Filomat 38:33 (2024), 11711–11729 https://doi.org/10.2298/FIL2433711K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On *r***-ideals of** $\mathcal{R}(L)$

Zohreh Norozi Khoshmardan^a, Ali Akbar Estaji^{a,*}, Rahimeh Pourkhandani^a

^aFaculty of Mathematics and Computer Science, Hakim Sabzevari University, Sabzevar, Iran

Abstract. In this paper, we study the concept of *r*-ideal (a proper ideal *I* in a ring *R* is said to be an *r*-ideal if $ra \in I$ with Ann(r) = (0), implies that $a \in I$ for each $a, r \in R$) in the ring $\mathcal{R}(L)$, as the point-free counterpart of C(X) and a reduced commutative ring. We investigate the behavior of this type of ideal in the ring $\mathcal{R}(L)$ for cozero complemented frames, *P*-frames, almost *P*-frames, and weakly almost *P*-frames. We prove the characterization of these frames via the concept of *r*-ideal in the ring $\mathcal{R}(L)$.

We examine other groups of ideals, namely z_r -ideal and s_r -ideal in the ring $\mathcal{R}(L)$, by combining the concept of r-ideal with z-ideal and also with the semiprime ideal. We show that the sum of the z_r -ideals in the ring $\mathcal{R}(L)$ has the same behavior as the z^0 -ideals in this ring in a simple way: The sum of every two z_r -ideals in $\mathcal{R}(L)$ is a z_r -ideal or all of $\mathcal{R}(L)$ if and only if L is a quasi-F-frame. Here, this fact is also proved for s_r -ideals.

1. Introduction

The abstract lattice of open sets can contain a lot of information about a topological space. By this fact, the point-free topology provides a good constructive foundation for topological theories, as argued by Ball and Walters-Wayland [9]: "... what the point-free formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent." In an overview of the historical development of this theory, it can be seen the works of [9, 10, 20, 22, 23, 29], as some of the pioneers that made a point-free approach to C(X), the ring of real-valued continuous functions on a completely regular Hausdorff space *X*.

Dube is one who played an effective role in extending the study of ring $\mathcal{R}(L)$. He introduced and characterized some frames related to $\mathcal{R}(L)$ and determined their properties, especially the cozero complemented frames and weakly almost *P*-frames [11–17].

Ideals play a fundamental role in studying the structure of C(X). In this paper, we consider $\mathcal{R}(L)$, with a completely regular frame *L* and study some types of the ideals in it. One of these is *r*-ideal, introduced in the context of the theory of commutative ring by Mohamadian [26] in 2015. He investigated generally the behavior of *r*-ideals in commutative rings. Also, as a significant result, he considered C(X) and proved that every ideal in C(X) is an *r*-ideal if and only if *X* is almost *P*-space. Moreover, he showed that in cozero complemented spaces (*m*-spaces), every prime *r*-ideal of C(X) is a z^0 -ideal. Inspired by it, we determine the

²⁰²⁰ Mathematics Subject Classification. Primary: 06D22; Secondary: 54C30, 54C05, 13A15

Keywords. *r*-ideal, *z_r*-ideal, *s_r*-ideal, cozero complemented frame, almost *P*-frame

Received: 10 January 2024; Revised: 22 August 2024; Accepted: 30 September 2024

Communicated by Ljubiša D. R. Kočinac * Corresponding author: Ali Akbar Estaji

Email addresses: z.norozi@hsu.ac.ir (Zohreh Norozi Khoshmardan), aaestaji@hsu.ac.ir (Ali Akbar Estaji),

r.pourkhandani@hsu.ac.ir (Rahimeh Pourkhandani)

r-ideals in $\mathcal{R}(L)$ and their properties. We establish similar results, as in C(X), and we characterize the frame *L* with respect to the behavior of *r*-ideal in it.

In 2021, Azarpanah, Mohamadian, and Monjezi [8] introduced another class of ideals based on the r-ideal concept called z_r -ideal and s_r -ideal in a ring C(X). The class of z_r -ideals can be considered between the two classes of z^0 -ideals and z-ideals. They showed that the sum of z_r -ideals in the ring C(X) behaves similarly to the sum of z^0 -ideals in the ring C(X). They investigated the properties of z_r -ideals and s_r -ideals in the ring C(X) and obtained interesting results. Also, they showed that a space is the cozero complemented space if and only if every z_r -ideal of C(X) is an s_r -ideal of C(X).

The plan of this paper is as follows:

In Section 2, we present the basic concepts of frames and ring $\mathcal{R}(L)$, which are needed in this paper.

In Section 3, we examine *r*-ideals in cozero complemented frames. We express and prove equivalences for these frames based on the concept of *r*-ideals. Also, we show that in cozero complemented frames, every *r*-ideal is a *z*-ideal and every prime *r*-ideal is a z^0 -ideal of the ring $\mathcal{R}(L)$. We discuss the above in Proposition 3.2 and in Corollaries 3.3 and 3.6.

In Section 4, we examine *r*-ideals in *P*-frames and almost *P*-frames. To learn about these frames, see [9, 12, 13, 15, 16]. We express and prove equivalences for almost *P*-frames based on the concept of *r*-ideal. We show that in *P*-frames, the set of all *r*-ideals coincides with the set of all *z*-ideals of $\mathcal{R}(L)$. We discuss the above in Proposition 4.1 and in Corollary 4.3.

In the last section, we define the concept of z_r -ideals and s_r -ideals in the ring $\mathcal{R}(L)$ and examine the characteristics of these types of ideals. We show in Theorem 5.10 that a frame L is a quasi-F-frame if and only if the sum of both z_r -ideals in $\mathcal{R}(L)$ is a z_r -ideal or the whole ring. We also propose and prove this statement about s_r -ideals in Theorem 5.24. To learn about these frames, see [14]. Also, after examining the relationship of r-ideals, z_r -ideals, and s_r -ideals with each other as well as with other known ideals in the ring $\mathcal{R}(L)$, we present a regular chain of these ideals in Corollaries 5.22, 5.25, and 5.26.

2. Preliminaries

2.1. Ring

A ring *R* is reduced if it has no nonzero nilpotent elements. The principal ideal of a ring generated by an element *a* in *R* is denoted by (*a*), and for $S \subseteq R$, the set $\{x \in R : xs = 0 \text{ for each } s \in S\}$ is the annihilator of *S*, which is denoted by Ann(*S*).

From [26], we recall that a proper ideal *I* in a commutative ring *R* is said to be an **r-ideal** if $ra \in I$ with $r \in r(R) := \{x \in R : Ann(x) = (0)\}$ implies that $a \in I$ for each $a, r \in R$.

Also, we recall from [27] that for any multiplicative closed set *S* of a ring *R*, the *S*-component of an ideal *I* is defined by $I_S := \{x \in R : \text{ There exists } s \in S \text{ for some } xs \in I\}$. Since the set r(R) is a multiplicative closed set, similarly it is defined the set $I_r := \{a \in R : \text{ There exists } r \in r(R) \text{ for some } ra \in I\}$ of *I*.

Clearly, if $I \cap r(R) \neq \emptyset$, then $I_r = R$. In [8, Lemma 2.2], it was shown, for an ideal I of a reduced ring R with $I \cap r(R) = \emptyset$, that the set I_r is the smallest r-ideal containing I. Also, they showed in the same lemma that I is an r-ideal if and only if $I = I_r$.

2.2. Frame L and the ring $\mathcal{R}(L)$

For a general theory of frames, we refer to [22]. Also, for more information about frames and ring $\mathcal{R}(L)$, refer to [29]. Here we collect a few facts that will be relevant for our discussion.

Recall that a **frame (locale)** is a complete lattice *L* in which the distributive law $a \land \lor S = \lor \{a \land x | x \in S\}$ holds for all $a \times S \in L \times \mathcal{P}(L)$. We denote the top element and the bottom element of *L* by \top and \bot , respectively. The **pseudocomplement** of an element *a* in a frame *L* is the element a^* that is

$$a^* = \bigvee \{ x \in L \, | \, x \land a = \bot \}.$$

An element *a* of frame *L* is **complemented** if $a \lor a^* = \top$, and it is **dense** if $a^* = \bot$.

A **frame homomorphism** is a map between frames that preserves finite meets including the top element, and arbitrary joins including the bottom element.

Regarding the frame of reals $\mathcal{L}(\mathbb{R})$ and the *f*-ring $\mathcal{R}(L)$ of continuous real-valued functions on *L*, we use the notation of [10]. A **continuous real function** on a frame is a homomorphism $\mathcal{L}(\mathbb{R}) \to L$. The set of all continuous real functions on a frame *L* is denoted by $\mathcal{R}(L)$.

It is known that the mapping $coz : \mathcal{R}(L) \longrightarrow L$ is given by

$$\operatorname{coz}(\alpha) = \bigvee \left\{ \alpha(p,0) \lor \alpha(0,q) \, | \, p,q \in \mathbb{Q} \right\}$$

A **cozero element** of *L* is an element of the form $coz(\alpha)$ for some $\alpha \in \mathcal{R}(L)$. The cozero part of *L* is denoted by Coz(L). For every $\alpha, \beta \in \mathcal{R}(L)$, we frequently use the following properties:

- (1) $\cos(\alpha\beta) = \cos(\alpha) \wedge \cos(\beta)$,
- (2) $\cos(\alpha + \beta) \le \cos(\alpha) \lor \cos(\beta) = \cos(\alpha^2 + \beta^2)$,
- (3) $\alpha \in \mathcal{R}(L)$ is invertible if and only if $coz(\alpha) = \top$,
- (4) $coz(\alpha) = \bot$ if and only if $\alpha = 0$.

From (1) and (4), it follows that $\mathcal{R}(L)$ has no nonzero nilpotent element. Consequently, a prime ideal $P \in \mathcal{R}(L)$ is minimal prime if and only if for every $\varphi \in P$, there exists $\psi \notin P$ such that $\varphi \psi = 0$.

For any *x* and *y* in a frame *L*, we say that *x* is **completely below** *y* in *L* and write $x \ll y$ if there exists a trail $\{x_i\}_{i \in [0,1] \cap \mathbb{Q}} \subseteq L$ such that $x_0 = x$, $x_1 = y$, and for every $p, q \in [0,1] \cap \mathbb{Q}$ with p < q, $x_p < x_q$. A frame *L* is called **completely regular** if for every $a \in L$, we have $a = \bigvee_{b \ll a} b$. An ideal *I* of *L* is called completely regular if for any $a \in I$, there exists $b \in I$ such that $a \ll b$. The frame βL is the frame of all completely regular ideals of *L*, and βL is the Stone-Čech compactification of a completely regular frame *L*. The map

$$r_L(x \mapsto \{a \in L : a \ll x\}) : L \to \beta L$$

is the right adjoint of the join map

$$\bigvee (I \mapsto \bigvee I) : \beta L \to L.$$

We recall from [13, Definition 4.10] that an ideal I of $\mathcal{R}(L)$ is called a **z-ideal** if, for any $\alpha \in \mathcal{R}(L)$ and $\beta \in I$, $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$ implies $\alpha \in I$ and it is called **d-ideal** (it is discussed in this paper under the title \mathbf{z}^{0} -ideal) if, for any $\alpha \in \mathcal{R}(L)$ and $\beta \in I$, $\operatorname{coz}(\alpha) \leq (\operatorname{coz}(\beta))^{**}$ implies $\alpha \in I$. Also, we can see equivalence for it in [1, Proposition 4.1]; for example, an ideal I of $\mathcal{R}(L)$ is a z^{0} -ideal if, for any $(\alpha, \beta) \in I \times \mathcal{R}(L)$, $(\operatorname{coz}(\alpha))^{*} = (\operatorname{coz}(\beta))^{*}$ implies $\beta \in I$. Also, we remember from [13] that for each $I \in \beta L$, the ideal M^{I} of $\mathcal{R}(L)$ is defined by $M^{I} := \{\alpha \in \mathcal{R}(L): r_{L}(\operatorname{coz}(\alpha)) \subseteq I\}$, which is a z^{0} -ideal, and the ideal O^{I} of $\mathcal{R}(L)$ is defined by $O^{I} := \{\alpha \in \mathcal{R}(L): r_{L}(\operatorname{coz}(\alpha)) \ll I\}$, which is a z^{0} -ideal.

2.3. Sublocale

For a locale *L*, a subset $S \subseteq L$ is a **sublocale** if and only if

$$M \subseteq L \Rightarrow \bigwedge M \in S$$
 and $(x \in L, s \in S) \Rightarrow x \to s \in S$.

The subset *S* is a frame in the order of *L* and inherits its Heyting structure. The smallest sublocale of *L* is $O = \{T\}$ and is called the void sublocale, and the largest sublocale of *L* is *L*. The open and the closed sublocales corresponding to each $a \in L$ are, respectively, the sublocales

$$\mathfrak{o}_L(a) = \{a \to x \mid x \in L\} = \{x \mid x = a \to x\} \text{ and } \mathfrak{c}_L(a) = \uparrow a = \{x \in L \mid x \ge a\}.$$

Some of their properties, which we shall freely use, are as follows:

- (1) $\mathfrak{o}_L(\bot) = \mathfrak{c}_L(\top) = \mathsf{O}$ and $\mathfrak{o}_L(\top) = \mathfrak{c}_L(\bot) = L$.
- (2) $c_L(a) \subseteq o_L(b)$ if and only if $a \lor b = \top$ and $o_L(a) \subseteq c_L(b)$ if and only if $a \land b = \bot$.
- (3) $\mathfrak{o}_L(a) \cap \mathfrak{o}_L(b) = \mathfrak{o}_L(a \wedge b)$ and $\mathfrak{c}_L(a) \vee \mathfrak{c}_L(b) = \mathfrak{c}_L(a \wedge b)$.
- (4) $\bigvee_i \mathfrak{o}_L(a_i) = \mathfrak{o}_L(\bigvee_i a_i)$ and $\bigcap_i \mathfrak{c}_L(a_i) = \mathfrak{c}_L(\bigvee_i a_i)$.
- (5) $\operatorname{int}_L(\mathfrak{c}_L(a)) = \mathfrak{o}_L(a^*).$
- (6) $\operatorname{cl}_L(\mathfrak{o}_L(a)) = \mathfrak{c}_L(a^*).$

3. On cozero complemented frames

In this section, we examine the *r*-ideals in the cozero complemented frames. We show that in these frames, every prime *r*-ideal of $\mathcal{R}(L)$ is a z^0 -ideal, and every prime z^0 -ideal in $\mathcal{R}(L)$ is a minimal prime ideal of $\mathcal{R}(L)$. Also, based on the *r*-ideal concept, we state and prove other equivalents for cozero complemented frames.

We recall from [21] that a space *X* is called a **cozero complemented space** if, for each cozero set *B* of *X*, there exists a cozero set *D* in *X* such that $B \cap D = \emptyset$ and $B \cup D$ is dense in *X*. These spaces were first studied in [21, 24], and they were also studied under the name of *m*-space in [6].

The cozero complemented frame was introduced and reviewed in [15]. A frame *L* has been defined in [15] to be **cozero complemented** if for every $c \in \text{Coz}(L)$, there is $d \in \text{Coz}(L)$ such that $c \land d = \bot$ and $c \lor d$ is dense. In [15], it was shown that a frame *L* is cozero complemented if and only if for each $\alpha \in \mathcal{R}(L)$, there is an element β in $\mathcal{R}(L) \setminus \text{Zdv}(\mathcal{R}(L))$ such that $\alpha\beta = \alpha^2$ if and only if for every $\alpha \in \mathcal{R}(L)$, there is $\beta \in \mathcal{R}(L)$ such that $\cos(\alpha)^{**} = \cos(\beta)^*$ (see [15, Corollary 3.2]).

Throughout this paper, for every $\alpha \in \mathcal{R}(L)$, we define

$$h(\alpha) := \left\{ P \in \operatorname{Min}(\mathcal{R}(L)) \colon \alpha \in P \right\}$$

Then, we use the following lemma many times in proving propositions.

Lemma 3.1. Let $\alpha \in \mathcal{R}(L)$ be given. Then, the following statements are equivalent:

- (1) $Ann(\alpha) = (0)$.
- (2) $\operatorname{int}_L(\operatorname{c}_L(\operatorname{coz}(\alpha))) = O.$
- (3) $(\operatorname{coz}(\alpha))^* = \bot$.
- (4) $h(\alpha) = \emptyset$.

Proof. (1) \Rightarrow (2). We argue by contradiction. Let us assume that $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))) \neq O$. Then, there exists an element $b \neq \top$ in $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))) = \mathfrak{o}_L(\operatorname{coz}(\alpha)^*)$. Hence, by [18, Proposition 3.4], there exists an element $\mathbf{0} \neq \delta$ in $\mathcal{R}^*(L)$ such that

$$\mathfrak{c}_L((\operatorname{coz}(\alpha))^*) \subseteq \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\delta))) \subseteq \mathfrak{c}_L(\operatorname{coz}(\delta)).$$

Therefore, we have

$$L = \mathfrak{c}_L(\operatorname{coz}(\alpha)^*) \lor \mathfrak{o}_L(\operatorname{coz}(\alpha)^*) \subseteq \mathfrak{c}_L(\operatorname{coz}(\delta)) \lor \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))) \subseteq \mathfrak{c}_L(\operatorname{coz}(\delta)) \lor \mathfrak{c}_L(\operatorname{coz}(\alpha))$$
$$= \mathfrak{c}_L(\operatorname{coz}(\delta) \land \operatorname{coz}(\alpha)) = \mathfrak{c}_L(\operatorname{coz}(\delta\alpha)),$$

11714

which implies that $\delta \alpha = 0$, and this is a contradiction.

(2) \Rightarrow (3). It is evident.

(3) \Rightarrow (4). We suppose, by way of contradiction, that $h(\alpha) \neq \emptyset$. Then there exists an element *P* in $Min(\mathcal{R}(L))$ such that $\alpha \in P$, which implies from [19, Corollary 1.2] that there is an element β in $\mathcal{R}(L) \setminus P$ such that $\alpha\beta = \mathbf{0}$, and we obtain

$$\cos(\beta) \le \left(\cos(\beta)\right)^{**} = \left(\cos(\alpha)\right)^{**} \land \left(\cos(\beta)\right)^{**} = \left(\cos(\alpha) \land \cos(\beta)\right)^{**} = \bot,$$

and this is a contradiction.

(4) \Rightarrow (1). Let us assume that Ann(α) \neq (0). We are seeking a contradiction. Then there exists an element $\mathbf{0} \neq \beta$ in $\mathcal{R}(L)$ such that $\alpha\beta = \mathbf{0}$, which implies from $h(\alpha) = \emptyset$ that $\beta \in \bigcap \operatorname{Min}(\mathcal{R}(L)) = (\mathbf{0})$, which is a contradiction. \Box

In the following proposition, we examine the relationship between *r*-ideals and *z*-ideals in cozero complemented frames, and we give equivalent definitions for these frames.

Proposition 3.2. *The following statements are equivalent for a completely regular frame L:*

- (1) Every r-ideal of $\mathcal{R}(L)$ is a z-ideal.
- (2) Every prime r-ideal of $\mathcal{R}(L)$ is a z-ideal.
- (3) For every $\alpha \in \mathcal{R}(L)$, there exists an element β in $\mathcal{R}(L)$ such that

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L \text{ and } \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))) = \mathbf{O}.$$

(4) For every $\alpha \in \mathcal{R}(L)$, there exists an element β in $\mathcal{R}(L)$ such that

 $\operatorname{cl}_{L}(\operatorname{int}_{L}(\operatorname{cz}(\alpha)))) = \operatorname{cl}_{L}(\mathfrak{o}_{L}(\operatorname{coz}(\beta))).$

- (5) The frame L is a cozero complemented frame.
- (6) For every $\alpha \in \mathcal{R}(L)$, there exists an element β in $\mathcal{R}(L)$ such that

$$\operatorname{cl}_{L}(\mathfrak{o}_{L}(\operatorname{coz}(\alpha)) \lor \mathfrak{o}_{L}(\operatorname{coz}(\beta))) = L \text{ and } \mathfrak{o}_{L}(\operatorname{coz}(\alpha)) \land \mathfrak{o}_{L}(\operatorname{coz}(\beta)) = O.$$

(7) For each $\alpha \in \mathcal{R}(L)$, $(\alpha)_r = (\alpha^2)_r$.

Proof. (1) \Rightarrow (2). It is evident.

(2) \Rightarrow (3). If $\alpha \in r(\mathcal{R}(L))$, then it is enough to consider $\beta = 0$. Thus, let $\alpha \in \mathcal{R}(L) \setminus r(\mathcal{R}(L))$ be given. Then, by [26, Theorem 2.20], if $P \in Min((\alpha)_r)$, then it is an *r*-ideal of $\mathcal{R}(L)$, which implies from our hypothesis that it is a *z*-ideal of $\mathcal{R}(L)$. Hence, by [28, Corollary 7.2.2], $(\alpha)_r$ is a *z*-ideal, which implies that $\alpha^{\frac{1}{3}} \in (\alpha)_r$. In consequence, there exists an element γ in $r(\mathcal{R}(L))$ such that $\gamma \alpha^{\frac{1}{3}} \in (\alpha)$, and we deduce that there exists an element δ in $\mathcal{R}(L)$ such that $\gamma \alpha^{\frac{1}{3}} = \alpha \delta$. We set $\beta := \gamma - \alpha^{\frac{2}{3}} \delta$. Now it is trivial that

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \vee \mathfrak{c}_L(\operatorname{coz}(\beta)) = \mathfrak{c}_L(\operatorname{coz}(\alpha\beta)) = \mathfrak{c}_L(\mathbf{0}) = L.$$

Let $a \in \mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\gamma))$ be given. Then

$$\cos(\beta) = \cos(\gamma - \alpha^{\frac{2}{3}}\delta) \le \left(\cos(\gamma) \lor \cos(\alpha)\right) \land \left(\cos(\gamma) \lor \cos(\delta)\right) \le \left(\cos(\gamma) \lor \cos(\alpha)\right) \le a,$$

which implies that $a \in \mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))$. Now, suppose that $a \in \mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))$. Then

$$\cos(\gamma) = \cos(\beta + \alpha^{\frac{2}{3}}\delta) \le \left(\cos(\beta) \lor \cos(\alpha)\right) \land \left(\cos(\beta) \lor \cos(\delta)\right) \le \left(\cos(\beta) \lor \cos(\alpha)\right) \le a,$$

which implies that $a \in \mathfrak{c}_L(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_L(\operatorname{coz}(\gamma))$. Therefore,

$$\operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_{L}(\operatorname{coz}(\beta))) = \operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_{L}(\operatorname{coz}(\gamma))) \leq \operatorname{int}_{L}\mathfrak{c}_{L}(\operatorname{coz}(\gamma)) = \mathsf{O}.$$

(3) \Rightarrow (4). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L$ and $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))) = O$, which implies that $\operatorname{coz}(\alpha) \land \operatorname{coz}(\beta) = \bot$ and $(\operatorname{coz}(\alpha))^* \land (\operatorname{coz}(\beta))^* = \bot$. We deduce that $(\operatorname{coz}(\alpha))^{**} = (\operatorname{coz}(\beta))^*$. Therefore, $\operatorname{cl}_L(\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)))) = \operatorname{cl}_L(\mathfrak{o}_L(\operatorname{coz}(\beta)))$.

(4) \Rightarrow (5). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $\operatorname{cl}_L(\operatorname{int}_L(\operatorname{cc}(\operatorname{coz}(\alpha)))) = \operatorname{cl}_L(\operatorname{o}_L(\operatorname{coz}(\beta)))$, which implies that $(\operatorname{coz}(\alpha))^{**} = (\operatorname{coz}(\beta))^*$. Therefore, *L* is a cozero complemented frame.

 $(\overline{5}) \Rightarrow (6)$. Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that $\cos(\alpha) \wedge \cos(\beta) = \bot$ and $\cos(\alpha) \vee \cos(\beta)$ is a dense element of *L*, which implies that

$$\mathrm{cl}_{L}(\mathfrak{o}_{L}(\mathrm{coz}(\alpha)) \vee \mathfrak{o}_{L}(\mathrm{coz}(\beta))) = \mathfrak{c}_{L}((\mathrm{coz}(\alpha) \vee \mathrm{coz}(\beta))^{*}) = L$$

and

$$\mathfrak{o}_L(\operatorname{coz}(\alpha)) \wedge \mathfrak{o}_L(\operatorname{coz}(\beta)) = \mathfrak{o}_L(\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)) = O$$

(6) \Rightarrow (5) and (6) \Rightarrow (7). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $\mathcal{R}(L)$ such that

$$\mathfrak{c}_L((\operatorname{coz}(\alpha) \lor \operatorname{coz}(\beta))^*) = \operatorname{cl}_L(\mathfrak{o}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{o}_L(\operatorname{coz}(\beta))) = L$$

and

$$\mathfrak{o}_L(\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)) = \mathfrak{o}_L(\operatorname{coz}(\alpha)) \wedge \mathfrak{o}_L(\operatorname{coz}(\beta)) = \mathsf{O},$$

which implies that $\cos(\alpha) \wedge \cos(\beta) = \bot$ and $\cos(\alpha) \vee \cos(\beta)$ is a dense element of *L*. Therefore, *L* is a cozero complemented frame. Thus, by [15, Proposition 1.1], there is a nonzero-divisor γ in $\mathcal{R}(L)$ such that $\alpha\gamma = \alpha^2$. It is evident that $(\alpha^2)_r \subseteq (\alpha)_r$. Now, suppose that $\mu \in (\alpha)_r$. Then there exists an element τ in $r(\mathcal{R}(L))$ such that $\mu\tau \in (\alpha)$, which implies that there exists an element δ in $\mathcal{R}(L)$ such that $\mu\tau = \delta\alpha$. We conclude that $\mu\tau\gamma = \delta\alpha\gamma = \delta\alpha^2 \in (\alpha^2)$, and so $\mu \in (\alpha^2)_r$. Therefore, $(\alpha^2)_r = (\alpha)_r$.

(7) \Rightarrow (5) and (7) \Rightarrow (1). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by our hypothesis, there exists an element β in $r(\mathcal{R}(L))$ such that $\alpha^2 = \beta \alpha$. Therefore, *L* is a cozero complemented frame.

Now, suppose that *I* is an *r*-ideal of $\mathcal{R}(L)$. Let $\alpha, \gamma \in I \times \mathcal{R}(L)$ with $\cos(\alpha) = \cos(\gamma)$ be given. Then, there exists an element β in $\mathcal{R}(L)$ such that $\cos(\alpha) \wedge \cos(\beta) = \bot$ and $\cos(\alpha) \vee \cos(\beta)$ is a dense element of *L*, which implies from Lemma 3.1 that $\alpha\beta = 0$ and $\delta := \alpha^2 + \beta^2 \in r(\mathcal{R}(L))$. We deduce that $\gamma\beta = 0$, and so from $\gamma\delta = \gamma\alpha^2 \in I$, we conclude that $\gamma \in I$. Therefore, *I* is a *z*-ideal of $\mathcal{R}(L)$. \Box

In the following corollary, according to Proposition 3.2, for an arbitrary ideal *I* in $\mathcal{R}(L)$, where *L* is a cozero complemented frame, we express the relationship between the smallest *r*-ideal containing *I* and the smallest *z*-ideal containing *I*.

Corollary 3.3. *The following statements are equivalent for a completely regular frame L:*

11716

- (1) A frame L is a cozero complemented frame.
- (2) Every r-ideal of $\mathcal{R}(L)$ is semiprime.
- (3) For each ideal I of $\mathcal{R}(L)$, $I_z \subseteq I_r$.

Proof. (1) \Rightarrow (2). Let *I* be an *r*-ideal of $\mathcal{R}(L)$. Then, by Proposition 3.2, *I* is a *z*-ideal of $\mathcal{R}(L)$, which implies that it is a semiprime ideal of $\mathcal{R}(L)$.

(2) \Rightarrow (1). By our hypothesis, $(\alpha^2)_r$ is semiprime for each $\alpha \in \mathcal{R}(L)$, which implies that $\alpha \in (\alpha^2)_r$. Therefore, for each $\alpha \in \mathcal{R}(L)$, $(\alpha)_r = (\alpha^2)_r$ and by using Proposition 3.2, *L* is a cozero complemented frame.

(2) \Rightarrow (3). Let *I* be an ideal of $\mathcal{R}(L)$. Then, by Proposition 3.2, every prime *r*-ideal of $\mathcal{R}(L)$ is a *z*-ideal, which implies that $I_z \subseteq I_r$.

(3) \Rightarrow (2). If *I* is an *r*-ideal of $\mathcal{R}(L)$, then, by our hypothesis, $I_z \subseteq I_r = I$, which implies that $I = I_z$, that is, *I* is a *z*-ideal. We deduce that *I* is a semiprime ideal of $\mathcal{R}(L)$. \Box

To state the next proposition, we first prove the following lemma and show that a frame *L* is a cozero completed frame if and only if every prime z^0 -ideal in $\mathcal{R}(L)$ is a minimal prime ideal.

Lemma 3.4. *The following statements are true, for every* $\alpha, \beta \in \mathcal{R}(L)$ *:*

(1) $h(\alpha) \cap h(\beta) = \emptyset$ if and only if $h(\beta) \subseteq h(\operatorname{Ann}(\alpha))$.

- (2) $h(\operatorname{Ann}(\alpha)) \subseteq h(\beta)$ if and only if $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L$.
- (3) $h(\beta) \subseteq h(\operatorname{Ann}(\alpha))$ if and only if $\operatorname{int}_L(\operatorname{c}_L(\operatorname{coz}(\alpha)) \wedge \operatorname{c}_L(\operatorname{coz}(\beta))) = O$.

Proof. (1). *Necessity.* Let $P \in h(\beta)$ be given. Then, by our hypothesis, $\alpha \notin P$. Hence, we have

 $\delta \in \operatorname{Ann}(\alpha) \Longrightarrow \delta \alpha = 0 \in P \Longrightarrow \delta \in P.$

Therefore, $h(\beta) \subseteq h(\operatorname{Ann}(\alpha))$.

Sufficiency. We proceed by contradiction. Assume that $h(\alpha) \cap h(\beta) \neq \emptyset$. Then there exists an element P in $h(\alpha) \cap h(\beta)$, which implies from our hypothesis that $P \in h(Ann(\alpha))$. By [19, Theorem 2.3], $h(\alpha)$ and $h(Ann(\alpha))$ are disjoint open and closed sets, but this is a contradiction to the fact that $P \in h(\alpha) \cap h(Ann(\alpha))$.

(2). *Necessity.* Since Ann(α) is a *z*-ideal of $\mathcal{R}(L)$, we infer from our hypothesis that

$$\beta \in \bigcap h(\beta) \subseteq \bigcap h(\operatorname{Ann}(\alpha)) = \operatorname{Ann}(\alpha)$$

which implies that

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = \mathfrak{c}_L(\operatorname{coz}(\alpha\beta)) = \mathfrak{c}_L(0) = L$$

Sufficiency. Let $P \in h(Ann(\alpha))$ be given. Then, by [19, Theorem 2.3], $P \in Min(\mathcal{R}(L)) \setminus h(\alpha)$, which implies that $\alpha \notin P$. Since, by our hypothesis, $\alpha\beta = 0 \in P$, we conclude that $P \in h(\beta)$. Thus, $h(Ann(\alpha)) \subseteq h(\beta)$.

(3). We always have $h(\beta) \subseteq h(Ann(\alpha))$ if and only if $h(\alpha) \cap h(\beta) = \emptyset$ if and only if $h(\alpha^2 + \beta^2) = \emptyset$ if and only if, by Lemma 3.1,

$$\operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_{L}(\operatorname{coz}(\beta))) = \operatorname{int}_{L}\mathfrak{c}_{L}(\operatorname{coz}(\alpha^{2} + \beta^{2})) = \mathsf{O}.$$

We recall from [5] that for every *a* in a ring *R*, $P_a = \bigcap h(a)$. Also, an ideal *I* in a commutative ring *R* is said to be a z^0 -ideal if *I* consists of zero-divisors and for each $a \in I$, the intersection of all minimal prime ideals containing *a* is contained in *I* (for any $a \in I$ implies that $P_a \subseteq I$). In a ring $\mathcal{R}(L)$, by [4, Proposition 1.5], we have

$$P_{\alpha} = \{\beta \in \mathcal{R}(L) \colon \operatorname{Ann}(\alpha) \subseteq \operatorname{Ann}(\beta)\},\$$

and by [13, Lemma 4.1], we have

$$P_{\alpha} = \left\{ \beta \in \mathcal{R}(L) : \left(\operatorname{coz}(\alpha) \right)^{*} \le \left(\operatorname{coz}(\beta) \right)^{*} \right\}$$

for every $\alpha \in \mathcal{R}(L)$. Also, we recall from [1] that $P_{\alpha} \cap P_{\beta} = P_{\alpha\beta}$ and $P_{\alpha} + P_{\beta} \subseteq P_{\alpha^2 + \beta^2}$ for every $\alpha, \beta \in \mathcal{R}(L)$.

Proposition 3.5. *The following statements are equivalent for a completely regular frame L:*

- (1) The frame L is a cozero complemented frame.
- (2) Every prime z^0 -ideal in $\mathcal{R}(L)$ is a minimal prime ideal.
- (3) For every $\alpha \in \mathcal{R}(L)$, there exists an element β in $\mathcal{R}(L)$ such that

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L \text{ and } \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))) = O$$

Proof. (1) \Rightarrow (2). Let a prime z^0 -ideal P be given. Suppose that prime ideal Q in $\mathcal{R}(L)$ such that $Q \subseteq P$ with $Q \neq P$. Then, there exists an element $\alpha \in P \setminus Q$, which implies by our hypothesis that there is an element β in $\mathcal{R}(L)$ such that $\mathfrak{c}_L(\operatorname{coz}(\alpha\beta)) = \mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L$ and $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta)) = 0$. Since $0 = \alpha\beta \in Q \subseteq P$, we deduce that $\beta \in Q \subseteq P$. Hence $\alpha^2 + \beta^2 \in P$. On the other hand, we have

$$\operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha^{2}+\beta^{2}))) = \operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_{L}(\operatorname{coz}(\beta))) = \mathsf{O} = \operatorname{int}_{L}(\mathfrak{c}_{L}(\mathbf{1})).$$

Since *P* is a z^0 -ideal, it follows that $1 \in P$, and this is a contradiction. Therefore, *P* is a minimal prime ideal. (2) \Rightarrow (3). Let $\alpha \in \mathcal{R}(L)$ be given. Then, by [6, Proposition 1.5], there exists an element β in $\mathcal{R}(L)$ such that

Ann(α) = P_{β} . It is evident that $h(\beta) = h(P_{\beta}) = h(Ann(\alpha))$, which implies from Lemma 3.4 that

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \lor \mathfrak{c}_L(\operatorname{coz}(\beta)) = L \text{ and } \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)) \land \mathfrak{c}_L(\operatorname{coz}(\beta))) = O$$

 $(3) \Rightarrow (1)$. By Proposition 3.2, it is evident. \Box

In the last result of this section, we derive another equivalent for cozero complemented frames based on the notion of *r*-ideal, which shows that there exists a prime *r*-ideal that is not z^0 -ideal.

Corollary 3.6. A frame L is a cozero complemented frame if and only if every prime r-ideal of $\mathcal{R}(L)$ is a z^0 -ideal.

Proof. Necessity. Let *I* be a prime *r*-ideal of $\mathcal{R}(L)$ with $(\operatorname{coz}(\alpha))^* = (\operatorname{coz}(\beta))^*$ for $(\alpha, \beta) \in I \times \mathcal{R}(L)$. According to our assumption and Proposition 3.2, there exists $\delta \in \mathcal{R}(L)$ such that

$$\mathfrak{c}_L(\operatorname{coz}(\beta)) \lor \mathfrak{c}_L(\operatorname{coz}(\delta)) = L$$
 and $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\beta))) \land \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\delta))) = O.$

Thus, $\beta \delta = \mathbf{0}$ and $(\beta^2 + \delta^2) \in r(\mathcal{R}(L))$. Since $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\beta))) = \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)))$, it is obtained that $(\alpha^2 + \delta^2) \in r(\mathcal{R}(L))$. Since *I* is a prime ideal of $\mathcal{R}(L)$ and $\beta \delta \in I$, it is obtained that $\beta \in I$ or $\delta \in I$. If $\delta \in I$, then $(\alpha^2 + \delta^2) \in I$, which contradicts with *I* being an *r*-ideal. Therefore, $\beta \in I$.

Sufficiency. It is clear by Proposition 3.2. \Box

Remark 3.7. The converse of parts (1) and (6) of [8, Lemma 2.2] is not necessarily true. For this, since $\operatorname{coz}(\alpha) \lor (\operatorname{coz}(\alpha))^* = \top$ for every $\alpha \in \mathcal{R}(L)$ if and only if $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \subseteq \mathfrak{o}_L((\operatorname{coz}(\alpha))^*) = \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)))$, therefore $c_L(coz(\alpha))$ is open for every $\alpha \in \mathcal{R}(L)$ if and only if *L* is a *P*-frame (see [9, Definition 8.4.6]).

Now suppose that L is a cozero complemented frame and it is not a P-frame. Therefore, there exists a nonzero element $\alpha \in \mathcal{R}(L) \setminus r(\mathcal{R}(L))$ such that $c_L(coz(\alpha))$ is not open. Since L is a cozero complemented frame by Proposition 3.2, $(coz(\alpha))_{L}$ is a *z*-ideal. Indeed $(coz(\alpha))$ is not a semiprime ideal because $c_L(coz(\alpha))$ is not open.

4. Some of the connections between almost *P*-frames and *r*-ideals

We recall from [9, Definition 8.4.6] that a frame *L* is called a *P*-frame if $a \lor a^* = \top$ for every $a \in \text{Coz}(L)$. A frame *L* is said to be an almost *P*-frame if $a = a^{**}$ for all $a \in \text{Coz}(L)$. Almost *P*-frames first appeared in [9] and were also studied in [13, 20]. Dube [13] showed that a frame L is an almost P-frame if and only if $\mathcal{R}(L) = Zdv(\mathcal{R}(L)) \cup Inv(\mathcal{R}(L))$, where $Zdv(\mathcal{R}(L))$ denotes the set of all zero-divisor elements of $\mathcal{R}(L)$ and $\operatorname{Inv}(\mathcal{R}(L))$ denotes the set of all invertible elements of $\mathcal{R}(L)$.

It has already been shown that frame L is an almost P-frame if and only if every z-ideal is a z^0 -ideal (see [13, Proposition 4.13]). In the following proposition, we state another proof based on the concept of *r*-ideals. We also express and prove other equivalents for these frames in the following proposition.

Proposition 4.1. The following statements are equivalent for a completely regular frame L:

- (1) A frame L is an almost P-frame.
- (2) Every proper ideal in $\mathcal{R}(L)$ is an r-ideal.
- (3) Every z-ideal in $\mathcal{R}(L)$ is a z^0 -ideal.
- (4) Every z-ideal in $\mathcal{R}(L)$ is an r-ideal.
- (5) For each ideal I of $\mathcal{R}(L)$, $I_r \subseteq I_z$.
- (6) Every prime z-ideal of $\mathcal{R}(L)$ is an r-ideal.
- (7) Every maximal ideal of $\mathcal{R}(L)$ is an r-ideal.

Proof. (1) \Rightarrow (2). Let *I* be an ideal in $\mathcal{R}(L)$ and let $(\alpha, \tau) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\alpha \tau \in I$ be given. Then, by our hypothesis, τ is an invertible element in $\mathcal{R}(L)$, which implies that $\alpha \in I$. Therefore, *I* is an *r*-ideal.

(2) \Rightarrow (3). First, we show that for every $\alpha \in \mathcal{R}(L)$, if $(\cos(\alpha))^* = \bot$, then $\cos(\alpha) = \top$. Then we show that for every $\alpha \in \mathcal{R}(L)$, $(\operatorname{coz}(\alpha))^{**} = \operatorname{coz}(\alpha)$. Let $\alpha \in \mathcal{R}(L)$ with $(\operatorname{coz}(\alpha))^{*} = \bot$ be given. Then

$$\operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha))) = \mathfrak{o}_{L}((\operatorname{coz}(\alpha))^{*}) = \mathfrak{o}_{L}(\bot) = \mathsf{O}_{L}(\Box)$$

which implies that $\alpha \in r(\mathcal{R}(L))$. If $coz(\alpha) \neq \top$, then (α) is a proper ideal, which implies from our hypothesis that (α) is an *r*-ideal in $\mathcal{R}(L)$. Since (α) $\cap r(\mathcal{R}(L)) \neq \emptyset$, we conclude that (α) = (α)_r = $\mathcal{R}(L)$, which is a contradiction. Therefore, $coz(\alpha) = \top$.

\ **

Let $\alpha \in \mathcal{R}(L)$ be given. Then, we have

,

$$x \ll (\operatorname{coz}(\alpha))^{**} \Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) (\operatorname{coz}(\beta) \land x = \bot \text{ and } \operatorname{coz}(\beta) \lor (\operatorname{coz}(\alpha))^{**} = \top)$$

$$\Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) (\operatorname{coz}(\beta) \land x = \bot \text{ and}$$

$$(\operatorname{coz}(\beta) \lor \operatorname{coz}(\alpha))^{*} = (\operatorname{coz}(\beta) \lor (\operatorname{coz}(\alpha))^{**})^{*} = \bot)$$

$$\Rightarrow \text{ There exists } \beta \in \mathcal{R}(L) (\operatorname{coz}(\beta) \land x = \bot \text{ and } \operatorname{coz}(\beta) \lor \operatorname{coz}(\alpha) = \top)$$

$$\Rightarrow x < \operatorname{coz}(\alpha).$$

Hence, $(\operatorname{coz}(\alpha))^{**} = \bigvee_{x \ll (\operatorname{coz}(\alpha))^{**}} x \le \bigvee_{x < \operatorname{coz}(\alpha)} x = \operatorname{coz}(\alpha) \le (\operatorname{coz}(\alpha))^{**}$, which implies that $\operatorname{coz}(\alpha) = (\operatorname{coz}(\alpha))^{**}$.

Let *I* be a *z*-ideal and let $(\alpha, \beta) \in I \times \mathcal{R}(L)$ with $(\operatorname{coz}(\alpha))^* = (\operatorname{coz}(\beta))^*$ be given. Then $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$, which implies that $\beta \in I$. Hence, *I* is a *z*⁰-ideal.

 $(3) \Rightarrow (4)$. It is evident.

(4) \Rightarrow (5). Using our hypothesis, I_z is an *r*-ideal containing *I*, and so $I_r \subseteq I_z$.

- (5) \Rightarrow (6). If *P* is a prime *z*-ideal, then $P_r \subseteq P_z = P$, which implies that *P* is an *r*-ideal.
- (6) \Rightarrow (7). It is evident.

 $(7) \Rightarrow (1)$. Suppose that *L* is not an almost *P*-frame. Then, there is an element α in $r(\mathcal{R}(L)) \setminus Inv(\mathcal{R}(L))$, which implies that there is a maximal ideal *M* of $\mathcal{R}(L)$ such that $(\alpha) \subseteq M$. Now, by our hypothesis, *M* is an *r*-ideal. This is a contradiction, since $\alpha \in M$ is a nonzero-divisor element. Therefore, *L* is an almost *P*-frame. \Box

Example 4.2. Suppose that *L* is not an almost *P*-frame. Then, there exists an element α in $r(\mathcal{R}(L))$ such that it is a noninvertible element in $\mathcal{R}(L)$. Consequently, there is a maximal ideal *M* in $\mathcal{R}(L)$ such that $(\alpha) \subseteq M$. So, *M* is a prime *z*-ideal, which is not an *r*-ideal.

According to Proposition 3.2, if a frame *L* is not a cozero complemented frame, then there is a prime *r*-ideal such that is not a *z*-ideal, or if the frame *L* is not a *P*-frame but is an almost *P*-frame, then by [3, Theorem 4.1], there is a prime ideal *Q* such that it is not a *z*-ideal. On the other hand, by Proposition 4.1, *Q* is an *r*-ideal. Then *Q* is a prime *r*-ideal such that it is not a *z*-ideal. Also, according to Proposition 4.1, if a frame *L* is not an almost *P*-frame, then there is a prime *z*-ideal such that it is not an *r*-ideal.

For an arbitrary ideal *I* in the ring $\mathcal{R}(L)$, we see the relation between I_r and I_z in Corollary 3.3 and Proposition 4.1. In the next corollary, we show that, in *P*-frames, every *r*-ideal is a *z*-ideal and vice versa, that is, $I_r = I_z$.

Corollary 4.3. *The following statements are equivalent for a completely regular frame L:*

- (1) The frame L is a P-frame.
- (2) The frame L is a cozero complemented frame and almost P-frame.
- (3) For every ideal I of $\mathcal{R}(L)$, it is a z-ideal of $\mathcal{R}(L)$ if and only if it is an r-ideal of $\mathcal{R}(L)$.
- (4) For each ideal I of $\mathcal{R}(L)$, $I_z = I_r$.

Proof. (1) \Rightarrow (2). From [12, Proposition 3.9] and Proposition 3.2, *L* is a cozero complemented frame. Also, from [13, Proposition 3.3], *L* is an almost *P*-frame.

(2) \Rightarrow (3). Let *I* be an ideal of $\mathcal{R}(L)$. Then, by Proposition 4.1, *I* is an *r*-ideal of $\mathcal{R}(L)$, which implies form Proposition 3.2 that *I* is a *z*-ideal of $\mathcal{R}(L)$. Hence, for every ideal *I* of $\mathcal{R}(L)$, it is an *r*-ideal of $\mathcal{R}(L)$ and also, it is a *z*-ideal of $\mathcal{R}(L)$.

(3) \Rightarrow (4). It is evident.

 $(4) \Rightarrow (2)$ and $(4) \Rightarrow (1)$. By Propositions 3.3 and 4.1, *L* is a cozero complemented frame and an almost *P*-frame. Let *I* be a proper ideal of $\mathcal{R}(L)$. Then, by Proposition 4.1, *I* is an *r*-ideal of $\mathcal{R}(L)$, which implies form Proposition 3.2 that *I* is a *z*-ideal of $\mathcal{R}(L)$. Therefore, by [12, Proposition 3.9], *L* is a *P*-frame. \Box

It was shown in [26] that the intersection of any family of *r*-ideals is an *r*-ideal, but their product and sum are not necessarily an *r*-ideal. In the following lemma and proposition, we will investigate what happens if the product or sum of a prime ideal in another ideal becomes an *r*-ideal. For frames that are almost *P*-frames, we give another equivalent.

Lemma 4.4. Let *R* be a reduce commutative ring and let $(I, P) \in Id(R) \times Spec(R)$. Then, the following statements are true:

11720

- (1) If IP is an r-ideal, then I or P is an r-ideal.
- (2) If IP is an r-ideal and $I \not\subseteq P$, then P is an r-ideal.
- (3) If $I \cap P$ is an r-ideal, then I or P is an r-ideal.
- (4) Let I and P be prime ideals that are not in a chain. If $I \cap P$ is an r-ideal, then I and P are r-ideals.

Proof. (1). It is evident that if $P \cap r(R) = \emptyset$, then *P* is an *r*-ideal. Now, suppose that $r \in P \cap r(R)$. Then for every $i \in I$, $ir \in IP$, which implies that $i \in IP$, and we get that IP = I is an *r*-ideal.

(2). Let $(a, b) \in r(R) \times R$ with $ab \in P$ be given. By our hypothesis, there exists an element i in $I \setminus P$, such that $iab \in IP$, which implies that $ib \in IP \subseteq P$. We obtain $b \in P$. Therefore, P is an r-ideal.

(3). If $I \subseteq P$, that is $I \cap P = I$, then, by our hypothesis, I is an r-ideal. Now, suppose that $I \nsubseteq P$. Then, there exists an element i in $I \setminus P$. Let $(a, b) \in r(R) \times R$ with $ab \in P$ be given. Then, $iab \in I \cap P$, which implies that $ib \in I \cap P \subseteq P$, and we obtain $b \in P$. Therefore, P is an r-ideal.

(4). The proof is similar to the proof of part (3). \Box

Proposition 4.5. *The following statements are equivalent for a completely regular frame L:*

- (1) The frame L is an almost P-frame.
- (2) For every $(I, P) \in Id(\mathcal{R}(L)) \times Spec(\mathcal{R}(L))$, if $I \cap P$ is an r-ideal in $\mathcal{R}(L)$, then I and P are r-ideals.
- (3) For every $(I, P) \in Id(\mathcal{R}(L)) \times Spec(\mathcal{R}(L))$, if IP is an r-ideal in $\mathcal{R}(L)$, then I and P are r-ideals.

Proof. By proposition 4.1, $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are evident.

 $(2) \Rightarrow (1)$. Suppose that *L* is not an almost *P*-frame. Then, there is an element α in $r(\mathcal{R}(L)) \setminus Inv(\mathcal{R}(L))$, which implies that there is a maximal ideal *M* of $\mathcal{R}(L)$ such that $(\alpha) \subseteq M$ and $M_r = \mathcal{R}(L)$. Let *Q* be a minimal prime ideal of $\mathcal{R}(L)$ such that $Q \subseteq M$. Then, by [26, Remark 2.3], $Q \cap M = Q$ is an *r*-ideal, which implies from our hypothesis that *M* is an *r*-ideal, and this is a contradiction.

(3) \Rightarrow (1). Suppose that *L* is not an almost *P*-frame. Then, there exists an element α in $r(\mathcal{R}(L)) \setminus Inv(\mathcal{R}(L))$, which implies that there exists an element *I* in $\Sigma\beta L$ such that $(\alpha) \subseteq M^I$. It is evident that $O^I = O^I \cap M^I = O^I M^I$ is a z^0 -ideal in $\mathcal{R}(L)$, which implies from [26, Theorem 2.19] that $O^I M^I$ is an *r*-ideal in $\mathcal{R}(L)$. Then, by our hypothesis, M^I is an *r*-ideal in $\mathcal{R}(L)$, and this is a contradiction to the fact that $\alpha \in M^I \cap r(\mathcal{R}(L))$. Therefore, *L* is an almost *P*-frame. \Box

A weakly almost *P*-space is a topological space *X* such that for every two zerosets *Z* and *F* with int $Z \subseteq int F$, there exists a zeroset *E* in *X* with empty interior such that $Z \subseteq F \cup E$. This space was studied for the first time in [6]. Every almost *P*-space is a weakly almost *P*-space. More generally, any space in which every closed set (boundary of any zeroset) is contained in a zeroset with empty interior (for example, a metric space), is a weakly almost *P*-space. In 2015, the concept of weak almost *P*-frame and some of its features were studied and investigated [16]. It was shown that if βL is a weak almost *P*-frame, so is *L* (see [16, Corollary 2.10]), and conversely, if *L* is a continuous Lindeläof frame, so is βL (see [16, Proposition 2.12]). We recall from [16, Definition 2.1] that a completely regular frame *L* is a weak almost *P*-frame if *a* and *b* are cozero elements of *L* with $a^* \leq b^*$, then there is a dense cozero element *c* such that $b \wedge c \leq a$. Every almost *P*-frame and every cozero complemented frame is a weakly almost *P*-frame (see [16, Examples 2.2 and 2.3]).

In the following proposition, we express and prove a definition equivalent to weakly almost *P*-frames based on closed sublocales.

Proposition 4.6. A frame *L* is a weakly almost *P*-frame if and only if for every $\alpha, \beta \in \mathcal{R}(L)$ with $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))) \subseteq \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\beta)))$, there exists an element γ in $\mathfrak{r}(\mathcal{R}(L))$ such that $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \subseteq \mathfrak{c}_L(\operatorname{coz}(\beta)) \lor \mathfrak{c}_L(\operatorname{coz}(\gamma))$.

Proof. Necessity. Suppose *L* is a weakly almost *P*-frame. Let $\alpha, \beta \in \mathcal{R}(L)$ with $\operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))) \subseteq \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\beta)))$ be given. Then $(\operatorname{coz}(\alpha))^* \leq (\operatorname{coz}(\beta))^*$, which implies from our hypothesis that there exists an element γ in $\mathcal{R}(L)$ with $(\operatorname{coz}(\gamma))^* = \bot$ such that $\operatorname{coz}(\gamma) \wedge \operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$. We deduce that $\gamma \in r(\mathcal{R}(L))$ and

$$\mathfrak{c}_L(\operatorname{coz}(\alpha)) \subseteq \mathfrak{c}_L(\operatorname{coz}(\beta)) \vee \mathfrak{c}_L(\operatorname{coz}(\gamma)).$$

Sufficiency. Let $\alpha, \beta \in \mathcal{R}(L)$ with $(\operatorname{coz}(\alpha))^* \leq (\operatorname{coz}(\beta))^*$ be given. Then,

$$\operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\alpha))) = \mathfrak{o}_{L}((\operatorname{coz}(\alpha))^{*}) \subseteq \mathfrak{o}_{L}((\operatorname{coz}(\beta))^{*}) = \operatorname{int}_{L}(\mathfrak{c}_{L}(\operatorname{coz}(\beta))),$$

which implies from our hypothesis that there exists an element γ in $r(\mathcal{R}(L))$ such that $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \subseteq \mathfrak{c}_L(\operatorname{coz}(\beta)) \lor \mathfrak{c}_L(\operatorname{coz}(\gamma))$. We deduce that $(\operatorname{coz}(\gamma))^* = \bot$ and $\operatorname{coz}(\gamma) \land \operatorname{coz}(\beta) \leq \operatorname{coz}(\alpha)$. Therefore, *L* is a weakly almost *P*-frame. \Box

Below we give an example of the connection between the *r*-ideal and the classical ideals of the ring $\mathcal{R}(L)$ in weakly almost *P*-frames.

Example 4.7. By [16, Proposition 3.1], if *L* is not a weakly almost *P*-frame, then there exists a prime *z*-ideal *P* in $\mathcal{R}(L)$ with $P \cap r(\mathcal{R}(L)) = \emptyset$, which is not a z^0 -ideal. On the other hand, by [26, Remark 2.3(f)], *P* is an *r*-ideal. So if *L* is not a weakly almost *P*-frame, there exists an *r*-ideal that is a *z*-ideal but not a z^0 -ideal.

Examples 4.8. By the definition of an *r*-ideal, every element of a proper *r*-ideal is a zero-divisor element. Below are some examples that show that the above statement is not always true in the ring $\mathcal{R}(L)$.

- For each $(a, r) \in Zdv(R)$, $\times r(R)$ in any reduced ring R, we have $(a)_r = (ra)_r$ (see [8, Remark 2.4]). Now, we assume that $(\alpha, \beta) \in r(\mathcal{R}(L)) \times Zdv(\mathcal{R}(L))$ such that $coz(\alpha) \nleq coz(\beta)$. Therefore, every element of $(\alpha\beta)$ is a zero-divisor element, but $(\alpha\beta)$ is not an r-ideal. Since if $(\alpha\beta)$ is an r-ideal, then $(\alpha)_r = (\alpha\beta)_r = (\alpha\beta)$ implies $(\alpha) \subseteq (\alpha\beta)$, which is a contradiction.
- Suppose $\alpha \notin r(\mathcal{R}(L))$ and $\beta \in r(\mathcal{R}(L))$ such that $(coz(\alpha) \lor coz(\beta)) = \top$. Therefore, every element $I = (\alpha\beta)$ is a zero-divisor element, but I is not an r-ideal. For this, suppose I is an r-ideal. Then $I_r = I$ implies that $\alpha\beta \in I$. Since $\beta \in r(\mathcal{R}(L))$ implies that $\alpha \in I$. Therefore, there is $\delta \in \mathcal{R}(L)$ such that $\alpha = \alpha\beta\delta$, which implies $coz(\alpha) \le coz(\beta)$. So it is followed

$$\mathfrak{c}_L(\operatorname{coz}(\beta)) = \mathfrak{c}_L(\operatorname{coz}(\alpha)) \wedge \mathfrak{c}_L(\operatorname{coz}(\beta)) = \mathfrak{c}_L(\operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta)) = \mathfrak{c}_L(\top) = \mathsf{O}.$$

Therefore, $(coz(\beta) = \top$, which is a contradiction.

• Suppose that $(\alpha, \beta) \in r(\mathcal{R}(L)) \times \mathcal{R}(L)$ are noninvertible such that $c_L(coz(\beta)) \subseteq o_L(coz(\alpha))$ and $(coz(\beta))^{**} = coz(\beta)$. We consider $J := \{\gamma \in \mathcal{R}(L): coz(\gamma) \le coz(\alpha\beta)\}$. Therefore, J is a *z*-ideal of $\mathcal{R}(L)$ consisting entirely of zero-divisors which it is not *r*-ideal. It is clear that J is a *z*-ideal and $\alpha\beta \in J$. Now suppose by contradiction that $\gamma \in J \cap r(\mathcal{R}(L))$. So, by Proposition 3.1, we have

$$\perp = \left(\operatorname{coz}(\gamma)\right)^* \ge \left(\operatorname{coz}(\alpha\beta)\right)^* \ge \left(\operatorname{coz}(\alpha) \land \operatorname{coz}(\beta)\right)^* \ge \left(\operatorname{coz}(\alpha)\right)^* \lor \left(\operatorname{coz}(\beta)\right)^*,$$

which implies that $\cos(\beta) = (\cos(\beta))^{**} = \top$, which contradicts our assumption. Now suppose by contradiction that *J* is an *r*-ideal. Since $\alpha \in r(\mathcal{R}(L))$ implies that $\beta \in J$, therefore, $\cos(\beta) \le \cos(\alpha\beta) \le \cos(\alpha)$. On the other hand, according to the assumption, we have $\cos(\alpha) \lor \cos(\beta) = \top$, which is obtained $\cos(\beta) = \top$, a contradiction.

5. The concept of z_r -ideal and s_r -ideal in the ring $\mathcal{R}(L)$

The concept of z_r -ideal and s_r -ideals in the ring C(X) was studied for the first time in [8]. They investigated the properties of these ideals in the ring C(X) and stated some of their properties in any reduced ring.

In this section, we determine the concept of z_r -ideals and s_r -ideals in the ring $\mathcal{R}(L)$ according to the concept of *r*-ideals and examine their characteristics and relationships with each other. We also indicate the frames *L* for which z_r -ideals coincide with some other types of ideals.

Definition 5.1. An ideal *I* of $\mathcal{R}(L)$ is said to be a \mathbf{z}_r -ideal if it is an *r*-ideal which is also a *z*-ideal.

Remark 5.2. Let *L* be a completely regular frame. Then we have:

- (1) By [26, Theorem 2.19(a)], every z^0 -ideal in a ring R is an r-ideal which implies that every z^0 -ideal of $\mathcal{R}(L)$ is a z_r -ideal of $\mathcal{R}(L)$. Also, by [26, Remark 2.3(f)], every minimal prime ideal is an r-ideal in $\mathcal{R}(L)$. Hence, every minimal prime ideal in $\mathcal{R}(L)$ is a z_r -ideal of $\mathcal{R}(L)$.
- (2) It is well known that the intersection of any family of *z*-ideals is a *z*-ideal. Also, by [26, Remark 2.3] the intersection of any family of *r*-ideals is an *r*-ideal. Hence, the intersection of any family of z_r -ideals of $\mathcal{R}(L)$ is a z_r -ideal of $\mathcal{R}(L)$.
- (3) It is well known that if *I* and *J* are *z*-ideals of $\mathcal{R}(L)$, then $IJ = I \cap J$. Hence, the product of two *z*_{*r*}-ideals in $\mathcal{R}(L)$ is a *z*_{*r*}-ideal.

By Remark 5.2, the smallest z_r -ideal containing a given ideal I exists and we denote it by I_{z_r} . In fact I_{z_r} is the intersection of all z_r -ideals containing I.

Proposition 5.3. For each ideal I of $\mathcal{R}(L)$, the following statements are true.

(1)
$$I_{z_r} = ((I_r)_z)_r = (I_z)_r = ((I_z)_r)_z$$

(2) $I_{z_r} = \{ \alpha \in \mathcal{R}(L) : \operatorname{coz}(\tau \alpha) \le \operatorname{coz}(\beta) \text{ for some } (\beta, \tau) \in I \times \operatorname{r}(\mathcal{R}(L) \}.$

Proof. (1). Let *I* be a proper ideal of $\mathcal{R}(L)$. If $I \cap r(\mathcal{R}(L) \neq \emptyset$, then $I_{z_r} = ((I_r)_z)_r = (I_z)_r = \mathcal{R}(L)$. Now, we can choose $I \cap r(\mathcal{R}(L) = \emptyset$. Let $(\alpha, \beta) \in (I_z)_r \times \mathcal{R}(L)$ with $coz(\alpha) = coz(\beta)$ be given. Then there exists an element τ in $r(\mathcal{R}(L))$ such that $\tau \alpha \in I_z$, and from $coz(\tau \alpha) = coz(\tau \beta)$, we conclude that $\tau \beta \in I_z \subseteq (I_z)_r$, which implies that $\beta \in (I_z)_r$. Thus $(I_z)_r$ is a z_r -ideal. Now suppose *J* is a z_r -ideal contains *I*. Take $\alpha \in (I_z)_r$, then $\tau \alpha \in I_z$ for some $\tau \in r(\mathcal{R}(L))$. But $I_z \subseteq J$, so $\tau \alpha \in J$. Since *J* is an *r*-ideal, then $\alpha \in J$. Therefore, $(I_z)_r = I_{z_r}$.

Since $I \subseteq I_r$, we infer that $(I_z)_r \subseteq ((I_r)_z)_r$. On the other hand, if $\alpha \in (I_r)_z$, then there exists an element β in I_r such that $\cos(\alpha) = \cos(\beta)$, which implies that for some $\gamma \in r(\mathcal{R}(L), \gamma\beta \in I \subseteq I_z \text{ and } \cos(\gamma\beta) = \cos(\gamma\alpha)$, and we deduce that $\alpha \in (I_z)_r$. Thus we have $(I_r)_z \subseteq (I_z)_r$, which implies that $((I_r)_z)_r \subseteq (I_z)_r$. Therefore, $((I_r)_z)_r = (I_z)_r$. The rest is trivial.

(2). We set

$$T := \{ \alpha \in \mathcal{R}(L) \colon \cos(\tau \alpha) \le \cos(\beta) \text{ for some } (\beta, \tau) \in I \times r(\mathcal{R}(L)) \}$$

If $\alpha \in (I_z)_r$, then there exists an element τ in $r(\mathcal{R}(L))$ such that $\tau \alpha \in I_z$, which implies that there exists an element β in I such that $\cos(\tau \alpha) = \cos(\beta)$, and we deduce that $\alpha \in T$. Hence, $(I_z)_r \subseteq T$. On the other hand, if $\alpha \in T$, then there exists an element (β, τ) in $I \times r(\mathcal{R}(L))$ such that $\cos(\tau \alpha) \le \cos(\beta)$, which implies that $\tau \alpha \in I_z$, and so $\alpha \in (I_z)_r$. Hence, $(I_z)_r = T$. \Box

In the following remark, we intend to provide a basic z_r -ideal with respect to the basic z-ideal and use it to express and prove an algebraic equivalent for the concept of z_r -ideal.

Remark 5.4. It is well known that $M_{\alpha} := \{\beta \in \mathcal{R}(L) : \cos(\beta) \le \cos(\alpha)\}$ is a basic *z*-ideal of $\mathcal{R}(L)$ for every $\alpha \in \mathcal{R}(L)$. Then, by Proposition 5.3,

$$(M_{\alpha})_{z_r} = (M_{\alpha})_r = \left\{ \beta \in \mathcal{R}(L) \colon \gamma \beta \in M_{\alpha} \text{ for some } \gamma \in r(\mathcal{R}(L) \right\}$$
$$= \left\{ \beta \in \mathcal{R}(L) \colon \operatorname{coz}(\gamma \beta) \le \operatorname{coz}(\alpha) \text{ for some } \gamma \in r(\mathcal{R}(L) \right\}.$$

Suppose that $\beta \in (M_{\alpha})_r$, then there is an element δ in $r(\mathcal{R}(L))$ such that

 $\cos(\delta) \wedge \cos(\beta) = \cos(\delta\beta) \le \cos(\alpha),$

which implies from $\delta \in r(\mathcal{R}(L))$ that

 $\cos(\beta)^{**} = \cos(\delta)^{**} \wedge \cos(\beta)^{**} = \left(\cos(\delta) \wedge \cos(\beta)\right)^{**} \le \left(\cos(\alpha)\right)^{**},$

and we deduce from [13, Lemma 4.1] that $Ann(\alpha) \subseteq Ann(\beta)$. Therefore, $\beta \in P_{\alpha}$. Hence, $M_{\alpha} \subseteq (M_{\alpha})_r \subseteq P_{\alpha}$ for each $\alpha \in \mathcal{R}(L)$.

Lemma 5.5. An ideal I in the ring $\mathcal{R}(L)$ is a z_r -ideal if and only if $(M_{\alpha})_r \subseteq I$ for each $\alpha \in I$.

Proof. Necessity. Suppose $\alpha \in I$. By remark 5.4, if $\beta \in (M_{\alpha})_r$, there is $\gamma \in r(\mathcal{R}(L))$ such that $coz(\gamma\beta) \leq coz(\alpha)$. Since *I* is a z_r -ideal, we infer that $\beta \in I$. Hence, $(M_{\alpha})_r \subseteq I$.

Sufficiency. Suppose $(\alpha, \beta) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ such that $\alpha\beta \in I$. Since $coz(\alpha\beta) \leq coz(\alpha\beta)$ by remark 5.4 implies that $\alpha \in (M_{\alpha\beta})_r$. It follows from the assumption that $\alpha \in I$ and *I* is an *r*-ideal. Now suppose $coz(\beta) \leq coz(\alpha)$ and $\alpha \in I$. Since $\top \in r(\mathcal{R}(L))$, by remark 5.4 and our assumption implies that $\beta \in I$. Therefore *I* is a *z*_{*r*}-ideal.

Lemma 5.6. If I is an ideal of $\mathcal{R}(L)$ and $\beta \in \sum_{\alpha \in I} (M_{\alpha})_r$. Then, there is $\alpha \in I$ such that $\beta \in (M_{\alpha})_r$.

Proof. Suppose $\beta \in \sum_{\alpha \in I} (M_{\alpha})_r$. Therefore, there are $\alpha_1, \dots, \alpha_n \in I$ such that $\beta \in \sum_{i=1}^n (M_{\alpha_i})_r$. For every $1 \le i \le n$, there exists an element $\beta_i \in (M_{\alpha_i})_r$ such that $\beta = \beta_1 + \dots + \beta_n$. By remark 5.4, there is $\gamma_i \in r(\mathcal{R}(L))$ such that $\cos(\gamma_i\beta_i) \le \cos(\alpha_i)$. If we put $\gamma := \gamma_1\gamma_2\cdots\gamma_n \in r(\mathcal{R}(L))$, then $\cos(\gamma\beta_i) \le \cos(\gamma_i\beta_i) \le \cos(\alpha_i)$ for every *i*. Therefore,

$$\operatorname{coz}(\gamma\beta) = \operatorname{coz}(\gamma(\beta_1 + \dots + \beta_n)) \leq \bigvee_{i=1}^n \operatorname{coz}(\gamma\beta_i) \leq \bigvee_{i=1}^n \operatorname{coz}(\alpha_i) = \operatorname{coz}(\alpha_1^2 + \dots + \alpha_n^2).$$

Since $\gamma \in r(\mathcal{R}(L))$, we conclude from remark 5.4 that $\beta \in (M_{\alpha_1^2 + \dots + \alpha_n^2})_r$ and $\alpha_1^2 + \dots + \alpha_n^2 \in I$. \Box

Corollary 5.7. An ideal I of $\mathcal{R}(L)$ is a z_r -ideal if and only if $I = \sum_{\alpha \in I} (M_\alpha)_r$.

Proof. It is evident by using Lemmas 5.5 and 5.6. \Box

Now, in the next proposition, we present other equivalents for the concept of z_r -ideals based on cozero elements.

Proposition 5.8. The following statements are equivalent for an ideal I of $\mathcal{R}(L)$.

- (1) The ideal I is a z_r -ideal.
- (2) If $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\cos(\tau \alpha) = \cos(\tau \beta)$, then $\beta \in I$.

(3) If $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\operatorname{coz}(\tau\beta) \leq \operatorname{coz}(\alpha)$, then $\beta \in I$.

Proof. (1) \Rightarrow (2). Let $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $coz(\tau \alpha) = coz(\tau \beta)$ be given. Since *I* is a *z*-ideal and $\tau \alpha \in I$, we infer that $\tau \beta \in I$, which implies that $\beta \in I$, because *I* is an *r*-ideal.

(2) \Rightarrow (3). Let $(\alpha, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\cos(\tau\beta) \le \cos(\alpha)$. Then $\cos(\tau\beta) = \cos(\tau\beta\alpha)$, which implies from $(\alpha\beta, \beta, \tau) \in I \times \mathcal{R}(L) \times r(\mathcal{R}(L))$ that $\beta \in I$.

(3) ⇒ (1). If we put $\tau = \top$ in (3), we deduce that *I* is a *z*-ideal. Let $(\alpha, \tau) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\tau \alpha \in I$ be given. From $coz(\tau \alpha) \leq coz(\tau \alpha)$, we infer from part (3) that $\alpha \in I$. Hence, *I* is a *z*_{*r*}-ideal. \Box

Proposition 5.9. Let I be an ideal of $\mathcal{R}(L)$ with $I \cap r(\mathcal{R}(L) = \emptyset$. If I is a z_r -ideal, then P is a z_r -ideal for every $P \in Min(I)$. The converse is also true if I is a semiprime ideal.

Proof. The first part is evident by [26, Theorem 2.20] and [25, corollary after Theorem 1.1]. Now, let *I* be a semiprime ideal of $\mathcal{R}(L)$ such that *P* is a z_r -ideal for every $P \in Min(I)$. Since any intersection of z_r -ideals is a z_r -ideal of $\mathcal{R}(L)$, we conclude that *I* is a z_r -ideal of $\mathcal{R}(L)$ and we are through. \Box

We recall from [9] that if the open quotient of every dense cozero element is a C^* -quotient, the frame *L* is called **quasi F-frame**. In [14], the properties of quasi-*F*-frame were investigated and equivalents for these frames were proved, which we use to prove the following theorem. In the following theorem, we show that the sum of z_r -ideals in $\mathcal{R}(L)$ behaves similar to the sum of z^0 -ideals in $\mathcal{R}(L)$.

Theorem 5.10. The sum of every two z_r -ideals in $\mathcal{R}(L)$ is a z_r -ideal or all of $\mathcal{R}(L)$ if and only if L is a quasi-F-frame.

Proof. Necessity. Let $\alpha, \beta \in \mathcal{R}(L)$ with $(\operatorname{coz}(\alpha) \vee \operatorname{coz}(\beta))^* = \bot$ be given. If $\alpha \in r(\mathcal{R}(L))$ or $\beta \in r(\mathcal{R}(L))$, then, by Lemma 3.1, $(\operatorname{coz}(\alpha))^{**} \vee (\operatorname{coz}(\beta))^{**} = \top$. Now, suppose that α and β are zero-divisors in $\mathcal{R}(L)$. Then, by [4, Remark 1.1], P_{α} and P_{β} are z^{0} -ideal, which implies from remark 5.2 that they are z_{r} -ideal. Thus, according to the assumption, $P_{\alpha} + P_{\beta}$ is a z_{r} -ideal or all of $\mathcal{R}(L)$. Since $\alpha^{2} + \beta^{2} \in r(\mathcal{R}(L))$ and $\alpha^{2} + \beta^{2} \in P_{\alpha} + P_{\beta}$, so $P_{\alpha} + P_{\beta} = \mathcal{R}(L)$. Hence, there exists $\delta \in P_{\alpha}$ and $\gamma \in P_{\beta}$ such that $\delta + \gamma = 1$. So we have

$$\top = \cos(1) = \cos(\delta + \gamma) \le \cos(\delta) \lor \cos(\gamma).$$

On the other hand, by [1, proposition 4.2],

$$(\operatorname{coz}(\alpha))^* \leq (\operatorname{coz}(\delta))^*$$
 and $(\operatorname{coz}(\beta))^* \leq (\operatorname{coz}(\gamma))^*$,

which implies that

$$\top = \cos(\delta) \lor \cos(\gamma) \le \left(\cos(\delta)\right)^{**} \lor \left(\cos(\gamma)\right)^{**} \le \left(\cos(\alpha)\right)^{**} \lor \left(\cos(\beta)\right)^{**}.$$

Therefore, by [14, proposition 3.1], *L* is a quasi-*F*-frame.

Sufficiency. Let *L* be a quasi-*F*-frame and *I*, *J* be two z_r -ideals of $\mathcal{R}(L)$ and $I + J \neq \mathcal{R}(L)$. Since, by [17, Proposition 5.1], the sum of two *z*-ideals of $\mathcal{R}(L)$ is always a *z*-ideal of $\mathcal{R}(L)$, it suffices to show that I + J is an *r*-ideal of $\mathcal{R}(L)$. Let $T \in Min(I + J)$ be given. Since *T* is a prime ideal and $I \subseteq T$, we infer that there exists an element *P* in Min(*I*) such that $P \subseteq T$. Thus, by [26, Theorem 2.20], *P* is an *r*-ideal of $\mathcal{R}(L)$, and by [28, Corollary 7.2.2], *P* is a z_r -ideal of $\mathcal{R}(L)$. Similarly, there exists an element *Q* in Min(*J*) with $Q \subseteq T$ such that Q is a z_r -ideal of $\mathcal{R}(L)$. If *P* and *Q* are in a chain, say $P \subseteq Q$, we have $I + J \subseteq P + Q = Q \subseteq T$, which implies from $T \in Min(I + J)$ that T = Q is a z_r -ideal of $\mathcal{R}(L)$. Now, we suppose that *P* and *Q* are not in a chain. Let I_P and I_Q are minimal prime ideals of $\mathcal{R}(L)$ such that $I_P \subseteq P$ and $I_Q \subseteq Q$. Then, by [2, Lemma 4.8], [17, Proposition 5.1], and [25, corollary after Theorem 1.1], $I_P + I_Q$ is a prime *z*-ideal of $\mathcal{R}(L)$, which implies from [11, Proposition 3.7] that $P + Q = I_P + I_Q$, and because *T* is a minimal prime over I + J, we conclude that *T* is equal to P + Q. Consequently, in both cases *T* is a *z*_r-ideal of $\mathcal{R}(L)$ and this means that *T* is a *z*_r-ideal of $\mathcal{R}(L)$ for every $T \in Min(I + J)$. Since I + J is a *z*-ideal of $\mathcal{R}(L)$, we conclude from proposition 5.9 that I + J is a *z*_r-ideal of $\mathcal{R}(L)$.

Corollary 5.11. In every almost P-frame the sum of every two z_r -ideals in $\mathcal{R}(L)$ is a z_r -ideal or all of $\mathcal{R}(L)$.

Proof. According to [14, Corollary 3.3] and Theorem 5.10, it is obvious.

According to the Theorem 5.10, whenever *L* is a quasi-*F*-frame, then there is the largest z_r -ideal included in *I* for every ideal *I* of $\mathcal{R}(L)$, that with I^{z_r} it is displayed. Actually I^{z_r} , the sum of all z_r -ideals included in *I*.

Corollary 5.12. If L is a quasi-F-frame and I is an ideal in $\mathcal{R}(L)$, then

$$I^{z_r} = \sum_{(M_\alpha)_r \subseteq I} (M_\alpha)_r$$

Proof. Suppose that $J := \sum_{(M_{\alpha})_r \subseteq I} (M_{\alpha})_r$. Since *L* is a quasi-*F*-frame, we conclude from Theorem 5.10 that *J* is a z_r -ideal in $\mathcal{R}(L)$. On the other hand, if *K* is a z_r -ideal in $\mathcal{R}(L)$ included in *I* and $\beta \in K$, then, by Lemma 5.5, $(M_{\beta})_r \subseteq K$. Since $K \subseteq I$ implies that $\beta \in J$. Therefore, $K \subseteq J$. \Box

Proposition 5.13. For two ideals I and J in $\mathcal{R}(L)$, the following relations hold:

- (1) $((I \cap J)_z)_r = (I_z)_r \cap (J_z)_r = ((IJ)_z)_r = (I_z)_r (J_z)_r.$
- (2) $(I_z)_r + (J_z)_r \subseteq ((I+J)_z)_r$.

Proof. According to the definition and properties *r*-ideals and *z*-ideals, relationships are established.

As we observed every z^0 -ideal in $\mathcal{R}(L)$ is a z_r -ideal. The following theorem, characterizes the frames L for which the converse also holds, i.e., every z_r -ideal of $\mathcal{R}(L)$ is a z^0 -ideal.

Theorem 5.14. A frame L is a weakly almost P-frame if and only if every z_r -ideal in $\mathcal{R}(L)$ is a z^0 -ideal of $\mathcal{R}(L)$.

Proof. Necessity. Let *I* be a z_r -ideal in $\mathcal{R}(L)$ and $P \in Min(I)$. Then, by Proposition 5.9, *P* is a z_r -ideal, which implies from [16, Proposition 3.1] that *P* is a z^0 -ideal of $\mathcal{R}(L)$. Since $I = \bigcap_{P \in Min(I)} P$, we infer that *I* is a z^0 -ideal of $\mathcal{R}(L)$.

Sufficiency. Let $\alpha, \beta \in \mathcal{R}(L)$ with $(\operatorname{coz}(\alpha))^* \leq (\operatorname{coz}(\beta))^*$ be given. According to our hypothesis, $(M_{\alpha})_r$ is a z^0 -ideal. From $\alpha \in (M_{\alpha})_r$ and $(\operatorname{coz}(\alpha))^* \leq (\operatorname{coz}(\beta))^*$, we infer that $\beta \in (M_{\alpha})_r$, which implies that there exists an element γ in $r(\mathcal{R}(L))$ such that

 $coz(\beta) \wedge coz(\gamma) = coz(\beta\gamma) \le coz(\alpha).$

Therefore, by Lemma 3.1 and definition, *L* is an weakly almost *P*-frame. \Box

Corollary 5.15. If *L* is a weakly almost *P*-frame, then every *z*-ideals in the class of all *r*-ideals of $\mathcal{R}(L)$ is a z^0 -ideal

Proof. It is evident by Proposition 5.14. \Box

Corollary 5.16. A frame L is an almost P-frame if and only if every z-ideal of $\mathcal{R}(L)$ is a z_r -ideal.

Proof. By Proposition 4.1, it is evident. \Box

Corollary 5.17. For an ideal I and a prime ideal Q in $\mathcal{R}(L)$, if $I \cap Q$ is a z_r -ideal, then one of them is a z_r -ideal.

Proof. By [7, Proposition 2.8] and Proposition 4.4, it is evident.

In the continuation of this section, by introducing the concept of s_r -ideal in the ring $\mathcal{R}(L)$, in the next remark and proposition, we express the connection of this ideal with z_r -ideals. We specify a frame where the s_r -ideals coincide with the z_r -ideals. **Definition 5.18.** An ideal *I* of $\mathcal{R}(L)$ is said to be an **s**_r-ideal if it is an *r*-ideal which is also a semiprime ideal.

Remark 5.19. It is clear that every z_r -ideal is an s_r -ideal. But every s_r -ideal is not necessarily a z_r -ideal. For this, if a frame *L* is not a cozero complemented frame, then, by Proposition 3.2, there exists a prime *r*-ideal *Q* that is not *z*-ideal. Therefore, *Q* is an s_r -ideal that is not a z_r -ideal.

Proposition 5.20. A frame L is a cozero complemented frame if and only if every s_r -ideal in $\mathcal{R}(L)$ is a z_r -ideal.

Proof. Necessity. By Proposition 3.2, it is evident that every s_r -ideal in $\mathcal{R}(L)$ is a z_r -ideal in $\mathcal{R}(L)$.

Sufficiency. Let *P* be a prime *r*-ideal in $\mathcal{R}(L)$. Then, by our hypothesis, *P* is a *z*-ideal. Hence, by Proposition 3.2, *L* is a cozero complemented frame. \Box

The intersection of any family of s_r -ideals is an s_r -ideal. Therefore, for every proper ideal I in the ring $\mathcal{R}(L)$ with $r(\mathcal{R}(L)) \cap I = \emptyset$, there is the smallest s_r -ideal including I, which we represent by I_{s_r} .

Corollary 5.21. For every ideal I of $\mathcal{R}(L)$, we have $I_{s_r} = \sqrt{I_r}$.

Proof. By definition, we always have $I_r \subseteq I_{s_r}$. Since I_{s_r} is an s_r -ideal and according to [8, Lemma 4.1], implies that $\sqrt{I_r} \subseteq I_{s_r}$. On the other hand, since I_{s_r} is the smallest s_r -ideal including I, implies that $I_{s_r} \subseteq \sqrt{I_r}$. \Box

We recall from [4] that for a reduced ring *R* with the property *A* that for every ideal *I* with $r(R) \cap I = \emptyset$ of *R* there is a smallest z^0 -ideal including *I*. Therefore for every ideal *I* with $r(\mathcal{R}(L)) \cap I = \emptyset$ of $\mathcal{R}(L)$, there is a smallest z^0 -ideal including *I* which we denote by I_0 and $I_0 = \{\alpha \in \mathcal{R}(L) : \operatorname{Ann}(\beta) \subseteq \operatorname{Ann}(\alpha) \text{ for some } \beta \in I\}$.

Corollary 5.22. For every proper ideal I of $\mathcal{R}(L)$ with $r(\mathcal{R}(L)) \cap I = \emptyset$,

$$I \subseteq I_r \subseteq I_{s_r} \subseteq I_{z_r} \subseteq I_0.$$

Proof. It is evident. \Box

We recall from [26] that the product of *r*-ideals is not necessarily an *r*-ideal, but by Remark 5.2, the product of z_r -ideals is a z_r -ideal. In the following proposition, we state the condition that if the product of two ideals becomes a z_r -ideal (or an s_r -ideal), then one of them is a z_r -ideal (or an s_r -ideal).

Proposition 5.23. Suppose that I and J are two ideals in $\mathcal{R}(L)$ and $r(\mathcal{R}(L)) \cap I \neq \emptyset$. Then, the following statements are true.

- (1) If IJ is an s_r -ideal of $\mathcal{R}(L)$, then J is a s_r -ideal of $\mathcal{R}(L)$.
- (2) If IJ is a z_r -ideal of $\mathcal{R}(L)$, then J is a z_r -ideal of $\mathcal{R}(L)$.

Proof. (1). Suppose that $\gamma \in r(\mathcal{R}(L)) \cap I$. If *J* is not a semiprime ideal of $\mathcal{R}(L)$, then there exists an element α in $\mathcal{R}(L)$ such that $\alpha \notin J$ and $\alpha^n \in J$ for some $n \in \mathbb{N}$, which implies that $\gamma^n \alpha^n \in IJ$, but *IJ* is a s_r ideal, hence $\alpha \in IJ \subseteq J$ and this is a contradiction. Accordingly, *J* is a semiprime ideal and it remains to show that *J* is a *r*-ideal of $\mathcal{R}(L)$. Let $(\alpha, \tau) \in \mathcal{R}(L) \times r(\mathcal{R}(L))$ with $\tau \alpha \in J$ be given. Then $\gamma \tau \alpha \in IJ$, which implies by our hypothesis that $\alpha \in IJ \subseteq J$.

(2). Suppose that $\gamma \in r(\mathcal{R}(L)) \cap I$. Let $(\alpha, \beta) \in J \times \mathcal{R}(L)$ with $coz(\alpha) = coz(\beta)$ be given. Then $coz(\gamma \alpha) = coz(\gamma \beta)$, which implies from $\gamma \alpha \in IJ$ and Proposition 5.8 that $\beta \in IJ \subseteq J$, because IJ is a z_r -ideal of $\mathcal{R}(L)$. Therefore, J is a z-ideal of $\mathcal{R}(L)$. The proof of r-ideality of J is similar to the proof of the part (1). \Box

According to Theorem 5.10, in the next theorem, we show that the sum of s_r -ideals in $\mathcal{R}(L)$ behaves similar to the sum of z_r -ideals in $\mathcal{R}(L)$.

Theorem 5.24. A frame L is a quasi-F-frame if and only if the sum of every two s_r -ideals in $\mathcal{R}(L)$ is a s_r -ideal or all of $\mathcal{R}(L)$.

Proof. Necessity. Suppose I and J are two s_r -ideals of $\mathcal{R}(L)$ and $I + J \neq \mathcal{R}(L)$. Thus, by [30, Lemma 5.1], I + J is a semiprime ideal of $\mathcal{R}(L)$. By a straightforward modification in the proof of Theorem 5.10, we obtain I + Jis an *r*-ideal of $\mathcal{R}(L)$. Therefore, I + J is an s_r -ideal of $\mathcal{R}(L)$.

Sufficiency. Suppose I and J are two z_r -ideals of $\mathcal{R}(L)$. Then I and J are two s_r -ideals of $\mathcal{R}(L)$, and according to our hypothesis, I + J is an s_r -ideal of $\mathcal{R}(L)$. On the other hand, by [17, Proposition 5.1], I + J is a z-ideal, which implies that I + I is a z_r -ideal of $\mathcal{R}(L)$. Therefore, by Theorem 5.10, L is a quasi-F-frame.

We recall from [1] that for every ideal *I* with $r(\mathcal{R}(L)) \cap I = \emptyset$ of $\mathcal{R}(L)$, if *L* is a quasi-*F*-frame, there is a largest z^0 -ideal contained in I. We represent by I^0 which it is largest z^0 -ideal contained in I and

 $I^0 = \{ \alpha \in \mathcal{R}(L) : \operatorname{Ann}(\beta) \subseteq \operatorname{Ann}(\alpha) \text{ implies } \beta \in I \text{ for every } \beta \in \mathcal{R}(L) \}$

Also, for ideal *I* with $r(\mathcal{R}(L)) \cap I = \emptyset$ of $\mathcal{R}(L)$ and using Theorem 5.24, if our frame is a quasi-*F*-frame, then there exists the largest s_r -ideal contained in I, which we denote by I^{s_r} .

Corollary 5.25. If L is a quasi-F-frame, then for every ideal I of $\mathcal{R}(L)$ with $r(\mathcal{R}(L)) \cap I = \emptyset$, we have;

$$I^0 \subseteq I^{z_r} \subseteq I^z \cap I^{s_r} \subseteq I^z + I^{s_r} \subseteq I_z$$

Proof. According to definitions I^{z_r} and I^{s_r} and Remark 5.19, the proof is clear. \Box

In Corollaries 5.22 and 5.25, we saw a chain of ideals. At the end of this section, a systematic chain of well-known ideals and ideals introduced in this paper is presented in special frames.

Corollary 5.26. If L is a quasi-F-frame and almost P-frame, then

$$I^0 \subseteq I^z = I^{z_r} \subseteq I^{s_r} \subseteq I \subseteq I_r \subseteq I_{s_r} \subseteq I_z = I_{z_r} \subseteq I_0$$

for every ideal I of $\mathcal{R}(L)$ with $r(\mathcal{R}(L)) \cap I = \emptyset$.

Proof. Using Proposition 4.1 and Theorems 5.10 and 5.24, as well as the characteristics of this class of ideals, the proof is obvious. \Box

References

- [1] M. Abedi, Some notes on z-ideal and d-ideal in RL, Bull. Iran. Math. Soc. 46 (2020), 593–611.
- [2] S. K. Acharyya, G. Bhunia, P. Ghosh, Finite frames, P-frames and basically disconnected frames, Algebra Univers. 72 (2014), 209–224.
- [3] S. K. Acharyya, G. Bhunia, P. P. Ghosh, Some new characterizations of finite frames and F-frames, Topol. Appl. 182 (2015), 122–131.
- [4] F. Azarpanah, O. A. S. Karamzadeh, A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Commun. Algebra 28 (2000), 1061-1073.
- [5] F. Azarpanah, O. A. S. Karamzadeh, A. Rezai Aliabad, On z⁰-ideals in C(X), Fund. Math. 160 (1999), 15–25.
- [6] F. Azarpanah, M. Karavan, Nonregular ideals and z^0 -ideals in C(X), Czech. Math. J. 55 (2005), 397–407.
- [7] F. Azarpanah, R. Mohamadian, \sqrt{z} -ideals and $\sqrt{z^0}$ -ideals in C(X) Acta Math. Sin., Engl. Ser. 23 (2007), 989–996.
- [8] F. Azarpanah, R. Mohamadian, P. Monjezi, On z_r -ideals of C(X), Quaest. Math. 45 (2021), 1–15.
- [9] N. R. Ball, J. Walters-Wayland, C- and C*-quotients in point-free topology, Diss. Math. 412 (2002), 62.
- [10] B. Banaschewski, The real numbers in point-free topology, Textos Mat., Sér. B, Departamento de Matematica, Universidade de Coimbra, 1997.
- [11] T. Dube, Some algebraic characterizations of F-frames, Algebra Univers. 62 (2009), 273–288.
- [12] T. Dube, *Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Univers.* 61 (2009), 115–138.
 [13] T. Dube, *Some ring-theoretic properties of almost P-frames, Algebra Univers.* 60 (2009), 145–162.
- [14] T. Dube, M. Matlabyane, Notes Concerning Characterizations of Quasi-F Frames, Quaest. Math. 32 (2009), 551–567.
- [15] T. Dube, M. Matlabyane, Cozero complemented frames, Topol. Appl. 160 (2013), 1345–1352.
- [16] T. Dube, J. N. Nsayi, When rings of continuous functions are weakly regular, Bull. Belg. Math. Soc. Simon Stevin 22 (2015) 213–226.

- [17] T. Dube, O. Ighedo, On lattices of z-ideals of function rings, Math. Slovaca 68 (2018), 271–284.
- [18] A. A. Estaji, T. Haghdadi, Rings of quotients of the ring $\mathcal{R}(L)$ by coz-filters, J. Iran. Math. Soc. 4 (2023), 131–147.
- [19] M. Henriksen, M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110–130.
- [20] M. Henriksen, J. Walters-Wayland, A point-free study of bases for spaces of minimal prime ideals Quaest. Math. 26 (2003), 333–346.
 [21] M. Henriksen, R. G. Woods, Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact, Topol. Appl. 141 (2004), 147-170.
- [22] P. T. Johnstone, Stone Spaces, Camb. Stud. Adv. Math., Cambridge university press, Cambridge, 1982.
- [23] P. T. Johnstone, Elements of the history of locale theory, In: Handbook of the history of general topology, Kluwer Acad. Publ., Dordrecht 3 (2001), 835-851.
- [24] R. Levy, J. Shapiro, Spaces in which zero-sets have complements, Preprint, dated October 18, 2002.
- [25] G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973), 280-297.
- [26] R. Mohamadian, r-ideals in commutative rings, Turk. J. Math. 39 (2015), 733-749.
- [27] D. G. Northcott, Ideal theory Camb. Tracts Math. Math. Phys., Cambridge University Press, Cambridge, 1953.
- [28] O. Oghedo, Concerning ideals of point-free function rings, PHD Thesis. UNISA, 2013.
- [29] J. Picado, A. Pultr, Frames and Locales. Topology Without Points, Front. Math., Springer, Berlin, 2012.
- [30] D. Rudd, On two sum theorems for ideals of C(X), Mich. Math. J. 17 (1970), 139–141.