 5.4 and our assumption implies that € I. Therefore [ is a z,-ideal.

Lemma 5.6. If I is an ideal of R(L) and B € Y. 4e;(Ma)r. Then, there is o € I such that B € (M,),.

Proof. Suppose B € Y. ,ei(My),. Therefore, there are ay,--- ,a, € I such that g € Y.\, (M,,),. For every
1 < i < n, there exists an element ; € (M,,), such that § = 1 + --- + . By remark 5.4, there is y; € r(R(L))

such that coz(y;f;) < coz(a;). If we put y := y1y2---yn € r(R(L)), then coz(yg;) < coz(yif;) < coz(a;) for
every i. Therefore,

n n

coz(yp) = coz()/(ﬁl +oot ﬁn)) < \/ coz(yBi) < \/ coz(a;) = coz(aj + -+ + a3).

i=1 i=1
Since y € r(R(L)), we conclude from remark 5.4 that € (Ma$+...+a3)y and oc% +-+a2el O
Corollary 5.7. An ideal I of R(L) is a z,-ideal if and only if I =}, ,c;(Ma);.

Proof. 1t is evident by using Lemmas 5.5 and 5.6. [J

Now, in the next proposition, we present other equivalents for the concept of z-ideals based on cozero
elements.

Proposition 5.8. The following statements are equivalent for an ideal I of R(L).
(1) The ideal I is a z,-ideal.
(2) If (o, B, 7) € I x R(L) X 1(R(L)) with coz(ta) = coz(tp), then f € .
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(3) If (a, B, 7) € I x R(L) X 1(R(L)) with coz(tp) < coz(a), then p € I.

Proof. (1) = (2). Let (a,8,7) € I x R(L) X r(R(L)) with coz(ta) = coz(tp) be given. Since I is a z-ideal and
ta € I, we infer that 78 € I, which implies that § € I, because I is an r-ideal.

(2)= (3). Let (a, B, 7) € IXR(L) X r(R(L)) with coz(tf) < coz(a). Then coz(tf) = coz(tpa), which implies
from (ap, ,7) € I x R(L) x r(R(L)) that B € I.

(3) = (1). If we put T = T in (3), we deduce that I is a z-ideal. Let (a, ) € R(L) X r(R(L)) with ta € I be
given. From coz(ta) < coz(ta), we infer from part (3) that a € I. Hence, I is a z,-ideal. O

Proposition 5.9. Let I be an ideal of R(L) with I N r(??(L) = 0. If I is a z,-ideal, then P is a z,-ideal for every
P e Min(l). The converse is also true if I is a semiprime ideal.

Proof. The first part is evident by [26, Theorem 2.20] and [25, corollary after Theorem 1.1 ]. Now, let I be a
semiprime ideal of R(L) such that P is a z,-ideal for every P € Min(I). Since any intersection of z,-ideals is a
z,-ideal of R(L), we conclude that I is a z,-ideal of R(L) and we are through. [

We recall from [9] that if the open quotient of every dense cozero element is a C*-quotient, the frame L is
called quasi F-frame. In [14], the properties of quasi-F-frame were investigated and equivalents for these
frames were proved, which we use to prove the following theorem. In the following theorem, we show
that the sum of z,-ideals in R(L) behaves similar to the sum of z-ideals in R(L).

Theorem 5.10. The sum of every two z,-ideals in R(L) is a z,-ideal or all of R(L) if and only if L is a quasi-F-frame.
Proof. Necessity. Let a, € R(L) with (coz(a) v coz(ﬁ))* = 1 be given. If & € r(R(L)) or € r(R(L)), then, by

*%

Lemma 3.1, (coz(a))w \ (coz(ﬁ)) = T. Now, suppose that @ and § are zero-divisors in R(L). Then, by [4,
Remark 1.1 ], P, and Py are z%-ideal, which implies from remark 5.2 that they are z,-ideal. Thus, according
to the assumption, P, + Py is a z-ideal or all of R(L). Since a® + g% € r(R(L)) and a® + B? € P, + P, so
Py + Pg = R(L). Hence, there exists 6 € P, and y € Py such that 6 + y = 1. So we have

T = coz(1) = coz(6 + y) < coz(d) V coz(y).

On the other hand, by [1, proposition 4.2],
(coz(a))* < (coz(é))* and (coz(ﬁ))* < (coz(y))

%
7

which implies that

ok

T =coz(6) V coz(y) < (coz(é))ﬂ \% (coz(y)) < (coz(a))“ \Y (coz(ﬁ))
Therefore, by [14, proposition 3.1], L is a quasi-F-frame.

Sufficiency. Let L be a quasi-F-frame and I, | be two z,-ideals of R(L) and I + | # R(L). Since, by [17,
Proposition 5.1], the sum of two z-ideals of R(L) is always a z-ideal of R(L), it suffices to show that I + | is
an r-ideal of R(L). Let T € Min(I + ) be given. Since T is a prime ideal and I C T, we infer that there exists
an element P in Min(I) such that P € T. Thus, by [26, Theorem 2.20], P is an r-ideal of R(L), and by [28,
Corollary 7.2.2], P is a z,-ideal of R(L). Similarly, there exists an element Q in Min(J) with Q € T such that
Qs a z,-ideal of R(L). If P and Q are in a chain, say P C Q, wehave I + ] € P+ Q = Q € T, which implies
from T € Min(I + J) that T = Q is a z,-ideal of R(L). Now, we suppose that P and Q are not in a chain.
Let Ip and Ip are minimal prime ideals of R(L) such that Ip € P and Iy € Q. Then, by [2, Lemma 4.8], [17,
Proposition 5.1], and [25, corollary after Theorem 1.1], Ip + I is a prime z-ideal of R(L), which implies from
[11, Proposition 3.7] that P + Q = Ip + I, and because T is a minimal prime over I + |, we conclude that T
is equal to P + Q. Consequently, in both cases T is a z,-ideal of R(L) and this means that T is a z,-ideal of
R(L) for every T € Min(! + J). Since I + | is a z-ideal of R(L), we conclude from proposition 5.9 that [ + [ is a
z,-ideal of R(L). O

EE3
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Corollary 5.11. In every almost P-frame the sum of every two z,-ideals in R(L) is a z,-ideal or all of R(L).

Proof. According to [14, Corollary 3.3] and Theorem 5.10, it is obvious. [

According to the Theorem 5.10, whenever L is a quasi-F-frame, then there is the largest z,-ideal included
in I for every ideal I of R(L), that with I* it is displayed. Actually I*, the sum of all z,-ideals included in I.

Corollary 5.12. If L is a quasi-F-frame and I is an ideal in R(L), then

Fr= ) (M)

(Muz )r cl

Proof. Suppose that | := }. ) c;(Ma);- Since L is a quasi-F-frame, we conclude from Theorem 5.10 that | is
a z,-ideal in R(L). On the other hand, if K is a z,-ideal in R(L) included in I and § € K, then, by Lemma 5.5,
(Mp)r € K. Since K C I implies that § € J. Therefore, KC J. [

Proposition 5.13. For two ideals I and | in R(L), the following relations hold:
(D (AN ))2)r = (L)r 0 (J2)r = ((I]2)r = (L) ()
(2) (L)r + U2)r € (A + )2
Proof. According to the definition and properties r-ideals and z-ideals, relationships are established. [J

As we observed every z%-ideal in R(L) is a z,-ideal. The following theorem, characterizes the frames L for
which the converse also holds, i.e., every z,-ideal of R(L) is a z9-ideal.

Theorem 5.14. A frame L is a weakly almost P-frame if and only if every z,-ideal in R(L) is a z°-ideal of R(L).

Proof. Necessity. Let I be a z,-ideal in R(L) and P € Min(I). Then, by Proposition 5.9, P is a z,-ideal, which
implies from [16, Proposition 3.1] that P is a z°-ideal of R(L). Since I = pemin() P, we infer that I'is a z0-ideal
of R(L).

Sufficiency. Let a, p € R(L) with (coz(oz))* < (coz(ﬁ))* be given. According to our hypothesis, (M,); is a
z%-ideal. From a € (M,), and (coz(a))* < (coz(,B))*, we infer that € (M,),, which implies that there exists
an element y in r(R(L)) such that

coz(B) A coz(y) = coz(By) < coz(a).
Therefore, by Lemma 3.1 and definition, L is an weakly almost P-frame. [J
Corollary 5.15. If L is a weakly almost P-frame, then every z-ideals in the class of all r-ideals of R(L) is a z°-ideal
Proof. 1t is evident by Proposition 5.14. [J
Corollary 5.16. A frame L is an almost P-frame if and only if every z-ideal of R(L) is a z,-ideal.
Proof. By Proposition 4.1, it is evident. [J
Corollary 5.17. For an ideal I and a prime ideal Q in R(L), if I N Q is a z,-ideal, then one of them is a z,-ideal.

Proof. By [7, Proposition 2.8] and Proposition 4.4, it is evident. [

In the continuation of this section, by introducing the concept of s,-ideal in the ring R(L), in the next remark
and proposition, we express the connection of this ideal with z,-ideals. We specify a frame where the
s,-ideals coincide with the z,-ideals.
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Definition 5.18. Anideal I of R(L) is said to be an s,-ideal if it is an r-ideal which is also a semiprime ideal.

Remark 5.19. It is clear that every z,-ideal is an s,-ideal. But every s,-ideal is not necessarily a z,-ideal. For
this, if a frame L is not a cozero complemented frame, then, by Proposition 3.2, there exists a prime r-ideal
Q that is not z-ideal. Therefore, Q is an s,-ideal that is not a z,-ideal.

Proposition 5.20. A frame L is a cozero complemented frame if and only if every s,-ideal in R(L) is a z,-ideal.

Proof. Necessity. By Proposition 3.2, it is evident that every s,-ideal in R(L) is a z,-ideal in R(L).

Sufficiency. Let P be a prime r-ideal in R(L). Then, by our hypothesis, P is a z-ideal. Hence, by Proposition
3.2, L is a cozero complemented frame. [J

The intersection of any family of s,-ideals is an s,-ideal. Therefore, for every proper ideal I in the ring
R(L) with r(R(L)) NI =, there is the smallest s,-ideal including I, which we represent by I .

Corollary 5.21. For every ideal I of R(L), we have I, = /I,.

Proof. By definition, we always have I, C I;,. Since [, is an s,-ideal and according to [8, Lemma 4.1], implies
that VI, C I;,. On the other hand, since I, is the smallest s,-ideal including I, implies that I;, C VI, O

We recall from [4] that for a reduced ring R with the property A that for every ideal I with r(R) N I = 0 of
R there is a smallest z’-ideal including I. Therefore for every ideal I with r(ﬁ(L)) NI =0 of R(L), there is a
smallest z%-ideal including I which we denote by Iy and Iy = {a € R(L) : Ann(B) C Ann(a) for some B € I}.

Corollary 5.22. For every proper ideal I of R(L) with r(R(L)) Nnli=0g,
Icl, Cl, CL, Cl.
Proof. Itisevident. [J

We recall from [26] that the product of r-ideals is not necessarily an r-ideal, but by Remark 5.2, the product
of z,-ideals is a z,-ideal. In the following proposition, we state the condition that if the product of two ideals
becomes a z,-ideal (or an s,-ideal), then one of them is a z,-ideal (or an s,-ideal).

Proposition 5.23. Suppose that I and | are two ideals in R(L) and r(R(L)) N1 # 0. Then, the following statements
are true.

(1) If1] is an s,-ideal of R(L), then | is a s,-ideal of R(L).
(2) If1] is a z,-ideal of R(L), then | is a z,-ideal of R(L).

Proof. (1). Suppose thaty € r(R(L)) N 1. If ] is not a semiprime ideal of R(L), then there exists an element «
in R(L) such that a ¢ | and " € ] for some n € IN, which implies that y"a" € I], but I] is a s, ideal, hence
a € I] € | and this is a contradiction. Accordingly, | is a semiprime ideal and it remains to show that |
is a r-ideal of R(L). Let (o, 1) € R(L) X r(R(L)) with 7a € | be given. Then yta € I], which implies by our
hypothesis that a € I] C J.

(2). Suppose that y € r(R(L)) N 1. Let (a,p) € ] x R(L) with coz(a) = coz(p) be given. Then coz(ya) =
coz(yp), which implies from ya € I] and Proposition 5.8 that § € I] C |, because I] is a z,-ideal of R(L).
Therefore, | is a z-ideal of R(L). The proof of r-ideality of ] is similar to the proof of the part (1). O

According to Theorem 5.10, in the next theorem, we show that the sum of s,-ideals in R(L) behaves similar
to the sum of z,-ideals in R(L).
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Theorem 5.24. A frame L is a quasi-F-frame if and only if the sum of every two s,-ideals in R(L) is a s,-ideal or all
of R(L).

Proof. Necessity. Suppose I and | are two s,-ideals of R(L) and I + | # R(L). Thus, by [30, Lemma 5.1], I + ] is
a semiprime ideal of R(L). By a straightforward modification in the proof of Theorem 5.10, we obtain I + |
is an r-ideal of R(L). Therefore, I + | is an s,-ideal of R(L).

Sufficiency. Suppose I and | are two z,-ideals of R(L). Then I and | are two s,-ideals of R(L), and according
to our hypothesis, I + ] is an s,-ideal of R(L). On the other hand, by [17, Proposition 5.1], I + ] is a z-ideal,
which implies that I + | is a z,-ideal of R(L). Therefore, by Theorem 5.10, L is a quasi-F-frame. [

We recall from [1] that for every ideal I with r(R(L)) NI = 0 of R(L), if L is a quasi-F-frame, there is a
largest z%-ideal contained in I. We represent by I which it is largest z’-ideal contained in I and

P={aecRL): Ann(p) € Ann(a) implies § € I for every € R(L)}

Also, for ideal I with r(ﬂ(L)) NI = 0 of R(L) and using Theorem 5.24, if our frame is a quasi-F-frame,
then there exists the largest s,-ideal contained in I, which we denote by I*.

Corollary 5.25. If L is a quasi-F-frame, then for every ideal I of R(L) with r(R(L)) NI =0, we have;
PcFCcFNFCF+FCL

Proof. According to definitions I*" and I and Remark 5.19, the proof is clear. [

In Corollaries 5.22 and 5.25, we saw a chain of ideals. At the end of this section, a systematic chain of
well-known ideals and ideals introduced in this paper is presented in special frames.

Corollary 5.26. If L is a quasi-F-frame and almost P-frame, then
PcPF=FcrclIcl,cl,CL=1 Cl
for every ideal I of R(L) with r(R(L)) NI=20.

Proof. Using Proposition 4.1 and Theorems 5.10 and 5.24, as well as the characteristics of this class of ideals,
the proof is obvious. [
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