Filomat 38:33 (2024), 11711–11729 https://doi.org/10.2298/FIL2433711K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On *r***-ideals of** R(*L*)

Zohreh Norozi Khoshmardan^a , Ali Akbar Estajia,[∗] **, Rahimeh Pourkhandani^a**

^aFaculty of Mathematics and Computer Science, Hakim Sabzevari University, Sabzevar, Iran

Abstract. In this paper, we study the concept of *r*-ideal (a proper ideal *I* in a ring *R* is said to be an *r*-ideal if *ra* ∈ *I* with Ann(*r*) = (0), implies that *a* ∈ *I* for each *a*,*r* ∈ *R*) in the ring *R*(*L*), as the point-free counterpart of *C*(*X*) and a reduced commutative ring. We investigate the behavior of this type of ideal in the ring R(*L*) for cozero complemented frames, *P*-frames, almost *P*-frames, and weakly almost *P*-frames. We prove the characterization of these frames via the concept of *r*-ideal in the ring R(*L*).

We examine other groups of ideals, namely z_r -ideal and s_r -ideal in the ring $\mathcal{R}(L)$, by combining the concept of *r*-ideal with *z*-ideal and also with the semiprime ideal. We show that the sum of the *zr*-ideals in the ring R(L) has the same behavior as the z⁰-ideals in this ring in a simple way: The sum of every two *zr*-ideals in R(*L*) is a *zr*-ideal or all of R(*L*) if and only if *L* is a quasi-*F*-frame. Here, this fact is also proved for *sr*-ideals.

1. Introduction

The abstract lattice of open sets can contain a lot of information about a topological space. By this fact, the point-free topology provides a good constructive foundation for topological theories, as argued by Ball and Walters-Wayland [\[9\]](#page-17-0): "... what the point-free formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent." In an overview of the historical development of this theory, it can be seen the works of [\[9,](#page-17-0) [10,](#page-17-1) [20,](#page-18-0) [22,](#page-18-1) [23,](#page-18-2) [29\]](#page-18-3), as some of the pioneers that made a point-free approach to *C*(*X*), the ring of real-valued continuous functions on a completely regular Hausdorff space *X*.

Dube is one who played an effective role in extending the study of ring R(*L*). He introduced and characterized some frames related to R(*L*) and determined their properties, especially the cozero complemented frames and weakly almost *P*-frames [\[11](#page-17-2)[–17\]](#page-18-4).

Ideals play a fundamental role in studying the structure of $C(X)$. In this paper, we consider $\mathcal{R}(L)$, with a completely regular frame *L* and study some types of the ideals in it. One of these is *r*-ideal, introduced in the context of the theory of commutative ring by Mohamadian [\[26\]](#page-18-5) in 2015. He investigated generally the behavior of *r*-ideals in commutative rings. Also, as a significant result, he considered *C*(*X*) and proved that every ideal in *C*(*X*) is an *r*-ideal if and only if *X* is almost *P*-space. Moreover, he showed that in cozero complemented spaces (*m*-spaces), every prime *r*-ideal of *C*(*X*) is a *z* 0 -ideal. Inspired by it, we determine the

²⁰²⁰ *Mathematics Subject Classification*. Primary: 06D22; Secondary: 54C30, 54C05, 13A15

Keywords. *r*-ideal, *zr*-ideal, *sr*-ideal, cozero complemented frame, almost *P*-frame

Received: 10 January 2024; Revised: 22 August 2024; Accepted: 30 September 2024

Communicated by Ljubiša D. R. Kočinac

^{*} Corresponding author: Ali Akbar Estaji

Email addresses: z.norozi@hsu.ac.ir (Zohreh Norozi Khoshmardan), aaestaji@hsu.ac.ir (Ali Akbar Estaji),

r.pourkhandani@hsu.ac.ir (Rahimeh Pourkhandani)

r-ideals in R(*L*) and their properties. We establish similar results, as in *C*(*X*), and we characterize the frame *L* with respect to the behavior of *r*-ideal in it.

In 2021, Azarpanah, Mohamadian, and Monjezi [\[8\]](#page-17-3) introduced another class of ideals based on the *r*-ideal concept called *zr*-ideal and *sr*-ideal in a ring *C*(*X*). The class of *zr*-ideals can be considered between the two classes of z^0 -ideals and *z*-ideals. They showed that the sum of *z*_{*r*}-ideals in the ring *C*(*X*) behaves similarly to the sum of *z* 0 -ideals in the ring *C*(*X*). They investigated the properties of *zr*-ideals and *sr*-ideals in the ring *C*(*X*) and obtained interesting results. Also, they showed that a space is the cozero complemented space if and only if every *zr*-ideal of *C*(*X*) is an *sr*-ideal of *C*(*X*).

The plan of this paper is as follows:

In Section 2, we present the basic concepts of frames and ring R(*L*), which are needed in this paper.

In Section 3, we examine *r*-ideals in cozero complemented frames. We express and prove equivalences for these frames based on the concept of *r*-ideals. Also, we show that in cozero complemented frames, every *r*-ideal is a *z*-ideal and every prime *r*-ideal is a z^0 -ideal of the ring $R(L)$. We discuss the above in Proposition [3.2](#page-4-0) and in Corollaries [3.3](#page-5-0) and [3.6.](#page-7-0)

In Section 4, we examine *r*-ideals in *P*-frames and almost *P*-frames. To learn about these frames, see [\[9,](#page-17-0) [12,](#page-17-4) [13,](#page-17-5) [15,](#page-17-6) [16\]](#page-17-7). We express and prove equivalences for almost *P*-frames based on the concept of *r*-ideal. We show that in *P*-frames, the set of all *r*-ideals coincides with the set of all *z*-ideals of R(*L*). We discuss the above in Proposition [4.1](#page-8-0) and in Corollary [4.3.](#page-9-0)

In the last section, we define the concept of *zr*-ideals and *sr*-ideals in the ring R(*L*) and examine the characteristics of these types of ideals. We show in Theorem [5.10](#page-14-0) that a frame *L* is a quasi-*F*-frame if and only if the sum of both *zr*-ideals in R(*L*) is a *zr*-ideal or the whole ring. We also propose and prove this statement about *sr*-ideals in Theorem [5.24.](#page-17-8) To learn about these frames, see [\[14\]](#page-17-9). Also, after examining the relationship of *r*-ideals, *zr*-ideals, and *sr*-ideals with each other as well as with other known ideals in the ring R(*L*), we present a regular chain of these ideals in Corollaries [5.22,](#page-16-0) [5.25,](#page-17-10) and [5.26.](#page-17-11)

2. Preliminaries

2.1. Ring

A ring *R* is reduced if it has no nonzero nilpotent elements. The principal ideal of a ring generated by an element *a* in *R* is denoted by (*a*), and for $S \subseteq R$, the set $\{x \in R : xs = 0 \text{ for each } s \in S\}$ is the annihilator of *S*, which is denoted by Ann(*S*).

From [\[26\]](#page-18-5), we recall that a proper ideal *I* in a commutative ring *R* is said to be an **r-ideal** if $ra \in I$ with *r* ∈ **r**(*R*) := {*x* ∈ *R*: Ann(*x*) = (0)} implies that *a* ∈ *I* for each *a*, *r* ∈ *R*.

Also, we recall from [\[27\]](#page-18-6) that for any multiplicative closed set *S* of a ring *R*, the *S*-component of an ideal *I* is defined by $I_S := \{x \in R: \text{ There exists } s \in S \text{ for some } xs \in I\}.$ Since the set $r(R)$ is a multiplicative closed set, similarly it is defined the set $I_r := \{a \in R : \text{There exists } r \in r(R) \text{ for some } ra \in I\} \text{ of } I.$

Clearly, if $I \cap r(R) \neq \emptyset$, then $I_r = R$. In [\[8,](#page-17-3) Lemma 2.2], it was shown, for an ideal *I* of a reduced ring *R* with $I \cap r(R) = \emptyset$, that the set I_r is the smallest *r*-ideal containing *I*. Also, they showed in the same lemma that *I* is an *r*-ideal if and only if $I = I_r$.

2.2. Frame L and the ring R(*L*)

For a general theory of frames, we refer to [\[22\]](#page-18-1). Also, for more information about frames and ring R(*L*), refer to [\[29\]](#page-18-3). Here we collect a few facts that will be relevant for our discussion.

Recall that a **frame (locale)** is a complete lattice *L* in which the distributive law $a \wedge \sqrt{S} = \sqrt{a \wedge x | x \in S}$ holds for all *a*×*S* ∈ *L*×P(*L*). We denote the top element and the bottom element of *L* by ⊤ and ⊥, respectively. The **pseudocomplement** of an element \vec{a} in a frame L is the element \vec{a}^* that is

$$
a^* = \bigvee \{x \in L \mid x \wedge a = \bot\}.
$$

An element *a* of frame *L* is **complemented** if $a \lor a^* = \top$, and it is **dense** if $a^* = \bot$.

A **frame homomorphism** is a map between frames that preserves finite meets including the top element, and arbitrary joins including the bottom element.

Regarding the frame of reals $\mathcal{L}(\mathbb{R})$ and the *f*-ring $\mathcal{R}(L)$ of continuous real-valued functions on *L*, we use the notation of [\[10\]](#page-17-1). A **continuous real function** on a frame is a homomorphism $\mathcal{L}(\mathbb{R}) \to L$. The set of all continuous real functions on a frame *L* is denoted by R(*L*).

It is known that the mapping coz : $R(L) \longrightarrow L$ is given by

$$
coz(\alpha) = \bigvee \bigg\{ \alpha(p, 0) \vee \alpha(0, q) \, | \, p, q \in \mathbb{Q} \bigg\}.
$$

A **cozero element** of *L* is an element of the form $\cos(\alpha)$ for some $\alpha \in \mathcal{R}(L)$. The cozero part of *L* is denoted by Coz (*L*). For every $\alpha, \beta \in \mathcal{R}(L)$, we frequently use the following properties:

- (1) $\cos(\alpha\beta) = \cos(\alpha) \wedge \cos(\beta)$,
- (2) $\cos(\alpha + \beta) \leq \cos(\alpha) \vee \cos(\beta) = \cos(\alpha^2 + \beta^2)$,
- (3) $\alpha \in \mathcal{R}(L)$ is invertible if and only if $\cos(\alpha) = \top$,
- (4) $\cos(\alpha) = \pm$ if and only if $\alpha = 0$.

From (1) and (4), it follows that $R(L)$ has no nonzero nilpotent element. Consequently, a prime ideal $P \in R(L)$ is minimal prime if and only if for every $\varphi \in P$, there exists $\psi \notin P$ such that $\varphi \psi = 0$.

For any *x* and *y* in a frame *L*, we say that *x* is **completely below** *y* in *L* and write $x \ll y$ if there exists a trail $\{x_i\}_{i\in[0,1]\cap\mathbb{Q}} \subseteq L$ such that $x_0 = x$, $x_1 = y$, and for every $p, q \in [0,1] \cap \mathbb{Q}$ with $p < q$, $x_p < x_q$. A frame L is called **completely regular** if for every $a \in L$, we have $a = \bigvee_{b \prec a} b$. An ideal *I* of *L* is called completely regular if for any *a* ∈ *I*, there exists *b* ∈ *I* such that *a* \ll *b*. The frame β *L* is the frame of all completely regular ideals of *L*, and β*L* is the Stone-*C*˘ech compactification of a completely regular frame *L*. The map

$$
r_L(x \mapsto \{a \in L : a \ll x\}) : L \to \beta L
$$

is the right adjoint of the join map

$$
\bigvee \big(I \mapsto \bigvee I\big) : \beta L \to L.
$$

We recall from [\[13,](#page-17-5) Definition 4.10] that an ideal *I* of $\mathcal{R}(L)$ is called a **z-ideal** if, for any $\alpha \in \mathcal{R}(L)$ and $\beta \in I$, $\text{coz}(\alpha) = \text{coz}(\beta)$ implies $\alpha \in I$ and it is called **d-ideal** (it is discussed in this paper under the title z^0 -ideal) if, for any $\alpha \in \mathcal{R}(L)$ and $\beta \in I$, $\cos(\alpha) \leq (\cos(\beta))^*$ implies $\alpha \in I$. Also, we can see equivalence for it in [\[1,](#page-17-12) Proposition 4.1]; for example, an ideal *I* of $\mathcal{R}(L)$ is a z^0 -ideal if, for any $(\alpha, \beta) \in I \times \mathcal{R}(L)$, $(\cos(\alpha))^* = (\cos(\beta))^*$ implies β ∈ *I*. Also, we remember from [\[13\]](#page-17-5) that for each *I* ∈ β*L*, the ideal *M^I* of R(*L*) is defined by $M^I := \{ \alpha \in \mathcal{R}(L) \colon r_L(\cos(\alpha)) \subseteq I \}$, which is a *z*-ideal, and the ideal O^I of $\mathcal{R}(L)$ is defined by $O^I := \big\{ \alpha \in \mathcal{R}(L) \colon r_L(\text{coz}(\alpha)) \ll I \big\}$, which is a z⁰-ideal.

2.3. Sublocale

For a locale *L*, a subset *S* ⊆ *L* is a **sublocale** if and only if

$$
M \subseteq L \implies \bigwedge M \in S
$$
 and $(x \in L, s \in S) \implies x \to s \in S$.

The subset *S* is a frame in the order of *L* and inherits its Heyting structure. The smallest sublocale of *L* is O = {⊤} and is called the void sublocale, and the largest sublocale of *L* is *L*. The open and the closed sublocales corresponding to each $a \in L$ are, respectively, the sublocales

$$
\mathfrak{o}_L(a) = \{a \to x \mid x \in L\} = \{x \mid x = a \to x\} \quad \text{and} \quad \mathfrak{c}_L(a) = \uparrow a = \{x \in L \mid x \ge a\}.
$$

Some of their properties, which we shall freely use, are as follows:

- (1) $\mathfrak{o}_L(\bot) = \mathfrak{c}_L(\top) = 0$ and $\mathfrak{o}_L(\top) = \mathfrak{c}_L(\bot) = L$.
- (2) $c_L(a) \subseteq o_L(b)$ if and only if $a \vee b = \top$ and $o_L(a) \subseteq c_L(b)$ if and only if $a \wedge b = \bot$.
- (3) $\mathfrak{v}_L(a) \cap \mathfrak{v}_L(b) = \mathfrak{v}_L(a \wedge b)$ and $\mathfrak{c}_L(a) \vee \mathfrak{c}_L(b) = \mathfrak{c}_L(a \wedge b)$.
- (4) \bigvee_i $\mathfrak{d}_L(a_i) = \mathfrak{d}_L(\bigvee_i a_i)$ and $\bigcap_i \mathfrak{c}_L(a_i) = \mathfrak{c}_L(\bigvee_i a_i)$.
- (5) $\text{int}_{L}(c_{L}(a)) = o_{L}(a^{*}).$
- (6) $cl_L(\rho_L(a)) = c_L(a^*)$.

3. On cozero complemented frames

In this section, we examine the *r*-ideals in the cozero complemented frames. We show that in these frames, every prime *r*-ideal of $R(L)$ is a z⁰-ideal, and every prime z⁰-ideal in $R(L)$ is a minimal prime ideal of R(*L*). Also, based on the *r*-ideal concept, we state and prove other equivalents for cozero complemented frames.

We recall from [\[21\]](#page-18-7) that a space *X* is called a **cozero complemented space** if, for each cozero set *B* of *X*, there exists a cozero set *D* in *X* such that $B \cap D = \emptyset$ and $B \cup D$ is dense in *X*. These spaces were first studied in [\[21,](#page-18-7) [24\]](#page-18-8), and they were also studied under the name of *m*-space in [\[6\]](#page-17-13).

The cozero complemented frame was introduced and reviewed in [\[15\]](#page-17-6). A frame *L* has been defined in [\[15\]](#page-17-6) to be **cozero complemented** if for every $c \in \text{Coz}(L)$, there is $d \in \text{Coz}(L)$ such that $c \wedge d = \perp$ and $c \vee d$ is dense. In [\[15\]](#page-17-6), it was shown that a frame *L* is cozero complemented if and only if for each $\alpha \in \mathcal{R}(L)$, there is an element β in $\mathcal{R}(L)\setminus Zdv(\mathcal{R}(L))$ such that $\alpha\beta=\alpha^2$ if and only if for every $\alpha\in\mathcal{R}(L)$, there is $\beta\in\mathcal{R}(L)$ such that $\cos(\alpha)^{**} = \cos(\beta)^*$ (see [\[15,](#page-17-6) Corollary 3.2]).

Throughout this paper, for every $\alpha \in \mathcal{R}(L)$, we define

$$
h(\alpha) := \{ P \in \text{Min}(\mathcal{R}(L)) \colon \alpha \in P \}
$$

Then, we use the following lemma many times in proving propositions.

Lemma 3.1. *Let* $\alpha \in \mathcal{R}(L)$ *be given. Then, the following statements are equivalent:*

- (1) $Ann(\alpha) = (0)$ *.*
- (2) $int_L(c_L(coz(\alpha))) = O.$
- (3) $\big(\text{coz}(\alpha) \big)^* = \bot$.
- (4) $h(\alpha) = \emptyset$.

Proof. (1) \Rightarrow (2). We argue by contradiction. Let us assume that $int_L(c_L(coz(\alpha))) \neq 0$. Then, there exists an element $b\neq \top$ in $\mathrm{int}_L\bigl(\mathfrak{c}_L\bigl(\mathrm{coz}(\alpha)\bigr)\bigr)=\mathfrak{o}_L\bigl(\mathrm{coz}(\alpha)^*\bigr).$ Hence, by [\[18,](#page-18-9) Proposition 3.4], there exists an element $\mathbf{0} \neq \delta$ in $\mathcal{R}^*(L)$ such that

$$
\mathfrak{c}_L((\mathrm{coz}(\alpha))^*)\subseteq\mathrm{int}_L\big(\mathfrak{c}_L\big(\mathrm{coz}(\delta)\big)\big)\subseteq\mathfrak{c}_L\big(\mathrm{coz}(\delta)\big).
$$

Therefore, we have

$$
L = c_L(\cos(\alpha)^*) \vee o_L(\cos(\alpha)^*) \subseteq c_L(\cos(\delta)) \vee int_L(c_L(\cos(\alpha))) \subseteq c_L(\cos(\delta)) \vee c_L(\cos(\alpha))
$$

= $c_L(\cos(\delta) \wedge \cos(\alpha)) = c_L(\cos(\delta\alpha))$,

which implies that $\delta \alpha = 0$, and this is a contradiction.

 $(2) \Rightarrow (3)$. It is evident.

(3) \Rightarrow (4). We suppose, by way of contradiction, that $h(\alpha) \neq \emptyset$. Then there exists an element *P* in $\text{Min}(\mathcal{R}(L))$ such that $\alpha \in P$, which implies from [\[19,](#page-18-10) Corollary 1.2] that there is an element β in $\mathcal{R}(L)\setminus P$ such that $\alpha \beta = 0$, and we obtain

$$
\mathrm{coz}(\beta)\leq\Big(\mathrm{coz}(\beta)\Big)^{**}=\Big(\mathrm{coz}(\alpha)\Big)^{**}\wedge\Big(\mathrm{coz}(\beta)\Big)^{**}=\Big(\mathrm{coz}(\alpha)\wedge\mathrm{coz}(\beta)\Big)^{**}=\bot,
$$

and this is a contradiction.

(4) \Rightarrow (1). Let us assume that Ann(α) \neq (0). We are seeking a contradiction. Then there exists an element $0 \neq \beta$ in $\mathcal{R}(L)$ such that $\alpha\beta = 0$, which implies from $h(\alpha) = \emptyset$ that $\beta \in \bigcap \text{Min}(\mathcal{R}(L)) = (0)$, which is a contradiction. \square

In the following proposition, we examine the relationship between *r*-ideals and *z*-ideals in cozero complemented frames, and we give equivalent definitions for these frames.

Proposition 3.2. *The following statements are equivalent for a completely regular frame L:*

- *(1) Every r-ideal of* R(*L*) *is a z-ideal.*
- *(2) Every prime r-ideal of* R(*L*) *is a z-ideal.*
- *(3) For every* α ∈ R(*L*)*, there exists an element* β *in* R(*L*) *such that*

$$
\mathfrak{c}_L\big(\text{coz}(\alpha)\big) \vee \mathfrak{c}_L\big(\text{coz}(\beta)\big) = L \text{ and } \text{int}_L\big(\mathfrak{c}_L\big(\text{coz}(\alpha)\big) \wedge \mathfrak{c}_L\big(\text{coz}(\beta)\big)\big) = O.
$$

(4) For every α ∈ R(*L*)*, there exists an element* β *in* R(*L*) *such that*

$$
\mathrm{cl}_L\big(\mathrm{int}_L\big(\mathrm{c}_L(\mathrm{coz}(\alpha))\big)\big)=\mathrm{cl}_L\big(\mathrm{c}_L(\mathrm{coz}(\beta))\big).
$$

- *(5) The frame L is a cozero complemented frame.*
- *(6) For every* α ∈ R(*L*)*, there exists an element* β *in* R(*L*) *such that*

$$
cl_L(\mathfrak{o}_L(\cos(\alpha)) \vee \mathfrak{o}_L(\cos(\beta))) = L \text{ and } \mathfrak{o}_L(\cos(\alpha)) \wedge \mathfrak{o}_L(\cos(\beta)) = O.
$$

(7) For each $\alpha \in \mathcal{R}(L)$, $(\alpha)_r = (\alpha^2)_r$.

Proof. (1) \Rightarrow (2). It is evident.

(2) \Rightarrow (3). If $\alpha \in r(\mathcal{R}(L))$, then it is enough to consider $\beta = 0$. Thus, let $\alpha \in \mathcal{R}(L) \setminus r(\mathcal{R}(L))$ be given. Then, by [\[26,](#page-18-5) Theorem 2.20], if $P \in \text{Min}((\alpha)_r)$, then it is an *r*-ideal of $\mathcal{R}(L)$, which implies from our hypothesis that it is a *z*-ideal of $\mathcal{R}(L)$. Hence, by [\[28,](#page-18-11) Corollary 7.2.2], (*a*)_{*r*} is a *z*-ideal, which implies that $\alpha^{\frac{1}{3}} \in (\alpha)_r$. In consequence, there exists an element γ in $r(\mathcal{R}(L))$ such that $\gamma\alpha^{\frac{1}{3}}\in(\alpha)$, and we deduce that there exists an element δ in $\mathcal{R}(L)$ such that $\gamma \alpha^{\frac{1}{3}} = \alpha \delta$. We set $\beta := \gamma - \alpha^{\frac{2}{3}} \delta$. Now it is trivial that

$$
\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big) \vee \mathfrak{c}_L\big(\mathrm{coz}(\beta)\big) = \mathfrak{c}_L\big(\mathrm{coz}(\alpha\beta)\big) = \mathfrak{c}_L(\mathbf{0}) = L.
$$

Let $a \in \mathfrak{c}_L\big(\mathrm{coz}(\alpha) \big) \wedge \mathfrak{c}_L\big(\mathrm{coz}(\gamma) \big)$ be given. Then

$$
\cos(\beta) = \cos(\gamma - \alpha^{\frac{2}{3}}\delta) \le (\cos(\gamma) \vee \cos(\alpha)) \wedge (\cos(\gamma) \vee \cos(\delta)) \le (\cos(\gamma) \vee \cos(\alpha)) \le a,
$$

which implies that $a \in \mathfrak{c}_L(\cos(\alpha)) \wedge \mathfrak{c}_L(\cos(\beta))$. Now, suppose that $a \in \mathfrak{c}_L(\cos(\alpha)) \wedge \mathfrak{c}_L(\cos(\beta))$. Then

$$
\mathrm{coz}(\gamma) = \mathrm{coz}(\beta + \alpha^{\frac{2}{3}}\delta) \le (\mathrm{coz}(\beta) \vee \mathrm{coz}(\alpha)) \wedge (\mathrm{coz}(\beta) \vee \mathrm{coz}(\delta)) \le (\mathrm{coz}(\beta) \vee \mathrm{coz}(\alpha)) \le a,
$$

which implies that $a \in \mathfrak{c}_L\big(\mathrm{coz}(a)\big) \wedge \mathfrak{c}_L\big(\mathrm{coz}(\gamma)\big)$. Therefore,

$$
int_L(c_L(coz(\alpha)) \wedge c_L(coz(\beta))) = int_L(c_L(coz(\alpha)) \wedge c_L(coz(\gamma))) \leq int_Lc_L(coz(\gamma)) = O.
$$

(3) \Rightarrow (4). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $c_L(coz(\alpha)) \vee c_L(coz(\beta)) = L$ and $int_L(c_L(coz(\alpha)) \wedge c_L(coz(\beta))) = O$, which implies that $coz(\alpha) \wedge coz(\beta) = \perp$ and $(coz(\alpha))^* \wedge (cos(\beta))^* = \bot$. We deduce that $(coz(\alpha))^{**} = (cos(\beta))^*$. Therefore, $cl_L(int_L(c_1(coz(\alpha)))) =$ $\text{cl}_L\big(\mathfrak{o}_L\big(\text{coz}(\beta)\big)\big).$

(4) \Rightarrow (5). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $\text{cl}_{L}(\text{int}_{L}(\text{c}_{L}(\text{coz}(\alpha)))) = \text{cl}_{L}(\text{o}_{L}(\text{coz}(\beta)))$, which implies that $(\text{coz}(\alpha))^{**} = (\text{coz}(\beta))^{*}$. Therefore, *L* is a cozero complemented frame.

 $(5) \Rightarrow (6)$. Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $\text{coz}(\alpha) \wedge \text{coz}(\beta) = \perp$ and $\text{coz}(\alpha) \vee \text{coz}(\beta)$ is a dense element of *L*, which implies that

$$
\mathrm{cl}_L\big(\mathrm{O}_L\big(\mathrm{coz}(\alpha)\big) \vee \mathrm{O}_L\big(\mathrm{coz}(\beta)\big)\big) = \mathrm{c}_L\big(\big(\mathrm{coz}(\alpha) \vee \mathrm{coz}(\beta)\big)^*\big) = L
$$

and

$$
\mathfrak{d}_L\big(\mathrm{coz}(\alpha)\big) \wedge \mathfrak{d}_L\big(\mathrm{coz}(\beta)\big) = \mathfrak{d}_L\big(\mathrm{coz}(\alpha) \wedge \mathrm{coz}(\beta)\big) = \mathrm{O}.
$$

 $(6) \Rightarrow (5)$ and $(6) \Rightarrow (7)$. Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that

$$
\mathfrak{c}_L((\mathfrak{coz}(\alpha)\vee\mathfrak{coz}(\beta))^{*})=\mathfrak{cl}_L(\mathfrak{o}_L(\mathfrak{coz}(\alpha))\vee\mathfrak{o}_L(\mathfrak{coz}(\beta)))=L
$$

and

$$
\mathfrak{v}_{L}(\text{coz}(\alpha) \wedge \text{coz}(\beta)) = \mathfrak{v}_{L}(\text{coz}(\alpha)) \wedge \mathfrak{v}_{L}(\text{coz}(\beta)) = \text{O},
$$

which implies that $\cos(\alpha) \wedge \cos(\beta) = \pm$ and $\cos(\alpha) \vee \cos(\beta)$ is a dense element of *L*. Therefore, *L* is a cozero complemented frame. Thus, by [\[15,](#page-17-6) Proposition 1.1], there is a nonzero-divisor γ in $\mathcal{R}(L)$ such that $\alpha\gamma = \alpha^2$. It is evident that $(\alpha^2)_r \subseteq (\alpha)_r$. Now, suppose that $\mu \in (\alpha)_r$. Then there exists an element τ in $r(\mathcal{R}(L))$ such that $\mu\tau \in (\alpha)$, which implies that there exists an element δ in $\mathcal{R}(L)$ such that $\mu\tau = \delta\alpha$. We conclude that $\mu \tau \gamma = \delta \alpha \gamma = \delta \alpha^2 \in (\alpha^2)$, and so $\mu \in (\alpha^2)_r$. Therefore, $(\alpha^2)_r = (\alpha)_r$.

(7) \Rightarrow (5) and (7) \Rightarrow (1). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in *r*(*R*(*L*)) such that $\alpha^2 = \beta \alpha$. Therefore, *L* is a cozero complemented frame.

Now, suppose that *I* is an *r*-ideal of $\mathcal{R}(L)$. Let $\alpha, \gamma \in I \times \mathcal{R}(L)$ with coz $(\alpha) = \cos(\gamma)$ be given. Then, there exists an element β in $\mathcal{R}(L)$ such that $\cos(\alpha) \wedge \cos(\beta) = \bot$ and $\cos(\alpha) \vee \cos(\beta)$ is a dense element of *L*, which implies from Lemma [3.1](#page-3-0) that $\alpha\beta = 0$ and $\delta := \alpha^2 + \beta^2 \in r(\mathcal{R}(L))$. We deduce that $\gamma\beta = 0$, and so from $\gamma \delta = \gamma \alpha^2 \in I$, we conclude that $\gamma \in I$. Therefore, *I* is a *z*-ideal of $\mathcal{R}(L)$. \Box

In the following corollary, according to Proposition [3.2,](#page-4-0) for an arbitrary ideal *I* in R(*L*), where *L* is a cozero complemented frame, we express the relationship between the smallest *r*-ideal containing *I* and the smallest *z*-ideal containing *I*.

Corollary 3.3. *The following statements are equivalent for a completely regular frame L:*

- *(1) A frame L is a cozero complemented frame.*
- *(2) Every r-ideal of* R(*L*) *is semiprime.*
- *(3) For each ideal I of* $\mathcal{R}(L)$ *,* $I_z \subseteq I_r$.

Proof. (1) \Rightarrow (2). Let *I* be an *r*-ideal of R(*L*). Then, by Proposition [3.2,](#page-4-0) *I* is a *z*-ideal of R(*L*), which implies that it is a semiprime ideal of R(*L*).

(2) \Rightarrow (1). By our hypothesis, $(\alpha^2)_r$ is semiprime for each $\alpha \in \mathcal{R}(L)$, which implies that $\alpha \in (\alpha^2)_r$. Therefore, for each $\alpha \in \mathcal{R}(L)$, $(\alpha)_r = (\alpha^2)_r$ and by using Proposition [3.2,](#page-4-0) *L* is a cozero complemented frame.

(2) ⇒ (3). Let *I* be an ideal of R(*L*). Then, by Proposition [3.2,](#page-4-0) every prime *r*-ideal of R(*L*) is a *z*-ideal, which implies that $I_z \subseteq I_r$.

(3) \Rightarrow (2). If *I* is an *r*-ideal of *R*(*L*), then, by our hypothesis, *I*_z ⊆ *I_r* = *I*, which implies that *I* = *I*_z, that is, *I* is a *z*-ideal. We deduce that *I* is a semiprime ideal of $\mathcal{R}(L)$. \square

To state the next proposition, we first prove the following lemma and show that a frame *L* is a cozero completed frame if and only if every prime z⁰-ideal in $\mathcal{R}(L)$ is a minimal prime ideal.

Lemma 3.4. *The following statements are true, for every* $\alpha, \beta \in \mathcal{R}(L)$ *:*

(1) $h(\alpha) \cap h(\beta) = \emptyset$ *if and only if* $h(\beta) \subseteq h(Ann(\alpha)).$

- (2) $h(\text{Ann}(\alpha)) \subseteq h(\beta)$ *if and only if* $\mathfrak{c}_L(\text{coz}(\alpha)) \vee \mathfrak{c}_L(\text{coz}(\beta)) = L$.
- (3) $h(\beta) \subseteq h(Ann(\alpha))$ *if and only if* $int_L(c_L(coz(\alpha)) \wedge c_L(coz(\beta))) = 0$.

Proof. (1). *Necessity.* Let $P \in h(\beta)$ be given. Then, by our hypothesis, $\alpha \notin P$. Hence, we have

 $\delta \in \text{Ann}(\alpha) \Rightarrow \delta \alpha = 0 \in P \Rightarrow \delta \in P$.

Therefore, $h(\beta) \subseteq h(\text{Ann}(\alpha)).$

Sufficiency. We proceed by contradiction. Assume that $h(\alpha) \cap h(\beta) \neq \emptyset$. Then there exists an element *P* in $h(\alpha) \cap h(\beta)$, which implies from our hypothesis that $P \in h(Ann(\alpha))$. By [\[19,](#page-18-10) Theorem 2.3], $h(\alpha)$ and $h\big(\text{Ann}(\alpha)\big)$ are disjoint open and closed sets, but this is a contradiction to the fact that $P\in h(\alpha)\cap h\big(\text{Ann}(\alpha)\big).$

(2). *Necessity.* Since $Ann(\alpha)$ is a *z*-ideal of $R(L)$, we infer from our hypothesis that

$$
\beta\in\bigcap h(\beta)\subseteq\bigcap h\big(\mathrm{Ann}(\alpha)\big)=\mathrm{Ann}(\alpha)
$$

which implies that

$$
\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big) \vee \mathfrak{c}_L\big(\mathrm{coz}(\beta)\big) = \mathfrak{c}_L\big(\mathrm{coz}(\alpha\beta)\big) = \mathfrak{c}_L(0) = L.
$$

Sufficiency. Let $P \in h(\text{Ann}(\alpha))$ be given. Then, by [\[19,](#page-18-10) Theorem 2.3], $P \in \text{Min}(\mathcal{R}(L)) \setminus h(\alpha)$, which implies that $\alpha \notin P$. Since, by our hypothesis, $\alpha\beta = 0 \in P$, we conclude that $P \in h(\beta)$. Thus, $h(Ann(\alpha)) \subseteq h(\beta)$.

(3). We always have $h(\beta) \subseteq h(\text{Ann}(\alpha))$ if and only if $h(\alpha) \cap h(\beta) = \emptyset$ if and only if $h(\alpha^2 + \beta^2) = \emptyset$ if and only if, by Lemma [3.1,](#page-3-0)

$$
int_{L}(c_{L}(coz(\alpha)) \wedge c_{L}(coz(\beta))) = int_{L}c_{L}(coz(\alpha^{2} + \beta^{2})) = O.
$$

We recall from [\[5\]](#page-17-14) that for every *a* in a ring *R*, $P_a = \bigcap h(a)$. Also, an ideal *I* in a commutative ring *R* is said to be a z^0 -ideal if *I* consists of zero-divisors and for each $a \in I$, the intersection of all minimal prime ideals containing *a* is contained in *I* (for any $a \in I$ implies that $P_a \subseteq I$). In a ring $\mathcal{R}(L)$, by [\[4,](#page-17-15) Proposition 1.5], we have

$$
P_{\alpha} = \{ \beta \in \mathcal{R}(L) \colon \text{Ann}(\alpha) \subseteq \text{Ann}(\beta) \},
$$

and by $[13, \text{Lemma } 4.1]$ $[13, \text{Lemma } 4.1]$, we have

$$
P_{\alpha} = \left\{ \beta \in \mathcal{R}(L) : \left(\text{coz}(\alpha) \right)^* \le \left(\text{coz}(\beta) \right)^* \right\}
$$

for every $\alpha \in \mathcal{R}(L)$. Also, we recall from [\[1\]](#page-17-12) that $P_{\alpha} \cap P_{\beta} = P_{\alpha\beta}$ and $P_{\alpha} + P_{\beta} \subseteq P_{\alpha^2 + \beta^2}$ for every $\alpha, \beta \in \mathcal{R}(L)$.

Proposition 3.5. *The following statements are equivalent for a completely regular frame L:*

- *(1) The frame L is a cozero complemented frame.*
- *(2) Every prime z*⁰ *-ideal in* R(*L*) *is a minimal prime ideal.*
- *(3) For every* $α ∈ R(L)$ *, there exists an element* $β$ *in* $R(L)$ *such that*

$$
\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big) \vee \mathfrak{c}_L\big(\mathrm{coz}(\beta)\big) = L \text{ and } \mathrm{int}_L\big(\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big) \wedge \mathfrak{c}_L\big(\mathrm{coz}(\beta)\big)\big) = \mathrm{O}.
$$

Proof. (1) \Rightarrow (2). Let a prime z^0 -ideal *P* be given. Suppose that prime ideal *Q* in *R*(*L*) such that *Q* ⊆ *P* with $Q \neq P$. Then, there exists an element $\alpha \in P \setminus Q$, which implies by our hypothesis that there is an element β in $\mathcal{R}(L)$ such that $\mathfrak{c}_L\big(\mathrm{coz}(\alpha\beta)\big)=\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big)\vee\mathfrak{c}_L\big(\mathrm{coz}(\beta)\big)=L$ and $\mathrm{int}_L\big(\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big)\wedge\mathfrak{c}_L\big(\mathrm{coz}(\beta)\big)=\mathsf{O}.$ Since $0 = \alpha \beta \in Q \subseteq P$, we deduce that $\beta \in Q \subseteq P$. Hence $\alpha^2 + \beta^2 \in P$. On the other hand, we have

$$
\mathrm{int}_L\big(c_L\big(\mathrm{coz}(\alpha^2+\beta^2)\big)\big)=\mathrm{int}_L\big(c_L\big(\mathrm{coz}(\alpha)\big)\wedge c_L\big(\mathrm{coz}(\beta)\big)\big)=O=\mathrm{int}_L\big(c_L(1)\big).
$$

Since *P* is a z^0 -ideal, it follows that $1 \in P$, and this is a contradiction. Therefore, *P* is a minimal prime ideal. (2) \Rightarrow (3). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by [\[6,](#page-17-13) Proposition 1.5], there exists an element β in $\mathcal{R}(L)$ such that

Ann(α) = P_{β} . It is evident that $h(\beta) = h(P_{\beta}) = h(Ann(\alpha))$, which implies from Lemma [3.4](#page-6-0) that

$$
\mathfrak{c}_L(\mathfrak{coz}(\alpha)) \vee \mathfrak{c}_L(\mathfrak{coz}(\beta)) = L \text{ and } \mathfrak{int}_L(\mathfrak{c}_L(\mathfrak{coz}(\alpha)) \wedge \mathfrak{c}_L(\mathfrak{coz}(\beta))) = O.
$$

 $(3) \Rightarrow (1)$. By Proposition [3.2,](#page-4-0) it is evident. \Box

In the last result of this section, we derive another equivalent for cozero complemented frames based on the notion of *r*-ideal, which shows that there exists a prime *r*-ideal that is not z^0 -ideal.

Corollary 3.6. *A frame L is a cozero complemented frame if and only if every prime r-ideal of* R(*L*) *is a z*⁰ *-ideal.*

Proof. Necessity. Let *I* be a prime *r*-ideal of $\mathcal{R}(L)$ with $(coz(\alpha))^* = (coz(\beta))^*$ for $(\alpha, \beta) \in I \times \mathcal{R}(L)$. According to our assumption and Proposition [3.2,](#page-4-0) there exists $\delta \in \mathcal{R}(L)$ such that

$$
\mathfrak{c}_L\big(\text{coz}(\beta)\big) \vee \mathfrak{c}_L\big(\text{coz}(\delta)\big) = L \quad \text{ and } \quad \text{int}_L\big(\mathfrak{c}_L\big(\text{coz}(\beta)\big)\big) \wedge \text{int}_L\big(\mathfrak{c}_L\big(\text{coz}(\delta)\big)\big) = O.
$$

Thus, $\beta \delta = 0$ and $(\beta^2 + \delta^2) \in r(\mathcal{R}(L))$. Since $int_L(c_L(coz(\beta))) = int_L(c_L(coz(\alpha)))$, it is obtained that $(\alpha^2 + \delta^2) \in$ $r(\mathcal{R}(L))$. Since *I* is a prime ideal of $\mathcal{R}(L)$ and βδ ∈ *I*, it is obtained that β ∈ *I* or δ ∈ *I*. If δ ∈ *I*, then (α² + δ²) ∈ *I*, which contradicts with *I* being an *r*-ideal. Therefore, β ∈ *I*.

Sufficiency. It is clear by Proposition [3.2.](#page-4-0) \Box

Remark 3.7. The converse of parts (1) and (6) of [\[8,](#page-17-3) Lemma 2.2] is not necessarily true. For this, since $\cos(\alpha) \vee (\cos(\alpha))^* = \pm \cos(\alpha \cos(\alpha)) \cdot \sin(\alpha)$ if and only if $\sin(\cos(\alpha)) \leq \frac{\pi}{\pi} \cdot ((\cos(\alpha))^*) = \frac{\pi}{\pi} \cdot (\cos(\alpha))$, therefore \mathfrak{c}_L (coz(*a*)) is open for every $\alpha \in \mathcal{R}(L)$ if and only if *L* is a *P*-frame (see [\[9,](#page-17-0) Defnition 8.4.6]).

Now suppose that *L* is a cozero complemented frame and it is not a *P*-frame. Therefore, there exists a nonzero element $\alpha\in \mathcal R(L)\smallsetminus {\rm r}\big(\mathcal R(L)\big)$ such that $\mathfrak c_L\big(\rm{coz}(\alpha)\big)$ is not open. Since L is a cozero complemented frame by Proposition [3.2,](#page-4-0) $\big(\text{coz}(\alpha) \big)$ *_r* is a z-ideal. Indeed $(\cos(\alpha))$ is not a semiprime ideal because $\mathfrak{c}_L(\cos(\alpha))$ is not open.

4. Some of the connections between almost *P***-frames and** *r***-ideals**

We recall from [\[9,](#page-17-0) Defnition 8.4.6] that a frame *L* is called a *P*-frame if $a \lor a^* = \top$ for every $a \in \text{Coz}(L)$. A frame *L* is said to be an almost *P*-frame if $a = a^{**}$ for all $a \in \text{Coz}(L)$. Almost *P*-frames first appeared in [\[9\]](#page-17-0) and were also studied in [\[13,](#page-17-5) [20\]](#page-18-0). Dube [\[13\]](#page-17-5) showed that a frame *L* is an almost *P*-frame if and only if $R(L) = Zdv(R(L)) \cup Inv(R(L))$, where $Zdv(R(L))$ denotes the set of all zero-divisor elements of $R(L)$ and Inv $\bigl(\mathcal{R}(L)\bigr)$ denotes the set of all invertible elements of $\mathcal{R}(L).$

It has already been shown that frame *L* is an almost *P*-frame if and only if every *z*-ideal is a *z* 0 -ideal (see [\[13,](#page-17-5) Proposition 4.13]). In the following proposition, we state another proof based on the concept of *r*-ideals. We also express and prove other equivalents for these frames in the following proposition.

Proposition 4.1. *The following statements are equivalent for a completely regular frame L:*

- *(1) A frame L is an almost P-frame.*
- *(2) Every proper ideal in* R(*L*) *is an r-ideal.*
- (3) *Every z-ideal in* $R(L)$ *is a z*⁰-ideal.
- *(4) Every z-ideal in* R(*L*) *is an r-ideal.*
- *(5) For each ideal I of* $\mathcal{R}(L)$ *, I_r* \subseteq *I_z*.
- *(6) Every prime z-ideal of* R(*L*) *is an r-ideal.*
- *(7) Every maximal ideal of* R(*L*) *is an r-ideal.*

Proof. (1) \Rightarrow (2). Let *I* be an ideal in $\mathcal{R}(L)$ and let $(\alpha, \tau) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\alpha\tau \in I$ be given. Then, by our hypothesis, τ is an invertible element in $\mathcal{R}(L)$, which implies that $\alpha \in I$. Therefore, *I* is an *r*-ideal.

(2) \Rightarrow (3). First, we show that for every $\alpha \in \mathcal{R}(L)$, if $(coz(\alpha))^* = \bot$, then $\cos(\alpha) = \top$. Then we show that for every $\alpha \in \mathcal{R}(L)$, $(\cos(\alpha))^* = \cos(\alpha)$. Let $\alpha \in \mathcal{R}(L)$ with $(\cos(\alpha))^* = \bot$ be given. Then

$$
int_{L} (c_{L} (cot(\alpha))) = o_{L} ((cot(\alpha))^{*}) = o_{L}(\bot) = O,
$$

which implies that $\alpha \in r(\mathcal{R}(L))$. If coz(α) $\neq \top$, then (α) is a proper ideal, which implies from our hypothesis that (*α*) is an *r*-ideal in $\mathcal{R}(L)$. Since (*α*) \cap *r*($\mathcal{R}(L)$) \neq *Ø*, we conclude that (*α*) = (*α*)*r* = $\mathcal{R}(L)$, which is a contradiction. Therefore, $\cos(\alpha) = \top$.

Let $\alpha \in \mathcal{R}(L)$ be given. Then, we have

$$
x \ll (\cos(\alpha))^{\ast\ast} \Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) \left(\cos(\beta) \land x = \bot \text{ and } \cos(\beta) \lor (\cos(\alpha))^{\ast\ast} = \top\right)
$$

\n
$$
\Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) \left(\cos(\beta) \land x = \bot \text{ and }
$$

\n
$$
\left(\cos(\beta) \lor \cos(\alpha)\right)^{\ast} = \left(\cos(\beta) \lor \left(\cos(\alpha)\right)^{\ast\ast}\right)^{\ast} = \bot\right)
$$

\n
$$
\Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) \left(\cos(\beta) \land x = \bot \text{ and } \cos(\beta) \lor \cos(\alpha) = \top\right)
$$

\n
$$
\Rightarrow x < \cos(\alpha).
$$

Hence, $(\text{coz}(a))^{**} = \bigvee_{x \prec (\text{coz}(a))^{**}} x \leq \bigvee_{x \prec \text{coz}(a)} x = \text{coz}(a) \leq (\text{coz}(a))^{**}$, which implies that $\text{coz}(a) = (\text{coz}(a))^{**}$.

Let *I* be a *z*-ideal and let $(\alpha, \beta) \in I \times \mathcal{R}(L)$ with $(coz(\alpha))^* = (coz(\beta))^*$ be given. Then $coz(\alpha) = coz(\beta)$, which implies that $\beta \in I$. Hence, *I* is a *z*⁰-ideal.

 $(3) \Rightarrow (4)$. It is evident.

 $(4) \Rightarrow (5)$. Using our hypothesis, I_z is an *r*-ideal containing *I*, and so $I_r \subseteq I_z$.

- (5) ⇒ (6). If *P* is a prime *z*-ideal, then $P_r \subseteq P_z = P$, which implies that *P* is an *r*-ideal.
- $(6) \Rightarrow (7)$. It is evident.

 $(7) \Rightarrow (1)$. Suppose that *L* is not an almost *P*-frame. Then, there is an element α in $r(R(L)) \setminus Inv(R(L))$, which implies that there is a maximal ideal *M* of $\mathcal{R}(L)$ such that (α) $\subseteq M$. Now, by our hypothesis, *M* is an *r*-ideal. This is a contradiction, since α ∈ *M* is a nonzero-divisor element. Therefore, *L* is an almost *P*-frame.

Example 4.2. Suppose that *L* is not an almost *P*-frame. Then, there exists an element α in $r(\mathcal{R}(L))$ such that it is a noninvertible element in $\mathcal{R}(L)$. Consequently, there is a maximal ideal *M* in $\mathcal{R}(L)$ such that $(\alpha) \subseteq M$. So, *M* is a prime *z*-ideal, which is not an *r*-ideal.

According to Proposition [3.2,](#page-4-0) if a frame *L* is not a cozero complemented frame, then there is a prime *r*-ideal such that is not a *z*-ideal, or if the frame *L* is not a *P*-frame but is an almost *P*-frame, then by [\[3,](#page-17-16) Theorem 4.1], there is a prime ideal *Q* such that it is not a *z*-ideal. On the other hand, by Proposition [4.1,](#page-8-0) *Q* is an *r*-ideal. Then *Q* is a prime *r*-ideal such that it is not a *z*-ideal. Also, according to Proposition [4.1,](#page-8-0) if a frame *L* is not an almost *P*-frame, then there is a prime *z*-ideal such that it is not an *r*-ideal.

For an arbitrary ideal *I* in the ring $R(L)$, we see the relation between I_r and I_z in Corollary [3.3](#page-5-0) and Proposition [4.1.](#page-8-0) In the next corollary, we show that, in *P*-frames, every *r*-ideal is a *z*-ideal and vice versa, that is, $I_r = I_z$.

Corollary 4.3. *The following statements are equivalent for a completely regular frame L:*

- (1) *The frame L is a P-frame.*
- (2) *The frame L is a cozero complemented frame and almost P-frame.*
- (3) *For every ideal I of* R(*L*)*, it is a z-ideal of* R(*L*) *if and only if it is an r-ideal of* R(*L*)*.*
- (4) For each ideal I of $\mathcal{R}(L)$, $I_z = I_r$.

Proof. (1) \Rightarrow (2). From [\[12,](#page-17-4) Proposition 3.9] and Proposition [3.2,](#page-4-0) *L* is a cozero complemented frame. Also, from [\[13,](#page-17-5) Proposition 3.3], *L* is an almost *P*-frame.

 $(2) \Rightarrow (3)$. Let *I* be an ideal of $\mathcal{R}(L)$. Then, by Proposition [4.1,](#page-8-0) *I* is an *r*-ideal of $\mathcal{R}(L)$, which implies form Proposition [3.2](#page-4-0) that *I* is a *z*-ideal of R(*L*). Hence, for every ideal *I* of R(*L*), it is an *r*-ideal of R(*L*) and also, it is a *z*-ideal of $R(L)$.

 $(3) \Rightarrow (4)$. It is evident.

 $(4) \Rightarrow (2)$ and $(4) \Rightarrow (1)$. By Propositions [3.3](#page-5-0) and [4.1,](#page-8-0) *L* is a cozero complemented frame and an almost *P*-frame. Let *I* be a proper ideal of R(*L*). Then, by Proposition [4.1,](#page-8-0) *I* is an *r*-ideal of R(*L*), which implies form Proposition [3.2](#page-4-0) that *I* is a *z*-ideal of $R(L)$. Therefore, by [\[12,](#page-17-4) Proposition 3.9], *L* is a *P*-frame. \Box

It was shown in [\[26\]](#page-18-5) that the intersection of any family of *r*-ideals is an *r*-ideal, but their product and sum are not necessarily an *r*-ideal. In the following lemma and proposition, we will investigate what happens if the product or sum of a prime ideal in another ideal becomes an *r*-ideal. For frames that are almost *P*-frames, we give another equivalent.

Lemma 4.4. Let R be a reduce commutative ring and let $(I, P) \in \text{Id}(R) \times \text{Spec}(R)$. Then, the following statements *are true:*

- (1) *If IP is an r-ideal, then I or P is an r-ideal.*
- (2) If IP is an r-ideal and $I \nsubseteq P$, then P is an r-ideal.
- (3) *If I* ∩ *P is an r-ideal, then I or P is an r-ideal.*
- (4) *Let I and P be prime ideals that are not in a chain. If I* ∩ *P is an r-ideal, then I and P are r-ideals.*

Proof. (1). It is evident that if $P \cap r(R) = \emptyset$, then *P* is an *r*-ideal. Now, suppose that $r \in P \cap r(R)$. Then for every *i* ∈ *I*, *ir* ∈ *IP*, which implies that *i* ∈ *IP*, and we get that *IP* = *I* is an *r*-ideal.

(2). Let $(a, b) \in r(R) \times R$ with $ab \in P$ be given. By our hypothesis, there exists an element *i* in *I* \ *P*, such that $iab ∈ IP$, which implies that $ib ∈ IP ⊆ P$. We obtain $b ∈ P$. Therefore, P is an r-ideal.

(3). If $I \subseteq P$, that is $I \cap P = I$, then, by our hypothesis, *I* is an *r*-ideal. Now, suppose that $I \nsubseteq P$. Then, there exists an element *i* in *I* \ *P*. Let $(a, b) \in r(R) \times R$ with $ab \in P$ be given. Then, $iab \in I \cap P$, which implies that *ib* ∈ *I* ∩ *P* ⊆ *P*, and we obtain *b* ∈ *P*. Therefore, *P* is an *r*-ideal.

(4). The proof is similar to the proof of part (3). \square

Proposition 4.5. *The following statements are equivalent for a completely regular frame L:*

- *(1) The frame L is an almost P-frame.*
- (2) For every (*I*, *P*) ∈ Id($\mathcal{R}(L)$) × Spec($\mathcal{R}(L)$), if *I* ∩ *P* is an r-ideal in $\mathcal{R}(L)$, then *I* and *P* are r-ideals.
- (3) For every $(I, P) \in \text{Id}(\mathcal{R}(L)) \times \text{Spec}(\mathcal{R}(L))$, if IP is an r-ideal in $\mathcal{R}(L)$, then I and P are r-ideals.

Proof. By proposition 4.1 , (1) \Rightarrow (2) and (1) \Rightarrow (3) are evident.

 $(2) \Rightarrow (1)$. Suppose that *L* is not an almost *P*-frame. Then, there is an element α in $r(R(L)) \setminus Inv(R(L))$, which implies that there is a maximal ideal *M* of $\mathcal{R}(L)$ such that $(\alpha) \subseteq M$ and $M_r = \mathcal{R}(L)$. Let *Q* be a minimal prime ideal of $R(L)$ such that $Q ⊆ M$. Then, by [\[26,](#page-18-5) Remark 2.3], $Q ∩ M = Q$ is an *r*-ideal, which implies from our hypothesis that *M* is an *r*-ideal, and this is a contradiction.

 $(3) \Rightarrow (1)$. Suppose that *L* is not an almost *P*-frame. Then, there exists an element α in $r(\mathcal{R}(L)) \setminus Inv(\mathcal{R}(L))$, Δ *M*^{*I*} curves that there exists an element *I* in Σβ*L* such that (α) \subseteq M ^{*I*}. It is evident that $O^I = O^I \cap M^I = O^I M^I$ is a *z* 0 -ideal in R(*L*), which implies from [\[26,](#page-18-5) Theorem 2.19] that *OIM^I* is an *r*-ideal in R(*L*). Then, by our hypothesis, M^I is an *r*-ideal in $\mathcal{R}(L)$, and this is a contradiction to the fact that $\alpha\in M^I\cap r\big(\mathcal{R}(L)\big).$ Therefore, *L* is an almost *P*-frame.

A **weakly almost** *P***-space** is a topological space *X* such that for every two zerosets *Z* and *F* with int*Z* ⊆ int *F*, there exists a zeroset *E* in *X* with empty interior such that *Z* ⊆ *F* ∪ *E*. This space was studied for the first time in [\[6\]](#page-17-13). Every almost *P*-space is a weakly almost *P*-space. More generally, any space in which every closed set (boundary of any zeroset) is contained in a zeroset with empty interior (for example, a metric space), is a weakly almost *P*-space. In 2015, the concept of weak almost *P*-frame and some of its features were studied and investigated [\[16\]](#page-17-7). It was shown that if β*L* is a weak almost *P*-frame, so is *L* (see [\[16,](#page-17-7) Corollary 2.10]), and conversely, if *L* is a continuous Lindelaof frame, so is βL (see [16, Proposition 2.12]). We recall from [\[16,](#page-17-7) Definition 2.1] that a completely regular frame *L* is a **weak almost** *P***-frame** if *a* and *b* are cozero elements of *L* with $a^* \leq b^*$, then there is a dense cozero element *c* such that $b \wedge c \leq a$. Every almost *P*-frame and every cozero complemented frame is a weakly almost *P*-frame (see [\[16,](#page-17-7) Examples 2.2 and 2.3]).

In the following proposition, we express and prove a definition equivalent to weakly almost *P*-frames based on closed sublocales.

Proposition 4.6. A frame L is a weakly almost P-frame if and only if for every $\alpha, \beta \in \mathcal{R}(L)$ with $int_L(c_L(coz(\alpha))) \subseteq$ int*^L* c*L* coz(β) *, there exists an element* γ *in* r R(*L*) *such that* c*^L* coz(α) ⊆ c*^L* coz(β) ∨ c*^L* coz(γ) *.*

Proof. Necessity. Suppose L *is a weakly almost* P *-frame. Let* $\alpha,\beta\in\mathcal{R}(L)$ *with* $\text{int}_L\big(\mathfrak{c}_L\big(\text{coz}(\alpha)\big)\big)\subseteq\text{int}_L\big(\mathfrak{c}_L\big(\text{coz}(\beta)\big)\big)$ be given. Then $(coz(\alpha))^* \leq (coz(\beta))^*$, which implies from our hypothesis that there exists an element γ in $R(L)$ with $(coz(y))^* = \bot$ such that $\cos(y) \wedge \cos(\beta) \leq \cos(\alpha)$. We deduce that $\gamma \in r(R(L))$ and

$$
\mathfrak{c}_L\big(\mathrm{coz}(\alpha)\big) \subseteq \mathfrak{c}_L\big(\mathrm{coz}(\beta)\big) \vee \mathfrak{c}_L\big(\mathrm{coz}(\gamma)\big).
$$

 $Sufficientity.$ Let $\alpha, \beta \in \mathcal{R}(L)$ with $(\text{coz}(\alpha))^* \leq (\text{coz}(\beta))^*$ be given. Then,

$$
\text{int}_{L}(\mathfrak{c}_{L}(\text{coz}(\alpha))) = \mathfrak{o}_{L}((\text{coz}(\alpha))^{*}) \subseteq \mathfrak{o}_{L}((\text{coz}(\beta))^{*}) = \text{int}_{L}(\mathfrak{c}_{L}(\text{coz}(\beta))).
$$

which implies from our hypothesis that there exists an element γ in r $\big(R(L)\big)$ such that $\frak{c}_L\big(\frak{coz}(\alpha)\big)\subseteq\frak{c}_L\big(\frak{coz}(\beta)\big)\vee$ c_L (coz(γ)). We deduce that $(coz(y))^* = \bot$ and $coz(y) \wedge coz(\beta) \leq coz(\alpha)$. Therefore, *L* is a weakly almost *P*-frame.

Below we give an example of the connection between the *r*-ideal and the classical ideals of the ring R(*L*) in weakly almost *P*-frames.

Example 4.7. By [\[16,](#page-17-7) Proposition 3.1], if *L* is not a weakly almost *P*-frame, then there exists a prime *z*-ideal *P* in $\mathcal{R}(L)$ with $P \cap r(\mathcal{R}(L)) = \emptyset$, which is not a z^0 -ideal. On the other hand, by [\[26,](#page-18-5) Remark 2.3(f)], *P* is an *r*-ideal. So if *L* is not a weakly almost *P*-frame, there exists an *r*-ideal that is a *z*-ideal but not a *z* 0 -ideal.

Examples 4.8. By the definition of an *r*-ideal, every element of a proper *r*-ideal is a zero-divisor element. Below are some examples that show that the above statement is not always true in the ring R(*L*).

- For each $(a, r) \in Zdv(R), \times r(R)$ in any reduced ring R, we have $(a)_r = (ra)_r$ (see [\[8,](#page-17-3) Remark 2.4]). Now, we assume that $(\alpha,\beta)\in r\big(R(L)\big)\times Z{\rm dv}\big(R(L)\big)$ such that coz $(\alpha)\nleq {\rm coz}(\beta).$ Therefore, every element of $(\alpha\beta)$ is a zero-divisor element, but $(\alpha \beta)$ is not an *r*-ideal. Since if $(\alpha \beta)$ is an *r*-ideal, then $(\alpha)_r = (\alpha \beta)_r = (\alpha \beta)$ implies ($α$) ⊆ ($αβ$), which is a contradiction.
- Suppose $\alpha \notin r(\mathcal{R}(L))$ and $\beta \in r(\mathcal{R}(L))$ such that $(\cos(\alpha) \vee \cos(\beta)) = \top$. Therefore, every element $I = (\alpha \beta)$ is a zero-divisor element, but *I* is not an *r*-ideal. For this, suppose *I* is an *r*-ideal. Then $I_r = I$ implies that $\alpha\beta \in I$. Since $\beta \in r(\mathcal{R}(L))$ implies that $\alpha \in I$. Therefore, there is $\delta \in \mathcal{R}(L)$ such that $\alpha = \alpha\beta\delta$, which implies coz(α) ≤ coz(β). So it is followed

$$
\mathfrak{c}_L\big(\text{coz}(\beta)\big)=\mathfrak{c}_L\big(\text{coz}(\alpha)\big)\land\mathfrak{c}_L\big(\text{coz}(\beta)\big)=\mathfrak{c}_L\big(\text{coz}(\alpha)\lor\text{coz}(\beta)\big)=\mathfrak{c}_L(\top)=0.
$$

Therefore, $(coz(\beta) = \top$, which is a contradiction.

• Suppose that $(\alpha, \beta) \in r(\mathcal{R}(L)) \times \mathcal{R}(L)$ are noninvertible such that $c_L(coz(\beta)) \subseteq o_L(coz(\alpha))$ and $(coz(\beta))^{**} =$ coz(β). We consider $J := \{ \gamma \in \mathcal{R}(L) \colon \text{coz}(\gamma) \leq \text{coz}(\alpha \beta) \}$. Therefore, *J* is a *z*-ideal of $\mathcal{R}(L)$ consisting entirely of zero-divisors which it is not *r*-ideal. It is clear that *J* is a *z*-ideal and $\alpha\beta \in J$. Now suppose by contradiction that $\gamma \in J \cap \mathbf{r}(\mathcal{R}(L))$. So, by Proposition [3.1,](#page-3-0) we have

$$
\bot = \big(\mathrm{coz}(\gamma) \big)^{\ast} \geq \big(\mathrm{coz}(\alpha \beta) \big)^{\ast} \geq \big(\mathrm{coz}(\alpha) \wedge \mathrm{coz}(\beta) \big)^{\ast} \geq \big(\mathrm{coz}(\alpha) \big)^{\ast} \vee \big(\mathrm{coz}(\beta) \big)^{\ast},
$$

which implies that $\cos(\beta) = (\cos(\beta))^{**} = \top$, which contradicts our assumption. Now suppose by contradiction that *J* is an *r*-ideal. Since $\alpha \in r(\mathcal{R}(L))$ implies that $\beta \in J$, therefore, coz(β) ≤ coz(αβ) ≤ coz(α). On the other hand, according to the assumption, we have coz(α) \vee coz(β) = ⊤, which is obtained coz $(β) = T$, a contradiction.

5. The concept of z_r -ideal and s_r -ideal in the ring $R(L)$

The concept of z_r -ideal and s_r -ideals in the ring $C(X)$ was studied for the first time in [\[8\]](#page-17-3). They investigated the properties of these ideals in the ring *C*(*X*) and stated some of their properties in any reduced ring.

In this section, we determine the concept of z_r -ideals and s_r -ideals in the ring $\mathcal{R}(L)$ according to the concept of *r*-ideals and examine their characteristics and relationships with each other. We also indicate the frames *L* for which *zr*-ideals coincide with some other types of ideals.

Definition 5.1. An ideal *I* of R(*L*) is said to be a **zr**-**ideal** if it is an *r*-ideal which is also a *z*-ideal.

Remark 5.2. Let *L* be a completely regular frame. Then we have:

- (1) By [\[26,](#page-18-5) Theorem 2.19(a)], every z⁰-ideal in a ring *R* is an *r*-ideal which implies that every z⁰-ideal of $R(L)$ is a *z*_r-ideal of $R(L)$. Also, by [\[26,](#page-18-5) Remark 2.3(f)], every minimal prime ideal is an *r*-ideal in $R(L)$. Hence, every minimal prime ideal in R(*L*) is a *zr*-ideal of R(*L*).
- (2) It is well known that the intersection of any family of *z*-ideals is a *z*-ideal. Also, by [\[26,](#page-18-5) Remark 2.3] the intersection of any family of *r*-ideals is an *r*-ideal. Hence, the intersection of any family of *zr*-ideals of $\mathcal{R}(L)$ is a *z*_{*r*}-ideal of $\mathcal{R}(L)$.
- (3) It is well known that if *I* and *J* are *z*-ideals of $\mathcal{R}(L)$, then $IJ = I \cap J$. Hence, the product of two *z_r*-ideals in R(*L*) is a *zr*-ideal.

By Remark [5.2,](#page-12-0) the smallest *zr*-ideal containing a given ideal *I* exists and we denote it by *Iz^r* . In fact *Iz^r* is the intersection of all *zr*-ideals containing *I*.

Proposition 5.3. *For each ideal I of* R(*L*)*, the following statements are true.*

(1)
$$
I_{z_r} = ((I_r)_z)_r = (I_z)_r = ((I_z)_r)_z
$$
.

(2) $I_{z_r} = \left\{ \alpha \in \mathcal{R}(L) : \cos(\tau \alpha) \leq \cos(\beta) \text{ for some } (\beta, \tau) \in I \times \text{r}(\mathcal{R}(L)) \right\}.$

Proof. (1). Let *I* be a proper ideal of $\mathcal{R}(L)$. If $I \cap r(\mathcal{R}(L) \neq \emptyset$, then $I_{z_r} = ((I_r)_z)$ $r = (I_z)_r = \mathcal{R}(L)$. Now, we can choose *I* ∩ r($\mathcal{R}(L) = ∅$. Let $(α, β) ∈ (I_z)_r × \mathcal{R}(L)$ with coz(*α*) = coz(*β*) be given. Then there exists an element *τ* in $r(\mathcal{R}(L))$ such that $\tau\alpha\in I_z$, and from $\text{coz}(\tau\alpha)=\text{coz}(\tau\beta)$, we conclude that $\tau\beta\in I_z\subseteq (I_z)_r$, which implies that $\beta \in (I_z)_r$. Thus $(I_z)_r$ is a z_r -ideal. Now suppose J is a z_r -ideal contains I. Take $\alpha \in (I_z)_r$, then $\tau\alpha \in I_z$ for some $\tau \in \mathbf{r}(\mathcal{R}(L))$. But $I_z \subseteq J$, so $\tau \alpha \in J$. Since *J* is an *r*-ideal, then $\alpha \in J$. Therefore, $(I_z)_r = I_{z_r}$.

Since $I \subseteq I_r$, we infer that $(I_z)_r \subseteq \left((I_r)_z\right)$ *r*. On the other hand, if $\alpha \in (I_r)_z$, then there exists an element β in I_r such that coz(α) = coz(β), which implies that for some $\gamma\in r\big(R(L),\gamma\beta\in I\subseteq I_z$ and coz($\gamma\beta)$ = coz($\gamma\alpha$), and we deduce that $\alpha \in (I_z)_r$. Thus we have $(I_r)_z \subseteq (I_z)_r$, which implies that $((I_r)_z)$ $P_r \subseteq (I_z)_r$. Therefore, $((I_r)_z)$ $_{r} = (I_{z})_{r}.$ The rest is trivial.

(2). We set

$$
T := \{ \alpha \in \mathcal{R}(L) : \text{coz}(\tau \alpha) \le \text{coz}(\beta) \text{ for some } (\beta, \tau) \in I \times r(\mathcal{R}(L)) \}.
$$

If $\alpha \in (I_z)_r$, then there exists an element τ in $r(\mathcal{R}(L))$ such that $\tau\alpha \in I_z$, which implies that there exists an element *β* in *I* such that coz(τα) = coz(β), and we deduce that α ∈ *T*. Hence, $(I_z)_r$ ⊆ *T*. On the other hand, if $\alpha \in T$, then there exists an element (β, τ) in $I \times r(\mathcal{R}(L))$ such that coz($\tau \alpha$) \leq coz(β), which implies that $\tau \alpha \in I_z$, and so $\alpha \in (I_z)_r$. Hence, $(I_z)_r = T$.

In the following remark, we intend to provide a basic *zr*-ideal with respect to the basic *z*-ideal and use it to express and prove an algebraic equivalent for the concept of *zr*-ideal.

Remark 5.4. It is well known that $M_\alpha := \{ \beta \in \mathcal{R}(L) : \cos(\beta) \leq \cos(\alpha) \}$ is a basic *z*-ideal of $\mathcal{R}(L)$ for every $\alpha \in \mathcal{R}(L)$. Then, by Proposition [5.3,](#page-12-1)

$$
(M_{\alpha})_{z_r} = (M_{\alpha})_r = \{ \beta \in \mathcal{R}(L) : \gamma \beta \in M_{\alpha} \text{ for some } \gamma \in \mathbf{r}(\mathcal{R}(L)) \}
$$

$$
= \{ \beta \in \mathcal{R}(L) : \text{coz}(\gamma \beta) \le \text{coz}(\alpha) \text{ for some } \gamma \in \mathbf{r}(\mathcal{R}(L)) \}.
$$

Suppose that $\beta \in (M_\alpha)_r$, then there is an element δ in $r\big(\mathcal{R}(L)\big)$ such that

 $\cos(\delta) \wedge \cos(\beta) = \cos(\delta\beta) \leq \cos(\alpha)$,

which implies from $\delta \in \mathrm{r}\big(\mathcal{R}(L)\big)$ that

 $\text{coz}(\beta)^{**} = \text{coz}(\delta)^{**} \land \text{coz}(\beta)^{**} = (\text{coz}(\delta) \land \text{coz}(\beta))^{**} \leq (\text{coz}(\alpha))^{**}$

and we deduce from [\[13,](#page-17-5) Lemma 4.1] that $Ann(\alpha) \subseteq Ann(\beta)$. Therefore, $\beta \in P_\alpha$. Hence, $M_\alpha \subseteq (M_\alpha)_r \subseteq P_\alpha$ for each $\alpha \in \mathcal{R}(L)$.

Lemma 5.5. *An ideal I in the ring* $\mathcal{R}(L)$ *is a z_r-ideal if and only if* $(M_\alpha)_r \subseteq I$ *for each* $\alpha \in I$.

Proof. Necessity. Suppose $\alpha \in I$. By remark 5.[4,](#page-13-0) if $\beta \in (M_\alpha)_r$, there is $\gamma \in r(\mathcal{R}(L))$ such that coz($\gamma\beta$) \leq coz(α). Since *I* is a *z*_{*r*}-ideal, we infer that $\beta \in I$. Hence, $(M_{\alpha})_r \subseteq I$.

 $Sufficiency. Suppose (\alpha, \beta) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ such that $\alpha\beta \in I.$ Since $\cos(\alpha\beta) \leq \cos(\alpha\beta)$ by remark [5](#page-13-0).4 implies that $\alpha \in (M_{\alpha\beta})_r$. It follows from the assumption that $\alpha \in I$ and *I* is an *r*-ideal. Now suppose coz(β) \leq coz(α) and $\alpha \in I$. Since $\top \in r(\mathcal{R}(L))$, by remark [5](#page-13-0).4 and our assumption implies that $\beta \in I$. Therefore *I* is a *z*_{*r*}-ideal. \Box

Lemma 5.6. *If I is an ideal of* $\mathcal{R}(L)$ *and* $\beta \in \sum_{\alpha \in I} (M_{\alpha})_r$. Then, there is $\alpha \in I$ such that $\beta \in (M_{\alpha})_r$.

Proof. Suppose $\beta \in \sum_{\alpha \in I} (M_{\alpha})_r$. Therefore, there are $\alpha_1, \dots, \alpha_n \in I$ such that $\beta \in \sum_{i=1}^n (M_{\alpha_i})_r$. For every $1 \le i \le n$, there exists an element $\beta_i \in (M_{\alpha_i})_r$ such that $\beta = \beta_1 + \cdots + \beta_n$. By remark [5.4,](#page-13-0) there is $\gamma_i \in r(\mathcal{R}(L))$ $\text{such that } \text{coz}(\gamma_i \beta_i) \leq \text{coz}(\alpha_i)$. If we put $\gamma := \gamma_1 \gamma_2 \cdots \gamma_n \in \text{r}(\mathcal{R}(L))$, then $\text{coz}(\gamma \beta_i) \leq \text{coz}(\gamma_i \beta_i) \leq \text{coz}(\alpha_i)$ for every *i*. Therefore,

$$
\cos(\gamma\beta) = \cos(\gamma(\beta_1 + \cdots + \beta_n)) \le \bigvee_{i=1}^n \cos(\gamma\beta_i) \le \bigvee_{i=1}^n \cos(\alpha_i) = \cos(\alpha_1^2 + \cdots + \alpha_n^2).
$$

Since $\gamma \in \mathbf{r}(\mathcal{R}(L))$, we conclude from remark [5.4](#page-13-0) that $\beta \in (M_{\alpha_1^2 + \dots + \alpha_n^2})$, and $\alpha_1^2 + \dots + \alpha_n^2 \in I$.

Corollary 5.7. An ideal I of $\mathcal{R}(L)$ is a z_r -ideal if and only if $I = \sum_{\alpha \in I} (M_\alpha)_r$.

Proof. It is evident by using Lemmas 5.5 5.5 and 5.6 . \Box

Now, in the next proposition, we present other equivalents for the concept of z_r -ideals based on cozero elements.

Proposition 5.8. *The following statements are equivalent for an ideal I of* R(*L*)*.*

- *(1) The ideal I is a zr-ideal.*
- *(2) If* $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\cos(\tau \alpha) = \cos(\tau \beta)$, then $\beta \in I$.

(3) If $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ *with* coz $(\tau \beta) \leq$ coz (α) *, then* $\beta \in I$ *.*

Proof. (1) \Rightarrow (2). Let $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with coz($\tau \alpha$) = coz($\tau \beta$) be given. Since *I* is a *z*-ideal and $\tau \alpha \in I$, we infer that $\tau \beta \in I$, which implies that $\beta \in I$, because *I* is an *r*-ideal.

(2) \Rightarrow (3). Let $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with coz($\tau\beta$) \leq coz(α). Then coz($\tau\beta$) = coz($\tau\beta\alpha$), which implies from $(\alpha\beta, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ that $\beta \in I$.

(3) \Rightarrow (1). If we put $\tau = \tau$ in (3), we deduce that *I* is a *z*-ideal. Let $(\alpha, \tau) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\tau \alpha \in I$ be given. From $\cos(\tau \alpha) \leq \cos(\tau \alpha)$, we infer from part (3) that $\alpha \in I$. Hence, *I* is a z_r -ideal.

Proposition 5.9. Let I be an ideal of $\mathcal{R}(L)$ with $I \cap r(\mathcal{R}(L) = \emptyset$. If I is a z_r -ideal, then P is a z_r -ideal for every *P* ∈ Min(*I*)*. The converse is also true if I is a semiprime ideal.*

Proof. The first part is evident by [\[26,](#page-18-5) Theorem 2.20] and [\[25,](#page-18-12) corollary after Theorem 1.1]. Now, let *I* be a semiprime ideal of $\mathcal{R}(L)$ such that *P* is a *z*_{*r*}-ideal for every $P \in \text{Min}(I)$. Since any intersection of *z*_{*r*}-ideals is a *z*_{*r*}-ideal of $\mathcal{R}(L)$, we conclude that *I* is a *z*_{*r*}-ideal of $\mathcal{R}(L)$ and we are through. \square

We recall from [\[9\]](#page-17-0) that if the open quotient of every dense cozero element is a *C*^{*}-quotient, the frame *L* is called **quasi F**-**frame**. In [\[14\]](#page-17-9), the properties of quasi-*F*-frame were investigated and equivalents for these frames were proved, which we use to prove the following theorem. In the following theorem, we show that the sum of z_r -ideals in $\mathcal{R}(L)$ behaves similar to the sum of z^0 -ideals in $\mathcal{R}(L)$.

Theorem 5.10. *The sum of every two zr-ideals in* R(*L*) *is a zr-ideal or all of* R(*L*) *if and only if L is a quasi-F-frame.*

Proof. Necessity. Let $\alpha, \beta \in \mathcal{R}(L)$ with $(\cos(\alpha) \vee \cos(\beta))^* = \bot$ be given. If $\alpha \in r(\mathcal{R}(L))$ or $\beta \in r(\mathcal{R}(L))$, then, by Lemma [3.1,](#page-3-0) $(coz(α))^{**} \vee (coz(β))^{**} = T$. Now, suppose that *α* and *β* are zero-divisors in *R*(*L*). Then, by [\[4,](#page-17-15) Remark 1.1], P_α and P_β are z^0 -ideal, which implies from remark [5.2](#page-12-0) that they are z_r -ideal. Thus, according to the assumption, $P_{\alpha} + P_{\beta}$ is a z_r -ideal or all of $\mathcal{R}(L)$. Since $\alpha^2 + \beta^2 \in r(\mathcal{R}(L))$ and $\alpha^2 + \beta^2 \in P_{\alpha} + P_{\beta}$, so $P_{\alpha} + P_{\beta} = \mathcal{R}(L)$. Hence, there exists $\delta \in P_{\alpha}$ and $\gamma \in P_{\beta}$ such that $\delta + \gamma = 1$. So we have

$$
\top = \cos(1) = \cos(\delta + \gamma) \leq \cos(\delta) \vee \cos(\gamma).
$$

On the other hand, by [\[1,](#page-17-12) proposition 4.2],

$$
\left(\cos(\alpha)\right)^* \leq \left(\cos(\delta)\right)^* \text{ and } \left(\cos(\beta)\right)^* \leq \left(\cos(\gamma)\right)^*,
$$

which implies that

$$
\top = \mathrm{coz}(\delta) \vee \mathrm{coz}(\gamma) \leq (\mathrm{coz}(\delta))^{**} \vee (\mathrm{coz}(\gamma))^{**} \leq (\mathrm{coz}(\alpha))^{**} \vee (\mathrm{coz}(\beta))^{**}.
$$

Therefore, by [\[14,](#page-17-9) proposition 3.1], *L* is a quasi-*F*-frame.

Sufficiency. Let *L* be a quasi-*F*-frame and *I*, *J* be two *z*_{*r*}-ideals of $\mathcal{R}(L)$ and $I + J \neq \mathcal{R}(L)$. Since, by [\[17,](#page-18-4) Proposition 5.1], the sum of two *z*-ideals of $R(L)$ is always a *z*-ideal of $R(L)$, it suffices to show that $I + J$ is an *r*-ideal of $\mathcal{R}(L)$. Let $T \in \text{Min}(I + I)$ be given. Since *T* is a prime ideal and $I \subseteq T$, we infer that there exists an element *P* in Min(*I*) such that $P \subseteq T$. Thus, by [\[26,](#page-18-5) Theorem 2.20], *P* is an *r*-ideal of $\mathcal{R}(L)$, and by [\[28,](#page-18-11) Corollary 7.2.2], *P* is a *z*_{*r*}-ideal of $\mathcal{R}(L)$. Similarly, there exists an element *Q* in Min(*J*) with $Q \subseteq T$ such that *Q* is a *z*_{*r*}-ideal of $R(L)$. If *P* and *Q* are in a chain, say *P* ⊆ *Q*, we have *I* + *J* ⊆ *P* + *Q* = *Q* ⊆ *T*, which implies from $T \in \text{Min}(I + I)$ that $T = Q$ is a *z*_r-ideal of $\mathcal{R}(L)$. Now, we suppose that P and Q are not in a chain. Let *I*_{*P*} and *I*_Q are minimal prime ideals of *R*(*L*) such that *I*_{*P*} \subseteq *P* and *I*_Q \subseteq Q. Then, by [\[2,](#page-17-17) Lemma 4.8], [\[17,](#page-18-4) Proposition 5.1], and [\[25,](#page-18-12) corollary after Theorem 1.1], $I_P + I_Q$ is a prime *z*-ideal of $\mathcal{R}(L)$, which implies from [\[11,](#page-17-2) Proposition 3.7] that $P + Q = I_P + I_Q$, and because *T* is a minimal prime over $I + J$, we conclude that *T* is equal to $P + Q$. Consequently, in both cases *T* is a *z*_{*r*}-ideal of $R(L)$ and this means that *T* is a *z*_{*r*}-ideal of $\mathcal{R}(L)$ for every $T \in \text{Min}(I + J)$. Since $I + J$ is a *z*-ideal of $\mathcal{R}(L)$, we conclude from proposition [5](#page-14-1).9 that $I + J$ is a *z*_{*r*}-ideal of $R(L)$. \square

Corollary 5.11. *In every almost P-frame the sum of every two zr-ideals in* R(*L*) *is a zr-ideal or all of* R(*L*)*.*

Proof. According to [\[14,](#page-17-9) Corollary 3.3] and Theorem [5.10,](#page-14-0) it is obvious. □

According to the Theorem [5.10,](#page-14-0) whenever *L* is a quasi-*F*-frame, then there is the largest *zr*-ideal included in *I* for every ideal *I* of $\mathcal{R}(L)$, that with I^{z_r} it is displayed. Actually I^{z_r} , the sum of all z_r -ideals included in *I*.

Corollary 5.12. *If L is a quasi-F-frame and I is an ideal in* R(*L*)*, then*

$$
I^{z_r}=\sum_{(M_\alpha)_r\subseteq I}(M_\alpha)_r
$$

Proof. Suppose that $J := \sum_{(M_\alpha)_r \subseteq I} (M_\alpha)_r$. Since *L* is a quasi-*F*-frame, we conclude from Theorem [5.10](#page-14-0) that *J* is a *z*_{*r*}-ideal in $\mathcal{R}(L)$. On the other hand, if *K* is a *z*_{*r*}-ideal in $\mathcal{R}(L)$ included in *I* and $\beta \in K$, then, by Lemma [5.5,](#page-13-1) $(M_{\beta})_r$ ⊆ *K*. Since *K* ⊆ *I* implies that β ∈ *J*. Therefore, *K* ⊆ *J*. □

Proposition 5.13. *For two ideals I and J in* R(*L*)*, the following relations hold:*

- (1) $((I \cap J)_z)_r = (I_z)_r \cap (J_z)_r = ((II)_z)_r = (I_z)_r (J_z)_r.$
- (2) $(I_z)_r + (J_z)_r \subseteq ((I + J)_z)_r$.

Proof. According to the definition and properties *r*-ideals and *z*-ideals, relationships are established. \square

As we observed every z^0 -ideal in $\mathcal{R}(L)$ is a z_r -ideal. The following theorem, characterizes the frames *L* for which the converse also holds, i.e., every z_r -ideal of $\mathcal{R}(L)$ is a z^0 -ideal.

Theorem 5.14. *A frame L is a weakly almost P-frame if and only if every zr-ideal in* R(*L*) *is a z*⁰ *-ideal of* R(*L*)*.*

Proof. Necessity. Let *I* be a *z*_{*r*}-ideal in $\mathcal{R}(L)$ and $P \in \text{Min}(I)$. Then, by Proposition [5.9,](#page-14-1) *P* is a *z*_{*r*}-ideal, which implies from [\[16,](#page-17-7) Proposition 3.1] that *P* is a z^0 -ideal of $R(L)$. Since $I = \bigcap_{P \in \text{Min}(I)} P$, we infer that *I* is a z^0 -ideal of $\overline{\mathcal{R}}(L)$.

 $Sufficientity.$ Let $\alpha, \beta \in \mathcal{R}(L)$ with $\big(\text{coz}(\alpha) \big)^* \leq \big(\text{coz}(\beta) \big)^*$ be given. According to our hypothesis, $(M_\alpha)_r$ is a *z*⁰-ideal. From $\alpha \in (M_{\alpha})_r$ and $(\cos(\alpha))^* \leq (\cos(\beta))^*$, we infer that $\beta \in (M_{\alpha})_r$, which implies that there exists an element γ in r $\bigl(\mathcal{R}(L)\bigr)$ such that

 $\cos(\beta) \wedge \cos(\gamma) = \cos(\beta \gamma) \leq \cos(\alpha)$.

Therefore, by Lemma [3.1](#page-3-0) and definition, *L* is an weakly almost *P*-frame.

Corollary 5.15. *If L is a weakly almost P-frame, then every z-ideals in the class of all r-ideals of* R(*L*) *is a z*⁰ *-ideal*

Proof. It is evident by Proposition [5.14.](#page-15-0) □

Corollary 5.16. *A frame L is an almost P-frame if and only if every z-ideal of* R(*L*) *is a zr-ideal.*

Proof. By Proposition [4.1,](#page-8-0) it is evident. \Box

Corollary 5.17. For an ideal I and a prime ideal Q in $\mathcal{R}(L)$, if $I \cap Q$ is a z_r-ideal, then one of them is a z_r-ideal.

Proof. By [\[7,](#page-17-18) Proposition 2.8] and Proposition [4.4,](#page-9-1) it is evident. \square

In the continuation of this section, by introducing the concept of s_r -ideal in the ring $R(L)$, in the next remark and proposition, we express the connection of this ideal with *zr*-ideals. We specify a frame where the *sr*-ideals coincide with the *zr*-ideals.

Definition 5.18. An ideal *I* of R(*L*) is said to be an **sr**-**ideal** if it is an *r*-ideal which is also a semiprime ideal.

Remark 5.19. It is clear that every *zr*-ideal is an *sr*-ideal. But every *sr*-ideal is not necessarily a *zr*-ideal. For this, if a frame *L* is not a cozero complemented frame, then, by Proposition 3.[2,](#page-4-0) there exists a prime *r*-ideal *Q* that is not *z*-ideal. Therefore, *Q* is an *sr*-ideal that is not a *zr*-ideal.

Proposition 5.20. *A frame L is a cozero complemented frame if and only if every sr-ideal in* R(*L*) *is a zr-ideal.*

Proof. Necessity. By Proposition [3.2,](#page-4-0) it is evident that every *sr*-ideal in R(*L*) is a *zr*-ideal in R(*L*).

*Su*ffi*ciency.* Let *P* be a prime *r*-ideal in R(*L*). Then, by our hypothesis, *P* is a *z*-ideal. Hence, by Proposition [3.2,](#page-4-0) *L* is a cozero complemented frame. \square

The intersection of any family of *sr*-ideals is an *sr*-ideal. Therefore, for every proper ideal *I* in the ring $\mathcal{R}(L)$ with $\mathbf{r}\big(\mathcal{R}(L)\big) \cap I = \emptyset$, there is the smallest s_r -ideal including *I*, which we represent by $I_{s_r}.$

Corollary 5.21. For every ideal I of $\mathcal{R}(L)$, we have $I_{s_r} = \sqrt{2\pi}$ *Ir .*

Proof. By definition, we always have $I_r \subseteq I_{s_r}$. Since I_{s_r} is an s_r -ideal and according to [\[8,](#page-17-3) Lemma 4.1], implies *Proof.* By definition, we always have $I_r \subseteq I_{s_r}$. Since I_{s_r} is an s_r -ideal and according to [8, Lemma 4.1], that $\sqrt{I_r} \subseteq I_{s_r}$. On the other hand, since I_{s_r} is the smallest s_r -ideal including *I*, implies

We recall from [\[4\]](#page-17-15) that for a reduced ring *R* with the property *A* that for every ideal *I* with r(*R*) ∩ *I* = \emptyset of *R* there is a smallest z^0 -ideal including *I*. Therefore for every ideal *I* with $r(\mathcal{R}(L)) \cap I = \emptyset$ of $\mathcal{R}(L)$, there is a smallest *z*⁰-ideal including *I* which we denote by *I*₀ and *I*₀ = {α ∈ R(*L*) : Ann(β) ⊆ Ann(α) for some β ∈ *I* }.

Corollary 5.22. *For every proper ideal I of* $\mathcal{R}(L)$ *with* $r(\mathcal{R}(L)) \cap I = \emptyset$,

$$
I\subseteq I_r\subseteq I_{s_r}\subseteq I_{z_r}\subseteq I_0.
$$

Proof. It is evident. □

We recall from [\[26\]](#page-18-5) that the product of *r*-ideals is not necessarily an *r*-ideal, but by Remark [5.2,](#page-12-0) the product of *zr*-ideals is a *zr*-ideal. In the following proposition, we state the condition that if the product of two ideals becomes a z_r -ideal (or an s_r -ideal), then one of them is a z_r -ideal (or an s_r -ideal).

Proposition 5.23. Suppose that I and J are two ideals in $\mathcal{R}(L)$ and $r(\mathcal{R}(L)) \cap I \neq \emptyset$. Then, the following statements *are true.*

- (1) If II is an s_r -ideal of $\mathcal{R}(L)$, then I is a s_r -ideal of $\mathcal{R}(L)$.
- (2) If IJ is a z_r -ideal of $\mathcal{R}(L)$, then J is a z_r -ideal of $\mathcal{R}(L)$.

Proof. (1). Suppose that $\gamma \in r(\mathcal{R}(L)) \cap I$. If *J* is not a semiprime ideal of $\mathcal{R}(L)$, then there exists an element α in $\mathcal{R}(L)$ such that $\alpha \notin J$ and $\alpha^n \in J$ for some $n \in \mathbb{N}$, which implies that $\gamma^n \alpha^n \in IJ$, but *IJ* is a s_r ideal, hence α ∈ *IJ* ⊆ *J* and this is a contradiction. Accordingly, *J* is a semiprime ideal and it remains to show that *J* is a *r*-ideal of *R*(*L*). Let (*α*, *τ*) ∈ *R*(*L*) × *r*(*R*(*L*)) with *τα* ∈ *J* be given. Then γτα ∈ *IJ,* which implies by our hypothesis that $\alpha \in I_J \subseteq J$.

(2). Suppose that $\gamma \in r(\mathcal{R}(L)) \cap I$. Let $(\alpha, \beta) \in J \times \mathcal{R}(L)$ with coz $(\alpha) = \cos(\beta)$ be given. Then $\cos(\gamma \alpha) =$ coz($\gamma\beta$), which implies from $\gamma\alpha \in I$ *J* and Proposition [5.8](#page-13-3) that $\beta \in I$ *J* \subseteq *J*, because *IJ* is a *z*_{*r*}-ideal of *R*(*L*). Therefore, *J* is a *z*-ideal of $\mathcal{R}(L)$. The proof of *r*-ideality of *J* is similar to the proof of the part (1). \Box

According to Theorem [5.10,](#page-14-0) in the next theorem, we show that the sum of *sr*-ideals in R(*L*) behaves similar to the sum of z_r -ideals in $\mathcal{R}(L)$.

Theorem 5.24. *A frame L is a quasi-F-frame if and only if the sum of every two sr-ideals in* R(*L*) *is a sr-ideal or all of* R(*L*)*.*

Proof. Necessity. Suppose *I* and *J* are two *s_r*-ideals of $R(L)$ and $I + J \neq R(L)$. Thus, by [\[30,](#page-18-13) Lemma 5.1], $I + J$ is a semiprime ideal of R(*L*). By a straightforward modification in the proof of Theorem [5.10,](#page-14-0) we obtain *I* + *J* is an *r*-ideal of $R(L)$. Therefore, $I + J$ is an s_r -ideal of $R(L)$.

*Su*ffi*ciency.* Suppose *I* and *J* are two *zr*-ideals of R(*L*). Then *I* and *J* are two *sr*-ideals of R(*L*), and according to our hypothesis, $I + J$ is an s_r -ideal of $R(L)$. On the other hand, by [\[17,](#page-18-4) Proposition 5.1], $I + J$ is a *z*-ideal, which implies that $I + J$ is a z_r -ideal of $\mathcal{R}(L)$. Therefore, by Theorem [5.10,](#page-14-0) *L* is a quasi-*F*-frame. \Box

We recall from [\[1\]](#page-17-12) that for every ideal *I* with $r(\mathcal{R}(L)) \cap I = \emptyset$ of $\mathcal{R}(L)$, if *L* is a quasi-*F*-frame, there is a largest z^0 -ideal contained in *I*. We represent by I^0 which it is largest z^0 -ideal contained in *I* and

*I*⁰ = { *α* ∈ *R*(*L*) : Ann(*β*) ⊆ Ann(*α*) implies *β* ∈ *I* for every *β* ∈ *R*(*L*)}

Also, for ideal *I* with $r(R(L)) \cap I = \emptyset$ of $R(L)$ and using Theorem [5.24,](#page-17-8) if our frame is a quasi-*F*-frame, then there exists the largest *sr*-ideal contained in *I*, which we denote by *I sr* .

Corollary 5.25. If L is a quasi-F-frame, then for every ideal I of $\mathcal{R}(L)$ with $r(\mathcal{R}(L)) \cap I = \emptyset$, we have;

$$
I^0 \subseteq I^{z_r} \subseteq I^z \cap I^{s_r} \subseteq I^z + I^{s_r} \subseteq I.
$$

Proof. According to definitions I^{z_r} and I^{s_r} and Remark [5.19,](#page-16-1) the proof is clear.

In Corollaries [5.22](#page-16-0) and [5.25,](#page-17-10) we saw a chain of ideals. At the end of this section, a systematic chain of well-known ideals and ideals introduced in this paper is presented in special frames.

Corollary 5.26. *If L is a quasi-F-frame and almost P-frame, then*

$$
I^0 \subseteq I^z = I^{z_r} \subseteq I^{s_r} \subseteq I \subseteq I_r \subseteq I_{s_r} \subseteq I_z = I_{z_r} \subseteq I_0
$$

for every ideal I of $\mathcal{R}(L)$ *with* $r(\mathcal{R}(L)) \cap I = \emptyset$ *.*

Proof. Using Proposition [4.1](#page-8-0) and Theorems [5.10](#page-14-0) and [5.24,](#page-17-8) as well as the characteristics of this class of ideals, the proof is obvious. \square

References

- [1] M. Abedi, *Some notes on z-ideal and d-ideal in* RL, Bull. Iran. Math. Soc. **46** (2020), 593–611.
- [2] S. K. Acharyya, G. Bhunia, P. Ghosh, *Finite frames, P-frames and basically disconnected frames,* Algebra Univers. **72** (2014), 209–224.
- [3] S. K. Acharyya, G. Bhunia, P. P. Ghosh, *Some new characterizations of finite frames and F-frames*, Topol. Appl. **182** (2015), 122–131.
- [4] F. Azarpanah, O. A. S. Karamzadeh, A. Rezai Aliabad, *On ideals consisting entirely of zero divisors*, Commun. Algebra **28** (2000), 1061–1073.
- [5] F. Azarpanah, O. A. S. Karamzadeh, A. Rezai Aliabad, *On z*⁰ *-ideals in C*(*X*), Fund. Math. **160** (1999), 15–25.
- [6] F. Azarpanah, M. Karavan, *Nonregular ideals and z*⁰ *-ideals in C*(*X*), Czech. Math. J. **55** (2005), 397–407.
- [7] F. Azarpanah, R. Mohamadian, [√] *z-ideals and* [√] *z* 0 *-ideals in C*(*X*) Acta Math. Sin., Engl. Ser. **23** (2007), 989–996.
- [8] F. Azarpanah, R. Mohamadian, P. Monjezi, *On zr-ideals of C*(*X*), Quaest. Math. **45** (2021), 1–15.
- [9] N. R. Ball, J. Walters-Wayland, *C- and C*[∗] *-quotients in point-free topology*, Diss. Math. **412** (2002), 62.
- [10] B. Banaschewski, *The real numbers in point-free topology*, Textos Mat., Ser. B, Departamento de Matematica, Universidade de ´ Coimbra, 1997.
- [11] T. Dube, *Some algebraic characterizations of F-frames*, Algebra Univers. **62** (2009), 273–288.
- [12] T. Dube, *Concerning P-frames, essential P-frames, and strongly zero-dimensional frames*, Algebra Univers. **61** (2009), 115–138.
- [13] T. Dube, *Some ring-theoretic properties of almost P-frames*, Algebra Univers. **60** (2009), 145–162.
- [14] T. Dube, M. Matlabyane, *Notes Concerning Characterizations of Quasi-F Frames*, Quaest. Math. **32** (2009), 551–567.
- [15] T. Dube, M. Matlabyane, *Cozero complemented frames*, Topol. Appl. **160** (2013), 1345–1352.
- [16] T. Dube, J. N. Nsayi, *When rings of continuous functions are weakly regular*, Bull. Belg. Math. Soc. Simon Stevin **22** (2015) 213–226.
- [17] T. Dube, O. Ighedo, On lattices of *z*-ideals of function rings, Math. Slovaca **68** (2018), 271–284.
- [18] A. A. Estaji, T. Haghdadi, *Rings of quotients of the ring* R(*L*) *by* coz*-filters*, J. Iran. Math. Soc. **4** (2023), 131–147.
- [19] M. Henriksen, M. Jerison, *The space of minimal prime ideals of a commutative ring*, Trans. Amer. Math. Soc. **115** (1965), 110–130.
- [20] M. Henriksen, J. Walters-Wayland, *A point-free study of bases for spaces of minimal prime ideals* Quaest. Math. **26** (2003), 333–346.
- [21] M. Henriksen, R. G. Woods, *Cozero complemented spaces; when the space of minimal prime ideals of a C*(*X*) *is compact*, Topol. Appl. **141** (2004), 147–170.
- [22] P. T. Johnstone, *Stone Spaces*, Camb. Stud. Adv. Math., Cambridge university press, Cambridge, 1982.
- [23] P. T. Johnstone, *Elements of the history of locale theory*, In: Handbook of the history of general topology, Kluwer Acad. Publ., Dordrecht **3** (2001), 835–851.
- [24] R. Levy, J. Shapiro, *Spaces in which zero-sets have complements*, Preprint, dated October 18, 2002.
- [25] G. Mason, *z-ideals and prime ideals*, J. Algebra **26** (1973), 280–297.
- [26] R. Mohamadian, *r-ideals in commutative rings*, Turk. J. Math. **39** (2015), 733-749.
- [27] D. G. Northcott, *Ideal theory* Camb. Tracts Math. Math. Phys., Cambridge University Press, Cambridge, 1953.
- [28] O. Oghedo, *Concerning ideals of point-free function rings*, PHD Thesis. UNISA, 2013.
- [29] J. Picado, A. Pultr, *Frames and Locales. Topology Without Points*, Front. Math., Springer, Berlin, 2012.
- [30] D. Rudd, *On two sum theorems for ideals of C*(*X*), Mich. Math. J. **17** (1970), 139–141.