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Abstract. Cristina-Elena and Adara-Monica have previously begun studying warped product hemi-slant
submanifolds in metallic Riemannian manifolds. In this study, we extend their work by examining warped
product hemi-slant submanifolds of two specific forms: M = Mθ × f M⊥ and M = M⊥ × f Mθ, where M⊥

and Mθ are anti-invariant and proper slant submanifolds of a locally metallic Riemannian manifold. We
provide examples of warped product hemi-slant submanifolds and establish a sharp inequality for the
squared norm of the second fundamental form of these submanifolds in metallic Riemannian manifolds,
considering the equality case.

1. Introduction

Warped product manifolds are a type of Riemannian manifolds that are constructed by taking the
product of manifolds with a warping metric tensor on one of its factors. This warping function can create
a variety of interesting geometries, including submanifolds with non-constant curvature.

The study of warped product submanifolds has been an active area of research in recent years. Re-
searchers have examined these submanifolds in various settings, including almost Hermitian, locally
product, and almost contact metric structures on manifolds, such as Kaehler manifolds, locally product
Riemannian manifolds, Sasakian, Kenmotsu and metallic Riemannian manifolds.

Warped products were first studied by J. F. Nash in the 1950s [11] and have since been used to construct
a variety of interesting geometric objects. Recently, B. Sahin in [12] studied warped product submanifolds
of Kaehler manifolds with a slant factor. He showed that the geometry of these submanifolds is completely
determined by the geometry of the slant submanifolds and the warping function. S. Uddin et al.[13] con-
structed examples of warped product bi-slant submanifolds in complex Euclidean spaces. L. S. Alqahtani
et al. [1] showed that there is no proper warped product bi-slant submanifold other than pseudo-slant
warped product in cosymplectic manifolds.

On the other hand, the metallic structure is a further the generalization of the Golden structure. It
was introduced in [7] by C. E. Hretcanu and M. Crasmareanu. A metallic structure is characterized by the
existence of two vector fields, P and Q that satisfy certain conditions. These conditions are more general than
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those for a Golden structure. Different types of submanifolds in metallic and Golden Riemannian manifolds
were studied in [4, 8]. The authors obtained ntegrability conditions for the distributions involved in the
definition of such submanifolds.

Recently, the study conducted by C. E. Hretcanu and A. M. Blaga [9] is considered one of the most
significant contributions to the study of warped product submanifolds. They have studied slant, bi-slant,
semi-slant, and hemi-slant submanifolds in locally metallic Riemannian manifolds. Their results have shed
light on the geometry of these submanifolds and opened up new possibilities for research in this area.

This paper continues the research on warped products of two specific forms of hemi-slant submanifolds
in locally metallic Riemannian manifolds: M = Mθ × f M⊥ and M = M⊥ × f Mθ, where M⊥ and Mθ are
anti-invariant and proper slant submanifolds of a metallic Riemannian manifold. In the first part of the
paper, we study M = Mθ × f M⊥. In the second part, we study M = M⊥ × f Mθ. In both sections, we make
significant contributions to the field of differential geometry by constructing new examples of warped
product hemi-slant submanifolds in metallic Riemannian manifolds, deriving useful lemmas that build up
to the proofs of our main theorems, and proving more general theorems on the squared norm of the second
fundamental form in terms of the components of the gradient of the warping function. We also examine
the equality case, which corresponds to when the submanifold is minimal.

2. Preliminaries

Let M̃ be a smooth manifold of dimension m. A metallic structure on M̃ is a (1,1) tensor field defined by
the following equation

J2 = pJ + qI, (1)

where p, q ∈ N, and I is the identity operator on the set of all vector fields on M̃, denoted byΓ(TM̃),
[7]. A metallic Riemannian manifold is a Riemannian manifold (M̃, 1) where the Riemannian metric 1 is
compatible with the metallic structure J. This means that the following equation holds for all vector fields
X and Y on M̃

1(JX,Y) = 1(X, JY). (2)

The equation

1(JX, JY) = p1(JX,Y) + q1(X,Y), (3)

can be derived from equations (1) and (2), for all vector fields X,Y ∈ Γ(TM̃), [7]. A locally metallic Rie-
mannian manifold is a metallic Riemannian manifold (M̃, 1, J) in which the metallic structure J is preserved
by parallel transport along geodesics with respect to the Levi-Civita connection ∇̃ on M̃. This means that
∇̃J = 0, so J is constant along geodesics [10]. If f is a smooth real valued function on a Riemannian manifold
(M̃, 1), then the gradient of f , denoted by ∇⃗ f , can be calculated using the equation:

1(∇⃗ f ,X) = X( f ), (4)

for any X tangents to M̃. Accordingly, we have the following:

∥ ∇⃗ f ∥2=
m∑

i=1

(ei( f ))2, (5)

where e1, · · ·, em is a set of mutually orthogonal vectors with unit norm, which forms a local frame field on
M̃ of dimension m [3].
A hemi-slant submanifold is an immersed submanifold M of M̃ that has two orthogonal distributions, D1

and D2, characterized by the following properties:

1. TM = D1
⊕D2.
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2. The distribution D1 is anti-invariant, meaning J(D1) ⊆ Γ(T⊥M), where Γ(T⊥M) denoted to the normal
bundle of M.

3. The distribution D2 is slant, meaning the angle θ between JX and JD2 is constant for all X ∈ D2. The
angle θ is called a slant angle.

Moreover, if the two distributions D1 and D2 are not both trivial, and the angle between J and any vector
in D2 is strictly less than π

2 , then the submanifold is called a proper hemi-slant submanifold [8].
Suppose that ∇̃ and ∇ are the Levi-Civita connections on (M̃, 1) and M, respectively. Then the Gauss

and Weingarten formulas are represented by the following equations

∇̃XY = ∇XY + h(X,Y), (6)

∇̃XV = −AVX + ∇⊥XV, (7)

for any X,Y ∈ Γ(TM), V ∈ Γ(T⊥M). The second fundamental form h and the shape operator AV are two
tensors that describe the curvature of a submanifold. These two tensors are related by the following
equation [6]:

1(h(X,Y),V) = 1(AVX,Y). (8)

Let TX and FX be the tangential and normal components of JX, respectively, for any vector field X in the
tangent bundle Γ(TM). Similarly, let tV and nV be the tangential and normal components of JV, respectively,
for any vector field V in the normal bundle Γ(T⊥M). Then, we have the following equations:

JX = TX + FX, (9)
JV = tV + nV. (10)

These equations lead to

1(TX,Y) = 1(X,TY), (11)
1(nU,V) = 1(U,nV), (12)
1(FX,V) = 1(X, tV). (13)

Then, the maps T and n are symmetric with respect to the Riemannian metric 1 [4].
If M is a slant submanifold with a slant angle θ in a metallic Riemannian manifold (M̃, 1, J), then

1(TX,TY) = cos2 θ[p1(X,TY) + q1(X,Y)], (14)

1(FX,FY) = sin2 θ[p1(X,TY) + q1(X,Y)], (15)

which imply that

T2 = cos2 θ[pT + qI] and ∇(T2) = p cos2 θ(∇T), (16)

where X,Y ∈ Γ(TM) and I is the identity on Γ(TM) [4].

Given two Riemannian manifolds, (M1, 11) and (M2, 12), their warped product with a warping function
f is a Riemannian manifold (M1 × f M2, 1). The Riemannian metric 1 is defined as 1 = 11 + f 212, where
f is a positive smooth function on M1. The dimension of the warped product manifold is the sum of
dim(M1) = n1 and dim(M2) = n2, i.e., n = n1+n2, [3]. In a warped product manifold M1× f M2, M1 and M2 are
totally geodesic and totally umbilical submanifolds of M, respectively [3]. A warped product hemi-slant
submanifold is a warped product submanifold M = M1 × f M2 such that one of the components is an anti-
invariant submanifold and the other is a slant submanifold with a slant angle θ ∈ [0, π2 ] [9]. On a warped
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product manifold M = M1 × f M2, it is known that for any X,Y ∈ Γ(TM1) and Z,W ∈ Γ(TM2), the following
hold:

∇XY ∈ Γ(TM1), (17)
∇XZ = ∇ZX = X(ln f )Z, (18)

∇ZW = ∇́ZW − 1(Z,W)∇⃗ ln f , (19)

where ∇ is the Levi-Civita connection on M [2, 5].

3. Warped product hemi-slant submanifold of the form M = Mθ × f M⊥

In this section, we study a special type of submanifold in a locally metallic Riemannian manifold M̃,
called a warped product hemi-slant submanifold of the form M =Mθ × f M⊥, where M⊥ is an anti-invariant
submanifold and Mθ is a proper slant submanifold.

Lemma 3.1. A slant submanifold Mθ with a slant angleθ, isometrically immersed in a metallic Riemannian manifold
M̃, satisfies the following equations for any X ∈ Γ(TMθ),

tFX = sin2 θ(pTX + qX), (20)
f FX = pFX − FTX. (21)

Proof. Let X ∈ Γ(TM), then from (9), we have

J2X = JTX + JFX. (22)

By using (1), (9), and (10) in (22), we can show that

pJX + qX = T2X + FTX + tFX + f FX. (23)

Applying (9) and (16) in (23), we get

sin2 θ(pTX + qX) + pFX = FTX + tFX + f FX. (24)

By comparing both sides of equation (24), we can arrive at the proof of the lemma.

Lemma 3.2. Let M = Mθ × f M⊥ be a warped product hemi-slant submanifold of a locally metallic Riemannian
manifold M̃. Then, for any X,Y ∈ Γ(TM⊥) and Z,W ∈ Γ(TMθ), the following equations hold

1(h (X,Z) , JY) = 0, (25)
1(h (X,Y) ,FZ) =

(
TZ ln f

)
1(X,Y), (26)

1(h (X,Z) ,FW) = 0, (27)
1(h (Z,W) , JX) = 0. (28)

Proof. For any X,Y ∈ Γ(TM⊥) and Z,W ∈ Γ(TMθ) in a warped product hemi-slant submanifold M =
Mθ × f M⊥ of a locally metallic Riemannian manifold M̃, then we can observe that

1(h (X,Z) , JY) = 1(∇̃XZ, JY). (29)

Using (3) and (18) in (29), we get

1(h (X,Z) , JY) =
1
p
1(J∇̃XZ, JY) −

q
p

Z(ln f )1(X,Y). (30)
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Applying equation (9) in (30), we have

1(h (X,Z) , JY) =
1
p
1(∇̃X(TZ + FZ), JY) −

q
p

Z(ln f )1(X,Y),

=
1
p
1(∇̃XTZ,FY) +

1
p
1(∇̃XtFZ,Y) +

1
p
1(∇̃X f FZ,Y) −

q
p

Z(ln f )1(X,Y). (31)

By using equations (20) and (21) in (31), we get

1(h (X,Z) , JY) =
1
p
1(h(X,TZ),FY) + sin2 θ(TZ ln f )1(X,Y) +

q
p

sin2 θ(Z ln f )1(X,Y) (32)

− 1(h(X,Y),FZ) +
1
p
1(h(X,Y),FTZ) −

q
p

(Z ln f )1(X,Y).

By substituting TZ for Z in the above equation and applying equation (16), we obtain that

1(h (X,TZ) , JY) =
q cos2 θ

p sin2 θ
1(h(X,Z),FY) + p cos2 θ(TZ ln f )1(X,Y) + q cos2 θ(Z ln f )1(X,Y) (33)

−
q cos2 θ

p sin2 θ
(TZ ln f )1(X,Y) − 1(h(X,Y),FTZ) +

q cos2 θ

p sin2 θ
1(h(X,Y),FZ).

When we insert equation (33) into equation (32), it follows that

1(h (X,Z) , JY) = (TZ ln f )1(X,Y) − 1(h(X,Y),FZ). (34)

From a different perspective, we have

1(h (X,Z) , JY) = 1(∇̃ZX, JY), (35)

1(h (X,Z) , JY) = 1(∇̃ZFX,Y), (36)
1(h (X,Z) , JY) = −1(h (Y,Z) ,FX). (37)

When we replace Y with X in equation (34), we get

1(h (Y,Z) , JX) = 1(h (X,Z) , JY). (38)

Based on equations (37), we can conclude that

1(h (X,Z) , JY) = 0.

Employing equations (25) and (34) as supporting evidence, we can provide a compelling proof of equation
(26).

With the aim of validating equation (27), we have

1(h (X,Z) ,FW) =
1
p
1(J∇̃XZ, JW). (39)

From (9) and (20), we get

1(h (X,Z) ,FW) =
1
p
1(∇̃XTZ,FW) +

1
p
1(∇̃X f FZ,W). (40)

Employing equation (21) in (40), we obtain the following result

1(h (X,Z) ,FW) =
1
p
1(h(X,TZ),FW) + 1(∇̃XFZ,W) −

1
p
1(∇̃XFTZ,W). (41)
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By interchanging Z with TZ in equation (41) and applying equation (16), we reveal the following

1(h (X,TZ) ,FW) =
q cos2 θ

p sin2 θ
1(h(X,Z),FW) + 1(∇̃XFTZ,W) −

q cos2 θ

p sin2 θ
1(∇̃XFZ,W). (42)

Referring to equations (42) and (41), we can see that

1(h (X,Z) ,FW) = −1(h(X,W),FZ). (43)

Conversely, we have

1(h (X,Z) ,FW) = 1(∇̃ZX, JW), (44)

1(h (X,Z) ,FW) = 1(∇̃ZFX,W), (45)
1(h (X,Z) ,FW) = −1(h(Z,W),FX). (46)

Substituting W for Z in (43), we obtain

1(h (X,W) ,FZ) = 1(h(X,Z),FW). (47)

According to the above equation and equation (43), we can derive that

1(h (X,Z) ,FW) = 0.

Now, let’s replicate the successful techniques we employed to establish equation (28), that means

1(h (Z,W) , JX) =
1
p
1(J∇̃ZW, JX),

=
1
p
1(∇̃ZFTW,X) +

1
p
1(∇̃Z f FW,X). (48)

By applying equation (21), and subsequently utilize equation (27), we arrive at the following outcome

1(h (Z,W) , JX) = 0.

Example 3.3. We consider a warped product hemi-slant submanifold immersion of a subset M of a manifold M̃ into
M̃. This immersion i is defined by the following equation:

i(u, θ, ϕ) = (u cosθ,u sinθ,u cosϕ,u sinϕ,

√
2
q
σu,

√
1
q
σ̃u cosθ,

√
1
q
σ̃u sinθ,

√
1
q
σ̃u cosϕ

,

√
1
q
σ̃u sinϕ,

√
1
q
σu cosθ,

√
1
q
σu sinθ,u cosθ,u sinθ), (49)

where u > 0, θ and ϕ are in the open interval (0, π2 ), σ is a metallic number, σ̃ := p − σ, also p and q are positive
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integers. The tangent bundle of M can be easily shown to be spanned by the set of vectors {Z1,Z2,Z3}, where

Z1 = cosθ
∂
∂x1
+ sinθ

∂
∂x2
+ cosϕ

∂
∂x3
+ sinϕ

∂
∂x4
+

√
2
q
σ
∂
∂x5
+

√
1
q
σ̃ cosθ

∂
∂x6

+

√
1
q
σ̃ sinθ

∂
∂x7
+

√
1
q
σ̃ cosϕ

∂
∂x8
+

√
1
q
σ̃ sinϕ

∂
∂x9
+

√
1
q
σ cosθ

∂
∂x10

+

√
1
q
σ sinθ

∂
∂x11

+ cosθ
∂
∂x12

+ sinθ
∂
∂x13
, (50)

Z2 = − u sinθ
∂
∂x1
+ u cosθ

∂
∂x2
−

√
1
q
σ̃u sinθ

∂
∂x6
+

√
1
q
σ̃u cosθ

∂
∂x7
−

√
1
q
σu sinθ

∂
∂x10

+

√
1
q
σu cosθ

∂
∂x11

− u sinθ
∂
∂x12

+ u cosθ
∂
∂x13
, (51)

Z3 = − u sinϕ
∂
∂x3
+ u cosϕ

∂
∂x4
−

√
1
q
σ̃u sinϕ

∂
∂x8
+

√
1
q
σ̃u cosϕ

∂
∂x9
. (52)

When we apply the metallic structure J of M̃, which is a linear transformation that flips the signs of some of the
coordinates, to the coordinates of a point on M̃, we obtain the following new coordinates

J(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13)
= (σx1, σx2, σ̃x3, σ̃x4, σ̃x5, σx6, σx7, σx8, σx9, σ̃x10, σ̃x11, σ̃x12, σ̃x13). (53)

It follows that we have

JZ1 =σ cosθ
∂
∂x1
+ σ sinθ

∂
∂x2
+ σ̃ cosϕ

∂
∂x3
+ σ̃ sinϕ

∂
∂x4
+

√
2
q
σσ̃
∂
∂x5

+

√
1
q
σσ̃ cosθ

∂
∂x6
+

√
1
q
σσ̃ sinθ

∂
∂x7
+

√
1
q
σσ̃ cosϕ

∂
∂x8
+

√
1
q
σσ̃ sinϕ

∂
∂x9

+

√
1
q
σσ̃ cosθ

∂
∂x10

+

√
1
q
σσ̃ sinθ

∂
∂x11

+ σ̃ cosθ
∂
∂x12

+ σ̃ sinθ
∂
∂x13
, (54)

JZ2 = − uσ sinθ
∂
∂x1
+ uσ cosθ

∂
∂x2
−

√
1
q
σσ̃u sinθ

∂
∂x6
+

√
1
q
σσ̃u cosθ

∂
∂x7

−

√
1
q
σσ̃u sinθ

∂
∂x10

+

√
1
q
σσ̃u cosθ

∂
∂x11

− uσ̃ sinθ
∂
∂x12

+ uσ̃ cosθ
∂
∂x13
, (55)

JZ3 = − uσ̃ sinϕ
∂
∂x3
+ uσ̃ cosϕ

∂
∂x4
−

√
1
q
σσ̃u sinϕ

∂
∂x8
+

√
1
q
σσ̃u cosϕ

∂
∂x9
. (56)

Let’s define two distributions on the manifold M̃:

• D⊥ is spanned by the vectors Z2, and Z3. It is the anti-invariant distribution under the metallic structure J.

• Dθ∗ is spanned by the vectors Z1. It is the slant distribution with slant angle θ∗, which means that θ∗ =
cos−1 2

√
qσ

√
(σ2+2σ̃2+5q)(3q+3σ2+2σ̃2)

, under the metallic structure J.
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The metric tensor that defines the distance between points on the manifold M is given by the following equation:

1 :=
(
3 +

3σ2

q
+

2σ̃2

q

)
d2u + u2

(
2 +
σ̃2

q
+
σ2

q

)
d2θ +

(
1 +
σ̃2

q

)
d2ϕ.

This metric tensor defines a type of submanifold called a warped product hemi-slant submanifold, which is embedded
in a metallic Riemannian manifold. The manifold M is the product of two manifolds, M = Mθ × f M⊥, and the
warping function f stretches the manifold M⊥ by a factor of u.

Now, we need to define a specific frame field for a warped product hemi-slant submanifold of dimension
n of a locally metallic Riemannian manifold M̃ with m-dimensional. Let dim(M⊥) = t1 and dim(Mθ) = t2,
where n = t1 + t2. Also, let the tangent bundles of the anti-invariant M⊥ and the slant Mθ are D⊥ and Dθ,
respectively. Let {e1, e2, ..., et1 } be the orthonormal frames of D⊥ and

{et1+1, · · · , et1+w, et1+w+1 =
secθ
√

q
Tet1+1, et1+w+2 =

secθ
√

q
Tet1+2, · · · , et1+t2 = et1+2w = en =

secθ
√

q
Tet1+w} (57)

be the orthonormal frame of Dθ. Also, the orthonormal frame field of the normal sub bundle of JD⊥ and
FDθ are respectively,

{en+1 = ẽ1 = Je1, en+2 = ẽ2 = Je2, ..., en+t1 = ẽt1 = Jet1 }, (58)

{en+t1+1 = ẽt1+1 =
cscθ
√

q
Fet1+1, en+t1+2 = ẽt1+2 =

cscθ
√

q
Fet1+2, ..., en+t1+w = ẽt1+w =

cscθ
√

q
Fet1+w,

en+t1+w+1 = ẽt1+w+1 =
secθ cscθ√

qp2 cos2 θ + q2
FTet1+1, ..., en+t1+2w = ẽt1+t2 =

secθ cscθ√
qp2 cos2 θ + q2

FTet1+w}. (59)

Theorem 3.4. Let M = Mθ × f M⊥ be a warped product hemi-slant submanifold in a locally metallic Riemannian
manifold M̃, where M⊥ is an anti-invariant submanifold and Mθ is a slant submanifold of M̃. Then,

(i) the squared norm of the second fundamental form h of M is at least

∥h∥2 ≥
t1 cos4 θ csc2 θ

p2 cos2 θ + q
∥∇
θ ln f ∥2, (60)

where t1 = dim M⊥ and ∇θ ln f is the gradient of ln f along Mθ.
(ii) If the squared norm of the second fundamental form h of M in (60) is equal to it is lower bound, then both Mθ

and M⊥ are totally geodesic and totally umbilical submanifolds of M̃, respectively.

Proof. For a frame field {e1, . . . , en} of a submanifold M of dimension n, the squared norm of the second
fundamental form h can be expressed as

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)) =
m∑

r=n+1

n∑
i, j=1

1(h(ei, e j), er)2. (61)

By using the frame fields given in (57), (58), and (59) in (61), we see that

∥h∥2 =
t1∑

r=1

t1∑
i, j=1

1(h(ei, e j), ẽr)2 +

t1+t2∑
r=t1+1

t1∑
i, j=1

1(h(ei, e j), ẽr)2 + 2
t1∑

r=1

t1∑
i=1

t1+t2∑
j=t1+1

1(h(ei, e j), ẽr)2

+ 2
t1+t2∑

r=t1+1

t1∑
i=1

t1+t2∑
j=t1+1

1(h(ei, e j), ẽr)2 +

t1∑
r=1

t1+t2∑
i, j=t1+1

1(h(ei, e j), ẽr)2 +

t1+t2∑
r=t1+1

t1+t2∑
i, j=t1+1

1(h(ei, e j), ẽr)2. (62)
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Substituting equations (25) and (27) in (62), we get that

∥h∥2 ≥
t1+t2∑

r=t1+1

t1∑
i, j=1

1(h(ei, e j), ẽr)2. (63)

With the aid of (59), we can rewrite the last inequality (63) as

∥h∥2 ≥
csc2 θ

q

t1+w∑
r=t1+1

t1∑
i, j=1

1(h(ei, e j),Fer)2 +
sec2 θ csc2 θ

q(p2 cos2 θ + q)

t1+w∑
r=t1+1

t1∑
i, j=1

1(h(ei, e j),FTer)2. (64)

Using equation (26) in (64), we find

∥h∥2 ≥
t1 csc2 θ

q

t1+w∑
r=t1+1

(Ter ln f )2 +
t1 csc2 θ

(p2 cos2 θ + q)

t1+t2∑
r=t1+w+1

(Ter ln f )2. (65)

Applying equations (57) and (16), we obtain that

∥h∥2 ≥
t1 csc2 θ

sec2 θ

t1+t2∑
r=t1+w+1

(er ln f )2 +
t1p2 cos2 θ csc2 θ

sec2 θ(p2 cos2 θ + q)

t1+t2∑
r=t1+w+1

(er ln f )2 +
t1q cos2 θ csc2 θ

(p2 cos2 θ + q)

t1+w∑
r=t1+1

(er ln f )2.

Clearly, by taking
t1 cos2 θ csc2 θ

sec2 θ(p2 cos2 θ + q)
as a common factor, we get

∥h∥2 ≥
t1 cos2 θ csc2 θ

sec2 θ(p2 cos2 θ + q)

( t1+t2∑
r=t1+w+1

(er ln f )2 +

t1+w∑
r=t1+1

(er ln f )2

)
. (66)

Finally,

∥h∥2 ≥
t1 cos4 θ csc2 θ

(p2 cos2 θ + q)
∥∇
θ ln f ∥2.

For the equality case, from the leaving fifth and sixth terms of (62), we find

h(Dθ,Dθ) = 0. (67)

Similarly, from the leaving first term of (62), we find that

h(D⊥,D⊥) ⊆ FDθ. (68)

On the other hand, the leaving fourth term in (62), we get

h(D⊥,Dθ) ⊆ JD⊥. (69)

Since Mθ is totally geodesic in M and from (67), one can find that Mθ is totally geodesic in M̃. Similarly, as
M⊥ being totally umbilical in M, then (68) and (69) imply that M⊥ is totally umbilical in M̃, which ends the
proof.

4. Warped product hemi-slant submanifold of the form M = M⊥ × f Mθ

Next, we will study another type of warped product hemi-slant submanifold. This submanifold can
be expressed as M = M⊥ × f Mθ in a locally metallic Riemannian manifold M̃, where M⊥ and Mθ are
anti-invariant and slant submanifolds of M̃.
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Lemma 4.1. Let M = M⊥ × f Mθ be a warped product hemi-slant submanifold in a locally metallic Riemannian
manifold M̃, then we have the following equations:

1(h (X,Z) , JY) = 0, (70)
1(h (X,Y) ,FZ) = 0, (71)
1(h (X,Z) ,FW) = 0, (72)
1(h (Z,W) , JX) = −

(
X ln f

)
1(Z,TW), (73)

for all X,Y ∈ Γ(TM⊥) and Z,W ∈ Γ(TMθ).

Proof. To prove the equations in the lemma (4.1), let X,Y be vector fields tangent to M⊥ and Z,W be vector
fields tangent to Mθ in a locally metallic Riemannian manifold M̃, where M =M⊥× f Mθ is a warped product
hemi-slant submanifold. We can then define 1(h (X,Z) , JY) = 1(∇̃XZ, JY), and so

1(h (X,Z) , JY) =
1
p
1(J∇̃XZ, JY). (74)

By using equations (2) and (9), we have

1(h (X,Z) , JY) =
1
p
1(∇̃X(TZ),FY) +

1
p
1(∇̃X(tFZ),Y) +

1
p
1(∇̃X( f FZ),Y). (75)

From equations (20) and (21), we get

1(h (X,Z) , JY) =
1
p

(1(h(X,TZ),FY) +
1
p
1(h(X,Y),FTZ)) − 1(h(X,Y),FZ). (76)

By substituting TZ for Z in equation (76) and applying equation (16), we have

1(h (X,TZ) ,FY) =
q cos2 θ

p sin2 θ
(1(h(X,Z),FY) +

q cos2 θ

p sin2 θ
1(h(X,Y),FZ)) − 1(h(X,Y),FTZ). (77)

By applying equations (77) in (76), we obtain

1(h (X,Z) , JY) = −1(h(X,Y),FZ). (78)

However, we have

1(h (X,Z) , JY) = 1(∇̃ZX, JY), (79)

1(h (X,Z) , JY) = 1(∇̃Z JX,Y), (80)
1(h (X,Z) , JY) = −1(h (Y,Z) ,FX). (81)

By exchanging X for Y in equation (78) and utilizing equation (81), we arrive at

1(h (X,Z) , JY) = 0.

Furthermore, employing equation (70) in conjunction with equation (78) serves as a means to validate
equation (71).

Now, we apply the same techniques used to prove equation (72). We have

1(h (X,Z) ,FW) = 1(∇̃XZ, JW) − 1(∇̃XZ,TW). (82)

From equations (3) and (18), we have

1(h (X,Z) ,FW) =
1
p

(1(J∇̃X(Z), JW) −
q
p

(X ln f )1(Z,W)) − (X ln f )1(Z,TW).



L. S. Alqahtani, E. M. AL-Husainy / Filomat 38:33 (2024), 11731–11745 11741

Using equations (9) and (10), we get

1(h (X,Z) ,FW) =
1
p

((X ln f )1(TZ,TW) +
1
p
1(∇̃X(TZ),FW) +

1
p
1(∇̃X(tFZ),W) +

1
p
1(∇̃X( f FZ),W)

−
q
p

(X ln f )1(Z,W)) − (X ln f )1(Z,TW). (83)

By employing equations (14), (20) and (21), we obtain

1(h (X,Z) ,FW) =
1
p
1(h(X,TZ),FW) − 1(h(X,W),FZ) +

1
p
1(h(X,W),FTZ). (84)

By exchanging Z for TZ in equation (84) and utilizing equation (16), we arrive at

1(h (X,TZ) ,FW) =
q cos2 θ

p sin2 θ
1(h(X,Z),FW) − 1(h(X,W),FTZ) +

q cos2 θ

p sin2 θ
1(h(X,W),FZ). (85)

Using equations (85) in conjunction with (84), we derive

1(h (X,Z) ,FW) = −1(h(X,W),FZ). (86)

On the other hand,

1(h (X,Z) ,FW) = 1(∇̃ZX, JW) − 1(∇̃ZX,TW),
= −1(h (Z,W) ,FX) − (X ln f )1(Z,TW). (87)

Replacing Z with W in equation (87), we obtain that

1(h (X,W) ,FZ) = 1(h (X,Z) ,FW).

Through the application of equation (86), we can rigorously prove equation (72). Utilizing equation (72)
within equation (87), we obtain

1(h (Z,W) , JX) = −
(
X ln f

)
1(Z,TW),

and with that, the lemma is proven.

Example 4.2. We consider an immersion of a subset M of a manifold M̃ into itself, defined as a warped product
hemi-slant submanifold. This immersion is characterized by the following equation

i(u, v, θ, ϕ) = (
√

2u cosθ sinϕ,
√

2u sinθ sinϕ,
√

2u sinθ cosϕ,
√

2u cosθ cosϕ

,
√

2v cosθ sinϕ,
√

2v sinθ sinϕ,
√

2v sinθ cosϕ,
√

2v cosθ cosϕ,√
1
q
σv cosθ,

√
1
q
σv sinθ,

√
1
q
σv cosϕ,

√
1
q
σv sinϕ,

√
1
q
σu cosθ,√

1
q
σu sinθ,

√
1
q
σu cosϕ,

√
1
q
σu sinϕ), (88)

where u, v > 0, θ andϕ belong to the interval (0, π2 ), σ is a metallic number, σ̃ := p−σ, and p and q are positive integers.
By applying basic linear algebra principles, we can readily establish that the set of tangent vectors {Z1,Z2,Z3,Z4}



L. S. Alqahtani, E. M. AL-Husainy / Filomat 38:33 (2024), 11731–11745 11742

constitutes a basis for the tangent bundle of M, where

Z1 =
√

2 cosθ sinϕ
∂
∂x1
+
√

2 sinθ sinϕ
∂
∂x2
+
√

2 sinθ cosϕ
∂
∂x3
+
√

2 cosθ cosϕ
∂
∂x4

+

√
1
q
σ cosθ

∂
∂x13

+

√
1
q
σ sinθ

∂
∂x14

+

√
1
q
σ cosϕ

∂
∂x15

+

√
1
q
σ sinϕ

∂
∂x16
, (89)

Z2 =
√

2 cosθ sinϕ
∂
∂x5
+
√

2 sinθ sinϕ
∂
∂x6
+
√

2 sinθ cosϕ
∂
∂x7
+
√

2 cosθ cosϕ
∂
∂x8

+

√
1
q
σ cosθ

∂
∂x9
+

√
1
q
σ sinθ

∂
∂x10

+

√
1
q
σ cosϕ

∂
∂x11

+

√
1
q
σ sinϕ

∂
∂x12
, (90)

Z3 = −
√

2u sinθ sinϕ
∂
∂x1
+
√

2u cosθ sinϕ
∂
∂x2
+
√

2u cosθ cosϕ
∂
∂x3
−

√

2u sinθ cosϕ
∂
∂x4

−

√

2v sinθ sinϕ
∂
∂x5
+
√

2v cosθ sinϕ
∂
∂x6
+
√

2v cosθ cosϕ
∂
∂x7
−

√

2v sinθ cosϕ
∂
∂x8

−

√
1
q
σv sinθ

∂
∂x9
+

√
1
q
σv cosθ

∂
∂x10

−

√
1
q
σu sinθ

∂
∂x13

+

√
1
q
σu cosθ

∂
∂x14
, (91)

Z4 =
√

2u cosθ cosϕ
∂
∂x1
+
√

2u sinθ cosϕ
∂
∂x2
−

√

2u sinθ sinϕ
∂
∂x3
−

√

2u cosθ sinϕ
∂
∂x4

+
√

2v cosθ cosϕ
∂
∂x5
+
√

2v sinθ cosϕ
∂
∂x6
−

√

2v sinθ sinϕ
∂
∂x7
−

√

2v cosθ sinϕ
∂
∂x8

−

√
1
q
σv sinϕ

∂
∂x11

+

√
1
q
σv cosϕ

∂
∂x12

−

√
1
q
σu sinϕ

∂
∂x15

+

√
1
q
σu cosϕ

∂
∂x16
. (92)

Applying the linear transformation J of M̃, which flips signs of certain coordinates, to a point on M̃ will yield new
coordinates as follows:

J(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16)
= (σx1, σx2, σx3, σx4, σx5, σx6, σx7, σx8, σ̃x9, σ̃x10, σ̃x11, σ̃x12, σ̃x13, σ̃x14, σ̃x15, σ̃x16). (93)

As a consequence, we obtain that

JZ1 =
√

2σ cosθ sinϕ
∂
∂x1
+
√

2σ sinθ sinϕ
∂
∂x2
+
√

2σ sinθ cosϕ
∂
∂x3

+
√

2σ cosθ cosϕ
∂
∂x4
+

√
1
q
σσ̃ cosθ

∂
∂x13

+

√
1
q
σσ̃ sinθ

∂
∂x14

+

√
1
q
σσ̃ cosϕ

∂
∂x15

+

√
1
q
σσ̃ sinϕ

∂
∂x16
, (94)

JZ2 =
√

2σ cosθ sinϕ
∂
∂x5
+
√

2σ sinθ sinϕ
∂
∂x6
+
√

2σ sinθ cosϕ
∂
∂x7

+
√

2σ cosθ cosϕ
∂
∂x8
+

√
1
q
σσ̃ cosθ

∂
∂x9
+

√
1
q
σσ̃ sinθ

∂
∂x10

+

√
1
q
σσ̃ cosϕ

∂
∂x11

+

√
1
q
σσ̃ sinϕ

∂
∂x12
, (95)
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JZ3 = −
√

2σu sinθ sinϕ
∂
∂x1
+
√

2σu cosθ sinϕ
∂
∂x2
+
√

2σu cosθ cosϕ
∂
∂x3

−

√

2σu sinθ cosϕ
∂
∂x4
−

√

2σv sinθ sinϕ
∂
∂x5
+
√

2σv cosθ sinϕ
∂
∂x6

+
√

2σv cosθ cosϕ
∂
∂x7
−

√

2σv sinθ cosϕ
∂
∂x8
−

√
1
q
σσ̃v sinθ

∂
∂x9

+

√
1
q
σσ̃v cosθ

∂
∂x10

−

√
1
q
σσ̃u sinθ

∂
∂x13

+

√
1
q
σσ̃u cosθ

∂
∂x14
, (96)

JZ4 =
√

2σu cosθ cosϕ
∂
∂x1
+
√

2σu sinθ cosϕ
∂
∂x2
−

√

2σu sinθ sinϕ
∂
∂x3

−

√

2σu cosθ sinϕ
∂
∂x4
+
√

2σv cosθ cosϕ
∂
∂x5
+
√

2σv sinθ cosϕ
∂
∂x6

−

√

2σv sinθ sinϕ
∂
∂x7
−

√

2σv cosθ sinϕ
∂
∂x8
−

√
1
q
σσ̃v sinϕ

∂
∂x11

+

√
1
q
σσ̃v cosϕ

∂
∂x12

−

√
1
q
σσ̃u sinϕ

∂
∂x15

+

√
1
q
σσ̃u cosϕ

∂
∂x16
. (97)

On the manifold M̃, we define two distributions:

• D⊥ spanned by vectors Z1 and Z2, is anti-invariant under the metallic structure J.

• Dθ∗ spanned by vector Z3 and Z4, is a slant distribution with slant angle θ∗ = cos−1 σ√
(2+ σ2q )(q+2σ2)

, under J.

The metric tensor on M is given by

1 : =
(
2 +

2σ2

q

)
(d2u + d2v) +

(
(u2 + v2)(2 +

σ2

q
)
)
(d2θ + d2ϕ) (98)

This defines a warped product hemi-slant submanifold M embedded in a metallic Riemannian manifold M̃. M can be
expressed as the product of two manifolds, M = M⊥ × f Mθ, where the warping function f stretches M⊥ by a factor
of u and v.

Theorem 4.3. Let M = M⊥ × f Mθ be a warped product hemi-slant submanifold in a locally metallic Riemannian
manifold M̃, where M⊥ is an anti-invariant submanifold and Mθ is a slant submanifold of M̃. Then,

(i) The squared norm of the second fundamental form h of M is bounded below by the expression

∥h∥2 ≥ (2q + p2 cos2 θ)wcos2 θ∥∇⊥ ln f ∥2, (99)

where dim Mθ = t2 = 2w and ∇⊥ ln f is the gradient of ln f along M⊥.
(ii) If equality holds, then both M⊥ and Mθ become totally geodesic and totally umbilical submanifolds of M̃,

respectively.

Proof. The squared norm of the second fundamental form h of M is given by the following equation

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)) =
m∑

r=n+1

n∑
i, j=1

1(h(ei, e j), er)2. (100)
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Through the application of equation (100) and using the frame fields (57), (58), and (59), we see that

∥h∥2 =
t1∑

r=1

t1∑
i, j=1

1(h(ei, e j), ẽr)2 +

m−n∑
r=t1+1

t1∑
i, j=1

1(h(ei, e j), ẽr)2 + 2
t1∑

r=1

t1∑
i=1

t1+t2∑
j=t1+1

1(h(ei, e j), ẽr)2

+ 2
m−n∑

r=t1+1

t1∑
i=1

t1+t2∑
j=t1+1

1(h(ei, e j), ẽr)2 +

t1∑
r=1

t1+t2∑
i, j=t1+1

1(h(ei, e j), ẽr)2 +

m−n∑
r=t1+1

t1+t2∑
i, j=t1+1

1(h(ei, e j), ẽr)2. (101)

Using equations (70) and (72) in (101) leads us to

∥h∥2 ≥
t1∑

r=1

t1+t2∑
i, j=t1+1

1(h(ei, e j), ẽr)2. (102)

By equation (58), one can rewrite the last inequality as

∥h∥2 ≥
t1∑

r=1

t1+t2∑
i, j=t1+1

1(h(ei, e j),Fer)2. (103)

By applying equation (73) and then using the frame field (57), we get

∥h∥2 ≥
t1∑

r=1

t1+t2∑
i, j=t1+w+1

(er ln f )21(ei,Te j)2 +

t1∑
r=1

t1+w∑
i=t1+1

t1+t2∑
j=t1+w+1

(er ln f )21(ei,Te j)2

+

t1∑
r=1

t1+t2∑
i=t1+w+1

t1+w∑
j=t1+1

(er ln f )21(ei,Te j)2, (104)

and so,

∥h∥2 ≥
sec2 θ

q

t1∑
r=1

t1+t2∑
i=t1+w+1

t1+w∑
j=t1+1

(er ln f )21(ei,T2e j)2 +
sec2 θ

q

t1∑
r=1

t1+w∑
i, j=t1+1

(er ln f )21(ei,T2e j)2

+
q

sec2 θ

t1∑
r=1

t1+t2∑
i, j=t1+w+1

(er ln f )21(ei, e j)2. (105)

Using equation (16) in (105) allows us to get

∥h∥2 ≥
p2 cos2 θ

q

t1∑
r=1

t1+t2∑
i=t1+w+1

t1+w∑
j=t1+1

(er ln f )21(ei,Te j)2 +
wq2 cos2 θ

q

t1∑
r=1

(er ln f )2 +
qw

sec2 θ

t1∑
r=1

(er ln f )2. (106)

By (57), we obtain that

∥h∥2 ≥ (2q + p2 cos2 θ)wcos2 θ∥∇⊥ ln f ∥2.

In M, M⊥ is totally geodesic and Mθ is totally umbilical. The vanishing of first, third, and sixth terms in
equation (101) implies that M⊥ and Mθ retain their geometric properties in M̃ under the condition that the
squared norm of the second fundamental form h of M is equal, we have

h(D⊥,D⊥) = 0, (107)

h(D⊥,Dθ) ⊆ FDθ, (108)

h(Dθ,Dθ) ⊆ JD⊥. (109)

Specifically, equation (107) implies that M⊥ is totally geodesic in M̃ . Equations (108) and (109) together
imply that Mθ is totally umbilical in M̃.
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