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Abstract. One significant application of almost maximum distance separable (briefly, AMDS) codes
is in secure communication systems, such as secure messaging and encrypted data transmission. By
incorporating AMDS codes into the data encoding process, information can be safeguarded from accidental
errors that might occur during transmission or storage. In this paper, we study all AMDS constacyclic codes
of length ps over Fpm . We also provide some examples of AMDS constacyclic codes over finite fields. As
an application, we establish all quantum AMDS (briefly, qAMDS) codes from repeated-root codes of prime
power lengths over finite fields using the CSS and Hermitian constructions.

1. Introduction

Berlekamp [3] first studied constacyclic codes over finite fields, which have a rich algebraic structure
and are generalizations of cyclic and negacyclic codes. A γ-constacyclic code of length n over F is an ideal
of F[x]
⟨xn−γ⟩ . If γ = 1 (γ = −1), then an ideal of F[x]

⟨xn−γ⟩ is called a cyclic (negacyclic) code. Cyclic codes over
finite fields were first studied by Prange in 1957 [72]. After that, negacyclic codes over finite fields were
considered by Berlekamp [4]. Berman [5] first initiated the case (n, p) = p, where n is the code length and
p is the characteristic of the fields. If (n, p) = p, then codes over finite fields are so-called repeated-root
codes. Such codes are also studied by some authors (for examples, Massey et al. [69], Roth and Seroussi
[76], and van Lint [90]). Recently, Dinh, in a series of papers ([24], [27], [28], [29], [30]), determined the
algebraic structures of constacyclic codes in terms of generator polynomials over Fpm of length mps, where
m = 1, 2, 3, 4, 6.

Due to the decoherence and other quantum noise in quantum information, quantum error-correcting
(briefly, QEC) codes are proposed to prevent errors in quantum information. In 1995, Shor first introduced
QEC codes [82]. Many good QEC codes were constructed from classical codes such as Hamming, BCH and
Reed-Solomon codes [9, 45, 46]. The study of QEC codes has developed rapidly in recent years. After the
publications of several foundation papers [2, 9, 63, 82, 86], which were the key theoretical development,
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in rapid succession, QEC codes have been studied extensively. There have been many results on the
structure, properties and operation of QEC codes [2, 10, 20, 41, 61]. In the last several years, CSS, Hermitian
constructions are used to construct some classes of QEC codes.

The Singleton bound relates the parameters of a code as follows: |C| ≤ pm(n−dH(C)+1) [77]. A code C
satisfying |C| = pm(n−dH(C)+1) is called an MDS code. Maximum Distance Separable (MDS) codes are a
fascinating and crucial concept in the realm of coding theory and information security. These codes play
a pivotal role in ensuring the reliability and integrity of data transmission, making them indispensable in
various applications. One of the primary applications of MDS codes is in the field of error correction. In
scenarios where data transmission is susceptible to noise, interference, or corruption, MDS codes serve
as a powerful tool for mitigating these issues ([36], [37]). They enable us to detect and correct errors,
preserving the integrity of the information being transmitted. This is particularly critical in applications
such as wireless communication, where signal degradation is common, and in data storage systems,
where data corruption can lead to catastrophic losses. Furthermore, MDS codes find extensive use in
cryptography. Protecting sensitive information from unauthorized access and ensuring data confidentiality
is of paramount importance. MDS codes can be employed to construct secure cryptographic primitives,
such as secret sharing schemes, where a secret is divided into shares distributed among multiple parties.
Only when a sufficient number of shares are combined can the original secret be reconstructed. This adds
an extra layer of security, making it challenging for adversaries to access confidential data (see, [92], [73],
[87]).

Let Q = [[n, k, d]]q be a QEC code. If k = n − 2(d − 1), then C is called a quantum maximum distance
separable (qMDS). QMDS codes are a class of quantum error-correcting codes that play a pivotal role
in quantum information theory and quantum computing. They are quantum analogs of classical MDS
codes and are designed to correct a maximum number of errors while preserving quantum information.
In quantum systems, information is stored in quantum bits (or qubits), which are susceptible to various
types of errors, such as bit flips, phase flips, and both combined (depolarizing errors). QMDS codes
provide a powerful tool for protecting quantum states against these errors, ensuring the reliable storage
and manipulation of quantum information. They achieve the highest possible error-correction capability
for a given code length and dimension ([43, 51, 78, 79], [21, 48, 57],[57],[48],[21]).

MDS codes are specific types of error-correcting codes that have maximum possible distance between
codewords, making them highly effective in correcting errors in data transmission and storage. However,
not all code classes have the property of being MDS. In some cases, the parameters or characteristics of
a given code class may not meet the requirements to qualify as MDS codes. Therefore, we pay attention
to some codes very close to MDS, called almost maximum distance separable (briefly, AMDS) codes for
designing codes that are optimized for specific applications. AMDS codes are a critical component in
modern information theory and error correction. These codes play a pivotal role in ensuring the integrity
and reliability of data transmission and storage systems. AMDS codes are characterized by their remarkable
ability to correct errors while maximizing efficiency. They are particularly useful in scenarios where data
integrity is paramount, such as in communication systems, data storage devices, and even in the field
of cryptography [85]. These codes can recover lost or corrupted data with high precision, making them
indispensable in safeguarding sensitive information and ensuring smooth data transmission in various
applications. In the realm of telecommunications, AMDS codes are the backbone of error correction
techniques in wireless networks and satellite communication systems. They enable data to be transmitted
over long distances with minimal risk of corruption, ensuring seamless connectivity even in challenging
environments. Furthermore, in data storage, AMDS codes are employed in technologies to safeguard
against data loss due to hardware failures or errors. By utilizing AMDS codes, data redundancy can be
efficiently managed, allowing for both fault tolerance and efficient use of storage resources. In the world of
cybersecurity, AMDS codes are a valuable tool for protecting sensitive information. They are employed in
encryption schemes, ensuring that even if an attacker gains access to encrypted data, the chances of them
successfully deciphering it are extremely low (see, [7], [33], [34], [36], [37], [92], [73], [87]).

In this paper, we give the definition of quantum almost maximum distance separable codes (briefly,
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qAMDS) codes. If Q = [[n, k, d]]q is a QEC code such that k = n − 2d, then C is called a qAMDS code.
QAMDS codes have the quantum distance that is close to quantum distance of qMDS codes. We believe that
QAMDS codes can be applied in quantum communication systems to protect the transmission of quantum
information over long distances. By encoding quantum states using AMDS codes, the data remains secure
even in the presence of channel noise or adversarial attacks, ensuring that confidential information remains
confidential. QAMDS codes are pivotal in securing quantum networks, which are poised to play a significant
role in the future of quantum communication. By protecting quantum information against various threats,
these codes facilitate the development of quantum-enhanced secure communication networks. QAMDS
codes are a powerful tool that combines error correction and security features in the realm of quantum
information processing. Their applications extend beyond quantum communication, impacting various
fields of quantum technology, and ensuring the reliability, integrity, and confidentiality of quantum data
in diverse scenarios. As quantum technologies continue to advance, the significance of quantum AMDS
codes in securing and advancing these technologies cannot be overstated.

Motivated by those researchers, in this research, we investigate AMDS constacyclic codes of length ps

over Fpm . We also give some examples to illustrate. As an important application, all qAMDS codes from
repeated-root constacyclic codes of prime power lengths over finite fields using the CSS and Hermitian
constructions are constructed.

The rest of our paper is organized as follows. Section 2 gives some preliminaries. Section 3 provides all
AMDS constacyclic codes length ps over Fpm . Section 4 focuses on constructing qAMDS codes of length ps

over Fpm . Finally, Section 5 gives some conclusions and some directions for future work.

2. Preliminaries

Let Fpm be a finite field, where p is prime and m ∈ N \ {0}. A code of length n over Fpm is a nonempty
subset C of Fn

pm . If a nonempty subset C is a vector space over Fpm , then C is called a linear code. For an
invertible γ of Fpm , the γ-constacyclic (γ-twisted) shift τγ on Fn

pm is the shift

τγ(x0, x1, . . . , xn−1) = (γxn−1, x0, x1, · · · , xn−2).

If τγ(C) = C, then C is a γ-constacyclic code.

Let c = (c0, c1, . . . , cn−1) be a codeword. Then we have a bijective correspondence between C and the
polynomial c(x) = c0 + c1x + · · · + cn−1xn−1

∈
Fpm [x]
⟨xn−γ⟩ . From this, a linear code C of length n over Fpm is a

γ-constacyclic code of length n over Fpm if and only if C is an ideal of
Fpm [x]
⟨xn−γ⟩ (cf. [71]).

Given n-tuples
u = (u0,u1, . . . ,un−1), v = (v0, v1, . . . , vn−1) ∈ Fn

pm ,

the inner product (dot product) of two vectors u, v is expressed as follows:

u · v = u0v0 + u1v1 + · · · + un−1vn−1,

evaluated in Fpm . If u · v = 0, then two vectors u, v are called orthogonal. Dual code of a linear code C over
Fpm , denoted by C⊥, is defined as follows:

C⊥ = {u ∈ Fn
pm | u · v = 0,∀v ∈ C}.

The dual of a γ-constacyclic code is given in the following result.

Proposition 2.1 (cf. [26]) The dual of a γ-constacyclic code is a γ−1-constacyclic code.

For a code C containing at least two words, the Hamming distance of the code C, denoted by dH(C), is

dH(C) = min{dH(u, v),u, v ∈ C,u , v}.
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The following result is given in [26].

Theorem 2.2. (cf. [26]) Each γ-constacyclic code of length ps over Fpm is an ideal which has the form ⟨(x−γ0) j
⟩, j =

0, 1, . . . , ps, of the chain ring R. Each C j = ⟨(x−γ0) j
⟩ ⊆ R has pm(ps

− j) codewords and the dual of C⊥j = ⟨(x−γ
−1
0 )ps

− j
⟩

has pmj codewords.

In [24, 26], the authors gave the Hamming distance of each code C j in Theorem 2.2.

Theorem 2.3. (cf. [24, 26]) Let C be a γ-constacyclic code of length ps over Fpm , then C = ⟨(x − γ0) j
⟩ ⊆ R, for

j ∈ {0, 1, . . . , ps
}, and its Hamming distance dH(C) is determined by:

dH(C) =



1, if j = 0
ℓ + 2, if ℓ ps−1 + 1 ≤ j ≤ (ℓ + 1) ps−1

where 0 ≤ ℓ ≤ p − 2
(ℓ + 1)pk, if ps

− ps−k + (ℓ − 1)ps−k−1 + 1 ≤ j ≤ ps
− ps−k + ℓps−k−1

where 1 ≤ ℓ ≤ p − 1, and 1 ≤ k ≤ s − 1
0, if j = ps.

Quantum error correction (QEC) is a set of methods to protect quantum information from unwanted
environmental interactions (decoherence) and other forms of quantum noise. Quantum error correction
is the key factor of quantum information technology, quantum computer and quantum communication.
In less than 25 years, the subject that previously had many quantum theorists doubting its practicality
has become a relatively extensive and well-developed theoretical field of study. In fact, there have been
numerous published studies as well as thousands of international conferences held. It is well-known that
classical error-correction codes (which are widely used in computer and communication error correction
nowadays) cannot be used in the case of quantum information. Therefore, we need to construct quantum
error-correcting codes (briefly, QEC codes) that preserve Quantum Information.

Let Hq(C) = Hq(C) ⊗ · · · ⊗Hq(C) (n times) be a q-dimensional Hilbert vector space (where q = pm). Then
Hn

q (C) is said to be a qn-dimensional Hilbert space. The definition of QEC codes is given in [74].

Definition 2.4. [74] A quantum code of length n and dimension t over Fq is defined to be a qt dimensional subspace
of Hn

q (C) and simply denoted by [[n, t, d]]q, where d is the distance of the quantum code.

3. AMDS Constacyclic Codes

In this section, we construct AMDS constacyclic codes from repeated-root constacyclic codes of length
ps over Fpm . Let C j = ⟨(x − γ0) j

⟩ ⊆ R be a γ-constacyclic code of length ps over Fpm , where 0 ≤ j ≤ ps. Then
|C j| = pm(ps

− j). From the Singleton Bound, C j is an AMDS constacyclic code if and only if ps
− dH(Cj) = ps

− j,
i.e., j = dH(C j).

The Hamming distance dH(C j) for all j ∈ {0, 1, . . . , ps
} is given in Theorem 2.3. Applying this theorem,

we determine all AMDS constacyclic codes of length ps over Fpm in the following theorem.

Theorem 3.1. Let C j = ⟨(x − γ0) j
⟩ ⊆ R be a γ-constacyclic code of length ps over Fpm , where 0 ≤ j ≤ ps. Then C is

an AMDS constacyclic code when s ≥ 2, j = 2.
Proof. We divide j into 4 cases, namely, j = 0, βps−1 + 1 ≤ j ≤ (β + 1)ps−1, ps

− ps−k + (t − 1)ps−k−1 + 1 ≤ j ≤
ps
− ps−k + tps−k−1, and j = ps.

Case 1: Suppose that j = 0. This implies that dH(C j) = 1. Hence, j , dH(C j).

Case 2: We consider the case βps−1 + 1 ≤ j ≤ (β + 1)ps−1, where 0 ≤ β ≤ p − 2. Theorem 2.3 implies that
dH(C j) = β + 2. We see that j ≥ βps−1 + 1. If s = 1, then j ≤ (β + 1) < (β + 2). Hence, C is not an AMDS
code when s = 1. If s ≥ 2, then j = 2 = (β + 2) when β = 0. Thus, C is an AMDS code when j = 2 and
β = 0.
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Case 3: Assume that ps
− ps−k + (t − 1)ps−k−1 + 1 ≤ j ≤ ps

− ps−k + tps−k−1, where 1 ≤ k ≤ s − 1. If s = 1,
then j , t + 1. Hence, C is not an AMDS code. We observe that j ≥ ps

− ps−k + (t − 1)ps−k−1 + 1. Since
ps
− ps−k + (t− 1)ps−k−1 + 1 = ps−k(pk

− 1)+ (t− 1)ps−k−1 + 1, we see that j ≥ ps−k(pk
− 1)+ (t− 1)ps−k−1 + 1 ≥

p(pk
−1)+ (t−1)ps−k−1+1. Thus, j ≥ (t+1)(pk

−1)+ t−1+1 = (t+1)pk
−1. Hence, j , dH(Cj). Therefore,

C is not an AMDS code when s ≥ 2 and ps
− ps−k + (t − 1)ps−k−1 + 1 ≤ j ≤ ps

− ps−k + tps−k−1.

Case 4: Assume that j = ps. Then dH(C j) = 0. Hence, j = ps > dH(C j) = 0 for any s ≥ 1. Thus, C is not an
AMDS code.

Remark 3.2. Let C j = ⟨(x − γ0) j
⟩ ⊆ R be a γ-constacyclic code of length ps over Fpm , where 0 ≤ j ≤ ps. In [32,

Theorem 3.2], the authors gave all MDS codes of length ps over Fpm . Following that, we see that C j is an
MDS constacyclic code if and only if one of the following conditions holds:

• If j = 0, then dH(C j) = 1 for any s ≥ 1.

• If s = 1, then 0 ≤ j ≤ p − 1. In such case, dH(C j) = j + 1.

• If s ≥ 2, then

◦ j = 1, dH(C j) = 2,

◦ j = ps
− 1, dH(C j) = ps.

Combining with Theorem 3.1, we conclude that

• If j = 0 and dH(C j) = 1 for any s ≥ 1, then C j is an MDS code and C j is not an AMDS code.

• If s = 1, 0 ≤ j ≤ p − 1 and dH(C j) = j + 1, then C j is an MDS code and C j is not an AMDS code.

• If s ≥ 2, j = 1, and dH(C j) = 2, then C j is an MDS code and C j is not an AMDS code.

• If s ≥ 2, j = ps
− 1 and dH(C j) = ps, then C j is an MDS code and C j is not an AMDS code.

• If s ≥ 2, j = 2 and dH(C j) = 2, then C j is an AMDS code and C j is not an MDS code.

• If 2 < j < ps
− 1, s ≥ 2, and dH(C j) , 2, then C j is not an AMDS code and C j is not an MDS code.

• If j = ps and any s ≥ 1, then C j is not an AMDS code and C j is not an MDS code.

To finish this section, we give some examples of AMDS constacyclic codes to illustrate our results.

Example 3.3. Let C j = ⟨(x − 1) j
⟩ of F8[x]

⟨x4−1⟩ , where 0 ≤ j ≤ 4 be cyclic codes of length 4 over F8. Here,
γ = γ0 = 1, p = 2, s = 2 and m = 3. We give all Hamming distances of such codes. We also list all AMDS
cyclic codes.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 1)⟩ 2 No Yes
2 C2 = ⟨(x − 1)2

⟩ 2 Yes No
3 C3 = ⟨(x − 1)3

⟩ 4 No Yes
4 C4 = ⟨0⟩ 0 No No

Table 1: AMDS cyclic codes of length 4 over F8.
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Example 3.4. Let C j = ⟨(x − 1) j
⟩ of F8[x]

⟨x8−1⟩ , where 0 ≤ j ≤ 8 be cyclic codes of length 8 over F8. Here,
γ = γ0 = 1, p = 2, s = 3 and m = 3. We give all AMDS cyclic codes of length 8 over F8.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 1)⟩ 2 No Yes
2 C2 = ⟨(x − 1)2

⟩ 2 Yes No
3 C3 = ⟨(x − 1)3

⟩ 2 No No
4 C4 = ⟨(x − 1)4

⟩ 2 No No
5 C5 = ⟨(x − 1)5

⟩ 4 No No
6 C6 = ⟨(x − 1)6

⟩ 8 No No
7 C7 = ⟨(x − 1)7

⟩ 8 No Yes
8 C8 = ⟨0⟩ 0 No No

Table 2: MDS cyclic codes of length 8 over F8.

Example 3.5. Let C j = ⟨(x − 1) j
⟩ of F8[x]

⟨x16−1⟩ , where 0 ≤ j ≤ 16 be cyclic codes of length 16 over F8. Here,
γ = γ0 = 1, p = 2, s = 4 and m = 3. We give all AMDS cyclic codes of length 16 over F8.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 1)⟩ 2 No Yes
2 C2 = ⟨(x − 1)2

⟩ 2 Yes No
3 C3 = ⟨(x − 1)3

⟩ 2 No No
4 C4 = ⟨(x − 1)4

⟩ 2 No No
5 C5 = ⟨(x − 1)5

⟩ 2 No No
6 C6 = ⟨(x − 1)6

⟩ 2 No No
7 C7 = ⟨(x − 1)7

⟩ 2 No No
8 C8 = ⟨(x − 1)8

⟩ 2 No No
9 C9 = ⟨(x − 1)9

⟩ 4 No No
10 C10 = ⟨(x − 1)10

⟩ 4 No No
11 C11 = ⟨(x − 1)11

⟩ 4 No No
12 C12 = ⟨(x − 1)12

⟩ 4 No No
13 C13 = ⟨(x − 1)13

⟩ 8 No No
14 C14 = ⟨(x − 1)14

⟩ 8 No No
15 C15 = ⟨(x − 1)15

⟩ 16 No Yes
16 C16 = ⟨0⟩ 0 No No

Table 3: AMDS cyclic codes of length 16 over F8.

Example 3.6. Let C j = ⟨(x−γ0) j
⟩ of F5[x]

⟨x25−2⟩ ,where γ25
0 = 2, 0 ≤ j ≤ 25 be 2-constacyclic codes of length 25 over

F5. From 225 = 2 ∈ F5, we have γ0 = 2. Here, p = 5, s = 2 and m = 1. Applying Theorem 2.3, we can compute
all Hamming distances of 2-constacyclic codes dH(C j). Using Theorem 3.1, all AMDS 2-constacyclic codes
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of length 25 over F5 are determined in the following table.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 2)⟩ 2 No Yes
2 C2 = ⟨(x − 2)2

⟩ 2 Yes No
3 C3 = ⟨(x − 2)3

⟩ 2 No No
4 C4 = ⟨(x − 2)4

⟩ 2 No No
5 C5 = ⟨(x − 2)5

⟩ 2 No No
6 C6 = ⟨(x − 2)6

⟩ 3 No No
7 C7 = ⟨(x − 2)7

⟩ 3 No No
8 C8 = ⟨(x − 2)8

⟩ 3 No No
9 C9 = ⟨(x − 2)9

⟩ 3 No No
10 C10 = ⟨(x − 2)10

⟩ 3 No No
11 C11 = ⟨(x − 2)11

⟩ 4 No No
12 C12 = ⟨(x − 2)12

⟩ 4 No No
13 C13 = ⟨(x − 2)13

⟩ 4 No No
14 C14 = ⟨(x − 2)14

⟩ 4 No No
15 C15 = ⟨(x − 2)15

⟩ 4 No No
16 C16 = ⟨(x − 2)16

⟩ 5 No No
17 C17 = ⟨(x − 2)17

⟩ 5 No No
18 C18 = ⟨(x − 2)18

⟩ 5 No No
19 C19 = ⟨(x − 2)19

⟩ 5 No No
20 C20 = ⟨(x − 2)20

⟩ 5 No No
21 C21 = ⟨(x − 2)21

⟩ 10 No No
22 C22 = ⟨(x − 2)22

⟩ 15 No No
23 C23 = ⟨(x − 2)23

⟩ 20 No No
24 C24 = ⟨(x − 2)24

⟩ 25 No Yes
25 C25 = ⟨0⟩ 0 No No

Table 4: AMDS 2-constacyclic codes of length 25 over F5.

Example 3.7. Let C j = ⟨(x − γ0) j
⟩ of F9[x]

⟨x9−2⟩ , where γ9
0 = 2, 0 ≤ j ≤ 9 be 2-constacyclic codes of length 9 over

F9. From 29 = 2 ∈ F9, we have γ0 = 2. Here, p = 3, s = 2 and m = 2. We list all Hamming distances of such
codes. We also give all AMDS 2-constacyclic codes.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 2)⟩ 2 No Yes
2 C2 = ⟨(x − 2)2

⟩ 2 Yes No
3 C3 = ⟨(x − 2)3

⟩ 2 No No
4 C4 = ⟨(x − 2)4

⟩ 3 No No
5 C5 = ⟨(x − 2)5

⟩ 3 No No
6 C6 = ⟨(x − 2)6

⟩ 3 No No
7 C7 = ⟨(x − 2)7

⟩ 6 No No
8 C8 = ⟨(x − 2)8

⟩ 9 No Yes
9 C9 = ⟨0⟩ 0 No No

Table 5: AMDS 2-constacyclic codes of length 9 over F9.

Example 3.8. Let C j = ⟨(x − γ0) j
⟩ of F81[x]

⟨x9−2⟩ , where γ9
0 = 2, 0 ≤ j ≤ 9 be 2-constacyclic codes of length 9 over

F81. From 29 = γ = 2 ∈ F81, we have γ0 = 2. Here, p = 3, s = 2 and m = 4. We list all Hamming distances of
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such codes. We also give all AMDS constacyclic codes.

j C j dH(C j) AMDS code MDs code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 2)⟩ 2 No Yes
2 C2 = ⟨(x − 2)2

⟩ 2 Yes No
3 C3 = ⟨(x − 2)3

⟩ 2 No No
4 C4 = ⟨(x − 2)4

⟩ 3 No No
5 C5 = ⟨(x − 2)5

⟩ 3 No No
6 C6 = ⟨(x − 2)6

⟩ 3 No No
7 C7 = ⟨(x − 2)7

⟩ 6 No No
8 C8 = ⟨(x − 2)8

⟩ 9 No Yes
9 C9 = ⟨0⟩ 0 No No

Table 6: AMDS 2-constacyclic codes of length 9 over F81.

Example 3.9. Let C j = ⟨(x − γ0) j
⟩ of F7[x]

⟨x7−3⟩ , where γ7
0 = 3, 0 ≤ j ≤ 7 be 3-constacyclic codes of length 7 over

F7. Here, p = 7, s = 1 and m = 1. It is easy to see that 37 = 3 ∈ F7. Therefore, γ0 = 3. Applying Theorem
2.3, we can compute all Hamming distances of 3-constacyclic codes dH(C j). Using Theorem 3.1, all AMDS
3-constacyclic codes of length 7 are determined in the following table.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 3)⟩ 2 No Yes
2 C2 = ⟨(x − 3)2

⟩ 3 No Yes
3 C3 = ⟨(x − 3)3

⟩ 4 No Yes
4 C4 = ⟨(x − 3)4

⟩ 5 No Yes
5 C5 = ⟨(x − 3)5

⟩ 6 No Yes
6 C6 = ⟨(x − 3)6

⟩ 7 No Yes
7 C7 = ⟨0⟩ 0 No No

Table 7: AMDS 3-constacyclic codes of length 7 over F7.

Example 3.10. Let C j = ⟨(x − γ0) j
⟩ of F49[x]

⟨x7−3⟩ , where γ7
0 = 3, 0 ≤ j ≤ 7 be 3-constacyclic codes of length 7 over

F49. Here, p = 7, s = 1 and m = 2. It is easy to see that 37 = 3 ∈ F49. Therefore, γ0 = 3. Applying Theorem
2.3, we can compute all Hamming distances of 3-constacyclic codes dH(C j). Using Theorem 3.1, all AMDS
3-constacyclic codes of length 7 are determined in the following table.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 3)⟩ 2 No Yes
2 C2 = ⟨(x − 3)2

⟩ 3 No Yes
3 C3 = ⟨(x − 3)3

⟩ 4 No Yes
4 C4 = ⟨(x − 3)4

⟩ 5 No Yes
5 C5 = ⟨(x − 3)5

⟩ 6 No Yes
6 C6 = ⟨(x − 3)6

⟩ 7 No Yes
7 C7 = ⟨0⟩ 0 No No

Table 8: MDS 3- constacyclic codes of length 7 over F49.

Example 3.11. Let C j = ⟨(x − 1) j
⟩ of F19[x]

⟨x19−1⟩ , where 0 ≤ j ≤ 19 be cyclic codes of length 19 over F19 which are
the ideals. Here, p = 19, s = 1 and m = 1. Applying Theorem 2.3, we can compute all Hamming distances of
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cyclic codes dH(C j). Using Theorem 3.1, all AMDS cyclic codes of length 19 are determined in the following
table.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 1)⟩ 2 No Yes
2 C2 = ⟨(x − 1)2

⟩ 3 No Yes
3 C3 = ⟨(x − 1)3

⟩ 4 No Yes
4 C4 = ⟨(x − 1)4

⟩ 5 No Yes
5 C5 = ⟨(x − 1)5

⟩ 6 No Yes
6 C6 = ⟨(x − 1)6

⟩ 7 No Yes
7 C7 = ⟨(x − 1)7

⟩ 8 No Yes
8 C8 = ⟨(x − 1)8

⟩ 9 No Yes
9 C9 = ⟨(x − 1)9

⟩ 10 No Yes
10 C10 = ⟨(x − 1)10

⟩ 11 No Yes
11 C11 = ⟨(x − 1)11

⟩ 12 No Yes
12 C12 = ⟨(x − 1)12

⟩ 13 No Yes
13 C13 = ⟨(x − 1)13

⟩ 14 No Yes
14 C14 = ⟨(x − 1)14

⟩ 15 No Yes
15 C15 = ⟨(x − 1)15

⟩ 16 No Yes
16 C16 = ⟨(x − 1)16

⟩ 17 No Yes
17 C17 = ⟨(x − 1)17

⟩ 18 No Yes
18 C18 = ⟨(x − 1)18

⟩ 19 No Yes
19 C19 = ⟨0⟩ 0 No No

Table 9: AMDS cyclic codes of length 19 over F19.

Example 3.12. Let C j = ⟨(x − 1) j
⟩ of F23[x]

⟨x23−1⟩ , where 0 ≤ j ≤ 23 cyclic codes of length 23 over F23. Here,
p = 23, s = 1 and m = 1. Applying Theorem 2.3, we can compute all Hamming distances of cyclic codes
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dH(C j). Using Theorem 3.1, all AMDS cyclic codes of length 23 are determined in the following table.

j C j dH(C j) AMDS code MDS code
0 C0 = ⟨1⟩ 1 No Yes
1 C1 = ⟨(x − 1)⟩ 2 No Yes
2 C2 = ⟨(x − 1)2

⟩ 3 No Yes
3 C3 = ⟨(x − 1)3

⟩ 4 No Yes
4 C4 = ⟨(x − 1)4

⟩ 5 No Yes
5 C5 = ⟨(x − 1)5

⟩ 6 No Yes
6 C6 = ⟨(x − 1)6

⟩ 7 No Yes
7 C7 = ⟨(x − 1)7

⟩ 8 No Yes
8 C8 = ⟨(x − 1)8

⟩ 9 No Yes
9 C9 = ⟨(x − 1)9

⟩ 10 No Yes
10 C10 = ⟨(x − 1)10

⟩ 11 No Yes
11 C11 = ⟨(x − 1)11

⟩ 12 No Yes
12 C12 = ⟨(x − 1)12

⟩ 13 No Yes
13 C13 = ⟨(x − 1)13

⟩ 14 No Yes
14 C14 = ⟨(x − 1)14

⟩ 15 No Yes
15 C15 = ⟨(x − 1)15

⟩ 16 No Yes
16 C16 = ⟨(x − 1)16

⟩ 17 No Yes
17 C17 = ⟨(x − 1)17

⟩ 18 No Yes
18 C18 = ⟨(x − 1)18

⟩ 19 No Yes
19 C19 = ⟨(x − 1)19

⟩ 20 No Yes
20 C20 = ⟨(x − 1)20

⟩ 21 No Yes
21 C21 = ⟨(x − 1)21

⟩ 22 No Yes
22 C22 = ⟨(x − 1)22

⟩ 23 No Yes
23 C23 = ⟨0⟩ 0 No No

Table 10: AMDS cyclic codes of length 23 over F23.

4. Quantum AMDS Repeated-root Constacyclic Codes over Finite Fields

AMDS codes have a wide range of applications in various fields, owing to their exceptional error-
correction capabilities and efficiency in data transmission and storage. AMDS codes are widely employed
in data storage systems such as hard drives, solid-state drives, and optical media. They help safeguard
data integrity by correcting errors that may occur during the reading or writing processes. In wireless
communication systems, where channel conditions can be volatile, AMDS codes play a crucial role in
error correction. They enhance the reliability of data transmission over noisy channels, ensuring that
information reaches its destination accurately. Satellite communication relies heavily on error-correcting
codes like AMDS codes to counteract the effects of signal interference, atmospheric conditions, and other
forms of distortion. This ensures the integrity of data transmitted to and from satellites. AMDS codes are
also used in secure communication systems to protect sensitive information from eavesdropping and data
tampering. By adding redundancy and error correction, these codes enhance the security of encrypted
communications. Next, we study qAMDS codes from repeated-root constacyclic codes of length ps over
Fpm .

In 1995, Shor pioneered the introduction of Quantum Error Correction (QEC) codes [82]. Subsequently,
Calderbank et al. [9] employed classical codes over GF(4) to explore and identify specific QEC codes. In
1998, Calderbank, Rains, Shor, and Steane [10] introduced a novel approach for constructing QEC codes
derived from classical error-correcting codes. More recently, researchers have developed QEC codes over
finite fields and various classes of finite rings [2, 10, 20, 41, 61]. However, there has been a notable absence of
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investigations into qMDS codes derived from repeated-root constacyclic codes of length ps over Fpm using
the CSS and Hermitian constructions. In this section, we shall embark on the task of constructing qMDS
codes employing repeated-root constacyclic codes of length ps over Fpm through the CSS and Hermitian
construction methods.

We recall a construction of QEC codes, the so-called CSS construction.

Theorem 4.1. (CSS construction) [9] Let C1 and C2 be two linear codes over Fq. They have the parameters
[n, k1, d1]q and [n, k2, d2]q such that C2 ⊆ C1, respectively. Then there exists a QEC code with the parameters
[[n, k1 − k2,min{d1, d⊥2 }]]q, where d⊥2 is the Hamming distance of the dual code C⊥2 .Moreover, if C2 = C⊥1 , then there
exists a QEC code having the parameters [[n, 2k1 − n, d1]]q.

The quantum Singleton bound is a crucial concept in quantum coding theory. It establishes an upper
limit on the number of errors that a quantum code can correct. This limit is based on the code’s parameters,
such as its length and Hamming distance. Codes that achieve the Singleton bound are said to be ”optimal”
in the sense that they provide the best possible error correction performance for a given set of parameters.
Understanding and characterizing the quantum Singleton bound for codes over finite fields is essential for
designing efficient quantum error-correcting codes that can protect quantum information from errors and
noise. In 1997, Knill and Laflamme [60] introduced the binary version of the quantum Singleton bound,
a fundamental result in the field of quantum error-correcting codes. A year later, in 1998, Calderbank,
Rains, Shor, and Sloane [10] expanded upon the work of Knill and Laflamme by investigating the quantum
Singleton bound in a broader context. Specifically, they extended the quantum Singleton bound for all
codes over finite fields. This extension is significant because it allows researchers to explore the quantum
Singleton bound’s implications for a wider range of quantum error-correcting codes. We recall the quantum
Singleton bound in the following theorem.

Theorem 4.2. (Quantum Singleton Bound) [44, Theorem 1] Let Q = [[n, k, d]]q be a QEC code. Then 2(d− 1) ≤
n − k.

Definition 4.3. Let Q = [[n, k, d]]q be a QEC code. If 2(d− 1) = n− k, then Q is called a qMDS code. If 2d = n− k,
then Q is called a qAMDS code.

We will now proceed with the construction of qAMDS codes by utilizing repeated-root constacyclic
codes with a length of ps over the finite field Fpm . To accomplish this, we must first enumerate all linear
AMDS repeated-root constacyclic codes with a length of ps over Fpm that satisfy the condition C⊥ ⊆ C. Let

C j as ⟨(x − γ0) j
⟩ ⊆ R =

Fpm[x]
⟨xps
− γ⟩

be a γ-constacyclic code of length ps over Fpm , where j belonging to the set

0, 1, . . . , ps. The dual of C j can be expressed as the γ−1-constacyclic code, denoted as C⊥j = ⟨(x − γ
−1
0 )ps

− j
⟩.

According to [29, Proposition 2.5], when γ , γ−1, it follows that C⊥j ⊈ C j for all j ∈ 0, 1, . . . , ps. In cases

where γ = γ−1, both C j and C⊥j are ideals within the chain ring R. Consequently, if γ = γ−1 and 0 ≤ j ≤ ps

2 ,
then C⊥j ⊆ C j. We will determine all qAMDS codes that can be constructed from C j by employing the CSS
construction, which is detailed in the following theorem.

Theorem 4.4. Let C j = ⟨(x − γ0) j
⟩ ⊆ R be a γ-constacyclic code of length ps over Fpm , for j ∈ {0, 1, . . . , ps

}. Suppose
that γ = γ−1. If s ≥ 2 and j = 2, then there exists a qAMDS code with parameters [[ps, ps

− 4, 2]]q.
Proof. Let C j = [ps, k j, dH(C j)]q be an AMDS constacyclic code such that C⊥j ⊆ C j. Then we have

k j = ps
− dH(C j) and 0 ≤ j ≤ ps

2 . From C⊥j ⊆ C j, by applying Theorem 4.1 (the CSS construction), a quantum
code D j with parameters [[ps, 2k j−ps, dH(C j)]]q is existed. Since k j = ps

−dH(C j), 2k j−ps = ps
−2dH(C j). By using

Definition 4.3, D j is a qAMDS code with parameters [[ps, 2k j − ps, dH(C j)]]q. Hence, if C j = [ps, k j, dH(C j)]q
is an AMDS constacyclic code and C⊥j ⊆ C j, a qAMDS code with parameters [[ps, ps

− 2dH(C j), dH(C j)]]q

is existed. If s ≥ 2 and j = 2, we have dH(C1) = 2. Applying Theorem 3.1, C1 is an AMDS constacyclic
code. Since j = 2 and γ = γ−1, we have C⊥1 ⊆ C1. Hence, there exists a qAMDS code with parameters
[[ps, ps

− 4, 2]]q is existed. □
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Remark 4.5. In [32, Theorem 4.3], the authors provided all qMDS codes constructed from C j using the CSS
construction. Let C j = ⟨(x − γ0) j

⟩ ⊆ R be a γ-constacyclic code of length ps over Fpm , for j ∈ {0, 1, . . . , ps
} and

γ = γ−1. Then the following statements hold:

• If j = 0 and for any s ≥ 1, then a qMDS code with parameters [[ps, ps, 1]]q is existed.

• If s = 1 and 1 ≤ j < p
2 , then a qMDS code with parameters [[p, p − 2 j, j + 1]]q is existed.

• If s ≥ 2 and j = 1, then a qMDS code with parameters [[ps, ps
− 2, 2]]q is existed.

Combining with Theorem 4.4, we conclude that

• If j = 0 and for any s ≥ 1, then a qMDS code with parameters [[ps, ps, 1]]q is existed and there is no
qAMDS code.

• If s = 1 and 1 ≤ j < p
2 , then a qMDS code with parameters [[p, p − 2 j, j + 1]]q is existed and there is no

qAMDS code.

• If s ≥ 2 and j = 1, then a qMDS code with parameters [[ps, ps
− 2, 2]]q is existed and there is no qAMDS

code.

• If s ≥ 2 and j = 2, then a qAMDS code with parameters [[ps, ps
− 4, 2]]q is existed and there is no qMDS

code.

• If s ≥ 2 and j > 2, then there is no qAMDS code and there is no qMDS code.

• If s = 1 and j ≥ p
2 , there is no qAMDS code and there is no qMDS code.

We give some qAMDS codes in the following examples. We can compare our qAMDS codes and known
families of QEC codes in [47] to see that our qAMDS codes are coincided in the sense that their parameters
are same from all the known ones.

Example 4.6. Let C j = ⟨(x − 1) j
⟩ of F8[x]

⟨x8−1⟩ , where 0 ≤ j ≤ 8 be cyclic codes of length 8 over F8. Hence,
C⊥j = ⟨(x − 1)ps

− j
⟩, where 0 ≤ j ≤ 8. Here, p = 2, s = 3 and m = 3. If 0 ≤ j ≤ 4, then C⊥j ⊆ C j. Applying

Theorem 4.3, we give all qAMDS codes constructed from C j using the CSS construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[8, 8, 1]]8

1 C1 = ⟨(x − 1)⟩ 2 No No [[8, 6, 2]]8

2 C2 = ⟨(x − 1)2
⟩ 2 Yes [[8, 4, 2]]8 No

3 C3 = ⟨(x − 1)3
⟩ 2 No No No

4 C4 = ⟨(x − 1)4
⟩ 2 No No No

5 C5 = ⟨(x − 1)5
⟩ 4 No No No

6 C6 = ⟨(x − 1)6
⟩ 8 No No No

7 C7 = ⟨(x − 1)7
⟩ 8 No No No

8 C8 = ⟨0⟩ 0 No No No

Table 11: qAMDS codes of length 8 over F8.

Example 4.7. Let C j = ⟨(x − 1) j
⟩ of F8[x]

⟨x16−1⟩ , where 0 ≤ j ≤ 16 be cyclic codes of length 16 over F8. Hence,
C⊥j = ⟨(x − 1)ps

− j
⟩, where 0 ≤ j ≤ 16. Here, p = 2, s = 4 and m = 3. If 0 ≤ j ≤ 8, then C⊥j ⊆ Cj. Applying
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Theorem 4.3, we give all qAMDS codes constructed from C j using the CSS construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[16, 16, 1]]8

1 C1 = ⟨(x − 1)⟩ 2 No No [[16, 14, 2]]8

2 C2 = ⟨(x − 1)2
⟩ 2 Yes [[16, 12, 2]]8 No

3 C3 = ⟨(x − 1)3
⟩ 2 No No No

4 C4 = ⟨(x − 1)4
⟩ 2 No No No

5 C5 = ⟨(x − 1)5
⟩ 2 No No No

6 C6 = ⟨(x − 1)6
⟩ 2 No No No

7 C7 = ⟨(x − 1)7
⟩ 2 No No No

8 C8 = ⟨(x − 1)8
⟩ 2 No No No

9 C9 = ⟨(x − 1)9
⟩ 4 No No No

10 C10 = ⟨(x − 1)10
⟩ 4 No No No

11 C11 = ⟨(x − 1)11
⟩ 4 No No No

12 C12 = ⟨(x − 1)12
⟩ 4 No No No

13 C13 = ⟨(x − 1)13
⟩ 8 No No No

14 C14 = ⟨(x − 1)14
⟩ 8 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨0⟩ 0 No No No

Table 12: qAMDS codes of length 16 over F8.

Example 4.8. Let C j = ⟨(x + 1)i
⟩ of F5[x]

⟨x25+1⟩ , where 0 ≤ j ≤ 25 be negacyclic codes of length 25 over F5. Here,
p = 5, s = 2 and m = 1. If 0 ≤ j ≤ 12, then C⊥j ⊆ C j. By using Theorem 4.3, we can determine all qAMDS



H. Q. Dinh et al. / Filomat 38:33 (2024), 11889–11912 11902

codes constructed from C j using the CSS construction in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[25, 25, 1]]5

1 C1 = ⟨(x + 1)⟩ 2 No No [[25, 23, 2]]5

2 C2 = ⟨(x + 1)2
⟩ 2 Yes [[25, 23, 2]]5 No

3 C3 = ⟨(x + 1)3
⟩ 2 No No No

4 C4 = ⟨(x + 1)4
⟩ 2 No No No

5 C5 = ⟨(x + 1)5
⟩ 2 No No No

6 C6 = ⟨(x + 1)6
⟩ 3 No No No

7 C7 = ⟨(x + 1)7
⟩ 3 No No No

8 C8 = ⟨(x + 1)8
⟩ 3 No No No

9 C9 = ⟨(x + 1)9
⟩ 3 No No No

10 C10 = ⟨(x + 1)10
⟩ 3 No No No

11 C11 = ⟨(x + 1)11
⟩ 4 No No No

12 C12 = ⟨(x + 1)12
⟩ 4 No No No

13 C13 = ⟨(x + 1)13
⟩ 4 No No No

14 C14 = ⟨(x + 1)14
⟩ 4 No No No

15 C15 = ⟨(x + 1)15
⟩ 4 No No No

16 C16 = ⟨(x + 1)16
⟩ 5 No No No

17 C17 = ⟨(x + 1)17
⟩ 5 No No No

18 C18 = ⟨(x + 1)18
⟩ 5 No No No

19 C19 = ⟨(x + 1)19
⟩ 5 No No No

20 C20 = ⟨(x + 1)20
⟩ 5 No No No

21 C21 = ⟨(x + 1)21
⟩ 10 No No No

22 C22 = ⟨(x + 1)22
⟩ 15 No No No

23 C23 = ⟨(x + 1)23
⟩ 20 No No No

24 C24 = ⟨(x + 1)24
⟩ 25 No No No

25 C25 = ⟨0⟩ 0 No No No

Table 13: qAMDS codes of length 25 over F5.

Example 4.9. Let C j = ⟨(x + 1) j
⟩ of F9[x]

⟨x9+1⟩ , where 0 ≤ j ≤ 9 be negacyclic codes of length 9 over F9. Hence,
C⊥j = ⟨(x + 1)ps

− j
⟩, where 0 ≤ j ≤ 9. Here, p = 3, s = 2 and m = 2. If 0 ≤ j ≤ 4, then C⊥j ⊆ C j. Using Theorem

4.3, we also give all qAMDS codes constructed from C j using the CSS construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[9, 9, 1]]3

1 C1 = ⟨(x + 1)⟩ 2 No No [[9, 7, 2]]3

2 C2 = ⟨(x + 1)2
⟩ 2 Yes [[9, 5, 2]]3 No

3 C3 = ⟨(x + 1)3
⟩ 2 No No No

4 C4 = ⟨(x + 1)4
⟩ 3 No No No

5 C5 = ⟨(x + 1)5
⟩ 3 No No No

6 C6 = ⟨(x + 1)6
⟩ 3 No No No

7 C7 = ⟨(x + 1)7
⟩ 6 No No No

8 C8 = ⟨(x + 1)8
⟩ 9 No No No

9 C9,0 = ⟨0⟩ 0 No No No

Table 14: qAMDS codes of length 9 over F9.

Example 4.10. Let C j = ⟨(x − 1) j
⟩ of F81[x]

⟨x9−1⟩ , 0 ≤ j ≤ 9 be cyclic codes of length 9 over F81. Hence,
C⊥j = ⟨(x − 1)ps

− j
⟩, where 0 ≤ j ≤ 9. Here, p = 3, s = 2 and m = 4. If 0 ≤ j ≤ 4, then C⊥j ⊆ C j. Using Theorem
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4.3, we list all qMDS codes constructed from C j using the CSS construction.

j C j dH(C j) AMDS code qAMDS code qAMDS code
0 C0 = ⟨1⟩ 1 No No [[9, 9, 1]]9

1 C1 = ⟨(x − 1)⟩ 2 No No [[9, 7, 2]]9

2 C2 = ⟨(x − 1)2
⟩ 2 Yes [[9, 5, 2]]9 No

3 C3 = ⟨(x − 1)3
⟩ 2 No No No

4 C4 = ⟨(x − 1)4
⟩ 3 No No No

5 C5 = ⟨(x − 1)5
⟩ 3 No No No

6 C6 = ⟨(x − 1)6
⟩ 3 No No No

7 C7 = ⟨(x − 1)7
⟩ 6 No No No

8 C8 = ⟨(x − 1)8
⟩ 9 Yes No No

9 C9 = ⟨0⟩ 0 No No No

Table 15: qAMDS codes of length 9 over F81.

Example 4.11. Let C j = ⟨(x + 1) j
⟩ of F7[x]

⟨x7+1⟩ , where 0 ≤ j ≤ 7 be negacyclic codes of length 7 over F7. Hence,
C⊥j = ⟨(x + 1)ps

− j
⟩, where 0 ≤ j ≤ 7. Here, p = 7, s = 1 and m = 1. If 0 ≤ j ≤ 3, then C⊥j ⊆ C j. Using Theorem

4.3, we give all qAMDS codes constructed from C j using the CSS construction in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[7, 7, 1]]7

1 C1 = ⟨(x + 1)⟩ 2 No No [[7, 5, 2]]7

2 C2 = ⟨(x + 1)2
⟩ 3 No No [[7, 3, 3]]7

3 C3 = ⟨(x + 1)3
⟩ 4 No No [[7, 1, 4]]7

4 C4 = ⟨(x + 1)4
⟩ 5 No No No

5 C5 = ⟨(x + 1)5
⟩ 6 No No No

6 C6 = ⟨(x + 1)6
⟩ 7 No No No

7 C7 = ⟨0⟩ 0 No No No

Table 16: qAMDS codes of length 7 over F7.

Example 4.12. Let C j = ⟨(x + 1) j
⟩ of F49[x]

⟨x7+1⟩ , 0 ≤ j ≤ 7 be negacyclic codes of length 7 over F49. Hence,
C⊥j = ⟨(x + 1)ps

− j
⟩, where 0 ≤ j ≤ 7. Here, p = 7, s = 1 and m = 2. If 0 ≤ j ≤ 3, then C⊥j ⊆ C j. Using Theorem

4.3 again, we give all qAMDS codes constructed from C j using the CSS construction in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[7, 7, 1]]7

1 C1 = ⟨(x + 1)⟩ 2 No No [[7, 5, 2]]7

2 C2 = ⟨(x + 1)2
⟩ 3 No No [[7, 3, 3]]7

3 C3 = ⟨(x + 1)3
⟩ 4 No No [[7, 1, 4]]7

4 C4 = ⟨(x + 1)4
⟩ 5 No No No

5 C5 = ⟨(x + 1)5
⟩ 6 No No No

6 C6 = ⟨(x + 1)6
⟩ 7 No No No

7 C7 = ⟨0⟩ 0 No No No

Table 17: qAMDS codes of length 7 over F49.

Example 4.13. Let C j = ⟨(x − 1) j
⟩ of F17[x]

⟨x17−1⟩ , where 0 ≤ j ≤ 17 be cyclic codes of length 17 over F17. Hence,
C⊥j = ⟨(x − 1)ps

− j
⟩, where 0 ≤ j ≤ 17. Here, q = p = 17, s = 1 and m = 1. If 0 ≤ j ≤ 8, then C⊥j ⊆ C j.

Applying Theorem 4.3, all qAMDS codes constructed from C j using the CSS construction are determined
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in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[17, 17, 1]]17

1 C1 = ⟨(x − 1)⟩ 2 No No [[17, 15, 2]]17

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[17, 13, 3]]17

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[17, 11, 4]]17

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[17, 9, 5]]17

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[17, 7, 6]]17

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[17, 5, 7]]17

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[17, 3, 8]]17

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[17, 1, 9]]17

9 C9 = ⟨(x − 1)9
⟩ 10 No No No

10 C10 = ⟨(x − 1)10
⟩ 11 No No No

11 C11 = ⟨(x − 1)11
⟩ 12 No No No

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨0⟩ 0 No No No

Table 18: qAMDS codes of length 17 over F17.

Example 4.14. Let C j = ⟨(x − 1) j
⟩ of F19[x]

⟨x19−1⟩ , where 0 ≤ j ≤ 19 be cyclic codes of length 19 over F19. Here,
p = 19, s = 1 and m = 1. Applying Theorem 2.3, we can compute all Hamming distances of cyclic codes
dH(C j). Using Theorem 3.2, all AMDS cyclic codes of length 19 are determined. If 0 ≤ j ≤ 8, then C⊥j ⊆ C j.
Using Theorem 4.3 again, we give all qAMDS codes constructed from C j using the CSS construction in the
following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[19, 19, 1]]19

1 C1 = ⟨(x − 1)⟩ 2 No No [[19, 17, 2]]19

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[19, 15, 3]]19

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[19, 13, 4]]19

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[19, 11, 5]]19

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[19, 9, 6]]19

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[19, 7, 7]]19

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[19, 5, 8]]19

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[19, 3, 9]]19

9 C9 = ⟨(x − 1)9
⟩ 10 No No [[19, 1, 10]]19

10 C10 = ⟨(x − 1)10
⟩ 11 No No No

11 C11 = ⟨(x − 1)11
⟩ 12 No No No

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨(x − 1)17
⟩ 18 No No No

18 C18 = ⟨(x − 1)18
⟩ 19 No No No

19 C19 = ⟨0⟩ 0 No No No
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Table 19: qAMDS cyclic codes of length 19 over F19.

Example 4.15. Let C j = ⟨(x − 1) j
⟩ of F23[x]

⟨x23−1⟩ , where 0 ≤ j ≤ 23 be cyclic codes of length 23 over F23. Here,
p = 23, s = 1 and m = 1. Applying Theorem 2.3, we can compute all Hamming distances of cyclic codes
dH(C j). Using Theorem 3.2, all AMDS cyclic codes of length 23 are determined. If 0 ≤ j ≤ 11, then C⊥j ⊆ C j.
Using Theorem 4.3 again, we give all qAMDS codes constructed from C j using the CSS construction in the
following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[23, 23, 1]]23

1 C1 = ⟨(x − 1)⟩ 2 No No [[23, 21, 2]]23

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[23, 19, 3]]23

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[23, 17, 4]]23

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[23, 15, 5]]23

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[23, 13, 6]]23

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[23, 11, 7]]23

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[23, 9, 8]]23

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[23, 7, 9]]23

9 C9 = ⟨(x − 1)9
⟩ 10 No No [[23, 5, 10]]23

10 C10 = ⟨(x − 1)10
⟩ 11 No No [[23, 3, 11]]23

11 C11 = ⟨(x − 1)11
⟩ 12 No No [[23, 1, 12]]23

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨(x − 1)17
⟩ 18 No No No

18 C18 = ⟨(x − 1)18
⟩ 19 No No No

19 C19 = ⟨(x − 1)19
⟩ 20 No No No

20 C20 = ⟨(x − 1)20
⟩ 21 No No No

21 C21 = ⟨(x − 1)21
⟩ 22 No No No

22 C22 = ⟨(x − 1)22
⟩ 23 No No No

23 C23 = ⟨0⟩ 0 No No No

Table 20: qAMDS cyclic codes of length 23 over F23.

Next, we construct qAMDS codes from repeated-root codes of length ps over Fpm using the Hermitian
construction. Let q = pm and Fq2 be a finite field of q2 elements. If u = (u0,u1, . . . ,un−1), v = (v0, v1, · · · , vn−1)
are two vectors of Fq2 , then Hermitian inner product of u and v is

u ◦Fq2 v = u0v̄0 + u1v̄1 + · · · + un−1v̄n−1,

where v̄i = vq
i . The Hermitian dual code of C is defined as

C⊥H = {u ∈ Fn
q2 |

n−1∑
i=0

uiv̄i = 0,∀v ∈ C}.

If C⊥H ⊆ C, then C is said to be Hermitian dual-containing.

Other than the CSS construction, the so-called Hermitian construction is also an important construction,
which is given in [1].

Theorem 4.16. (Hermitian construction) [1] If C is a q2-ary [n, k, dH] linear code such that C⊥H ⊆ C, then a q-ary
quantum code with parameters [[n, 2k − n,≥ dH]]q is existed.
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We have the following result.

Lemma 4.17. Let C j = ⟨(x − γ0) j
⟩ be a γ-constacyclic code of length ps over Fq2 , where 0 ≤ j ≤ ps. If γ−q

0 = γ0 and
0 ≤ j ≤ ps

2 , then C⊥H
j ⊆ C j.

Proof. We have Cq
j = ⟨(x − γ

q
0) j
⟩ and C⊥H

j = (Cq
j )
⊥. Then C⊥H

j = ⟨(x − γ
−q
0 )ps

− j
⟩. If γ−q

0 = γ0 and 0 ≤ j ≤ ps

2 ,

then C⊥H
j ⊆ C j, as required. □

The Hermitian construction is a mathematical framework used in the theory of quantum error-correcting
codes. In quantum information theory, quantum error-correcting codes play a crucial role in protecting
quantum information from errors and decoherence. The Hermitian construction is a method to construct
quantum stabilizer codes, a class of quantum error-correcting codes. The Hermitian construction is a valu-
able tool for constructing stabilizer codes, which are essential for quantum error correction. These stabilizer
codes can detect errors in a quantum state by measuring stabilizer generators and correct errors by apply-
ing appropriate quantum operations based on the measurement outcomes. Once the stabilizer generators
are determined using the Hermitian construction, they provide a set of mutually commuting observables.
Measuring these observables allows for the detection of errors in the quantum state. Subsequent operations
based on the measurement results can correct errors, preserving the encoded quantum information. We
now construct qAMDS codes from C j using the Hermitian construction.

Theorem 4.18. Let C j = ⟨(x − γ0) j
⟩ be a γ-constacyclic code of length ps over Fq2 , where 0 ≤ j ≤ ps. If γ−q

0 = γ0,
s ≥ 2 and j = 2, then there exists a qAMDS code with parameters [[ps, ps

− 4, 2]]q.

Proof. Let C j = [ps, k j, dH(C j)]q be an AMDS constacyclic code such that C⊥H
j ⊆ C j. Then k j = ps

− dH(C j)

and 0 ≤ j ≤ ps

2 . From C⊥H
j ⊆ C j, by Theorem 4.14 (the Hermitian construction), a quantum code Q j with

parameters [[ps, 2k j − ps, d⋆]]q, where d⋆ ≥ dH(C j) is existed. Using Theorem 4.2 for Qj, 2k j − ps + 2d⋆ ≤ ps.
Hence, d⋆ ≤ ps

− k j = dH(C j). Thus, d⋆ = dH(C j). Therefore, if C j = [ps, k j, dH(C j)]q is an AMDS constacyclic
code and C⊥H

j ⊆ C j, a qAMDS code with parameters [[ps, ps
− 2dH(C j), dH(C j)]]q is existed. If s ≥ 2 and j = 2,

dH(C2) = 2. Applying Theorem 3.1, we can see that C2 is an AMDS constacyclic code. As j = 2 and γ−q
0 = γ0,

we have C⊥H
2 ⊆ C2. Since a qAMDS code with parameters [[ps, ps

− 2dH(C j), dH(C j)]]q is existed, we have a
qAMDS code with parameters [[ps, ps

− 4, 2]]q. □

Using the Hermitian construction, we give some examples of qAMDS codes. We can compare our
qAMDS codes and known families of QEC codes in [47] to see that our qAMDS codes are coincided in the
sense that their parameters are same from all the known ones.

Example 4.19. Let C j = ⟨(x − 1) j
⟩ of F16[x]

⟨x8−1⟩ , where 0 ≤ j ≤ 8 be consider cyclic codes of length 8 over F16.
Hence, C⊥H

j = ⟨(x − 1)ps
− j
⟩, where 0 ≤ j ≤ 8. Here, γ = γ0 = 1, q = 4, p = 2, s = 3 and m = 4. If 0 ≤ j ≤ 4, then

C⊥H
j ⊆ C j. We give all qAMDS codes constructed from Cj using the Hermitian construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[8, 8, 1]]4

1 C1 = ⟨(x − 1)⟩ 2 No No [[8, 6, 2]]4

2 C2 = ⟨(x − 1)2
⟩ 2 Yes [[8, 4, 2]]4 No

3 C3 = ⟨(x − 1)3
⟩ 2 No No No

4 C4 = ⟨(x − 1)4
⟩ 2 No No No

5 C5 = ⟨(x − 1)5
⟩ 4 No No No

6 C6 = ⟨(x − 1)6
⟩ 8 No No No

7 C7 = ⟨(x − 1)7
⟩ 8 No No No

8 C8 = ⟨0⟩ 0 No No No

Table 21: qAMDS codes of length 8 over F16.
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Example 4.20. Let C j = ⟨(x − 1) j
⟩ of F16[x]

⟨x16−1⟩ , where 0 ≤ j ≤ 16 be cyclic codes of length 16 over F16. Hence,
C⊥H

j = ⟨(x − 1)ps
− j
⟩, where 0 ≤ j ≤ 16. Here, γ = γ0 = 1, q = 4, p = 2, s = 4 and m = 2. If 0 ≤ j ≤ 8, then

C⊥H
j ⊆ C j. We give all qAMDS codes constructed from C j using the Hermitian construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[16, 16, 1]]4

1 C1 = ⟨(x − 1)⟩ 2 No No [[16, 14, 2]]4

2 C2 = ⟨(x − 1)2
⟩ 2 Yes [[16, 12, 2]]4 No

3 C3 = ⟨(x − 1)3
⟩ 2 No No No

4 C4 = ⟨(x − 1)4
⟩ 2 No No No

5 C5 = ⟨(x − 1)5
⟩ 2 No No No

6 C6 = ⟨(x − 1)6
⟩ 2 No No No

7 C7 = ⟨(x − 1)7
⟩ 2 No No No

8 C8 = ⟨(x − 1)8
⟩ 2 No No No

9 C9 = ⟨(x − 1)9
⟩ 4 No No No

10 C10 = ⟨(x − 1)10
⟩ 4 No No No

11 C11 = ⟨(x − 1)11
⟩ 4 No No No

12 C12 = ⟨(x − 1)12
⟩ 4 No No No

13 C13 = ⟨(x − 1)13
⟩ 8 No No No

14 C14 = ⟨(x − 1)14
⟩ 8 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨0⟩ 0 No No No

Table 22: qAMDS codes of length 16 over F16.

Example 4.21. Let C j = ⟨(x + 1) j
⟩ of F9[x]

⟨x9+1⟩ , where 0 ≤ j ≤ 9 be negacyclic codes of length 9 over F9. Hence,
C⊥H

j = ⟨(x + 1)ps
− j
⟩, where 0 ≤ j ≤ 9. Here, γ = γ0 = −1, q = p = 3, s = 2 and m = 2. If 0 ≤ j ≤ 4, then

C⊥H
j ⊆ C j. We give all qAMDS codes constructed from Cj using the Hermitian construction.

j C j dH(C j) AMDS code qAMDS code qAMDS code
0 C0 = ⟨1⟩ 1 No No [[9, 9, 1]]3

1 C1 = ⟨(x + 1)⟩ 2 No No [[9, 7, 2]]3

2 C2 = ⟨(x + 1)2
⟩ 2 Yes [[9, 5, 2]]3 No

3 C3 = ⟨(x + 1)3
⟩ 2 No No No

4 C4 = ⟨(x + 1)4
⟩ 3 No No No

5 C5 = ⟨(x + 1)5
⟩ 3 No No No

6 C6 = ⟨(x + 1)6
⟩ 3 No No No

7 C7 = ⟨(x + 1)7
⟩ 6 No No No

8 C8 = ⟨(x + 1)8
⟩ 9 No No No

9 C9 = ⟨0⟩ 0 No No No

Table 23: qAMDS codes of length 9 over F9.

Example 4.22. Let C j = ⟨(x − 1)i
⟩ of F81[x]

⟨x9−1⟩ , where 0 ≤ j ≤ 9 be cyclic codes of length 9 over F81. Hence,
C⊥H

j = ⟨(x − 1)ps
− j
⟩, where 0 ≤ j ≤ 9. Here, γ = γ0 = 1, q = 9, p = 3, s = 2 and m = 4. If 0 ≤ j ≤ 4, then
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C⊥H
j ⊆ C j. We list all qAMDS codes constructed from C j using the Hermitian construction.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[9, 9, 1]]3

1 C1 = ⟨(x + 1)⟩ 2 No No [[9, 7, 2]]3

2 C2 = ⟨(x + 1)2
⟩ 2 Yes [[9, 5, 2]]3 No

3 C3 = ⟨(x + 1)3
⟩ 2 No No No

4 C4 = ⟨(x + 1)4
⟩ 3 No No No

5 C5 = ⟨(x + 1)5
⟩ 3 No No No

6 C6 = ⟨(x + 1)6
⟩ 3 No No No

7 C7 = ⟨(x + 1)7
⟩ 6 No No No

8 C8 = ⟨(x + 1)8
⟩ 9 No No No

9 C9,0 = ⟨0⟩ 0 No No No

Table 24: qAMDS codes of length 9 over F81.

Example 4.23. Let C j = ⟨(x − 1) j
⟩ of F49[x]

⟨x7−1⟩ , where 0 ≤ j ≤ 7 be cyclic codes of length 7 over F49. Hence,
C⊥H

j = ⟨(x − 1)ps
− j
⟩, where 0 ≤ j ≤ 7. Here, γ = γ0 = 1, q = p = 7, s = 1 and m = 2. If 0 ≤ j ≤ 3, then

C⊥H
j ⊆ C j. Applying Theorem 4.18, all qAMDS codes constructed from C j using the Hermitian construction

are determined in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[7, 7, 1]]7

1 C1 = ⟨(x + 1)⟩ 2 No No [[7, 5, 2]]7

2 C2 = ⟨(x + 1)2
⟩ 3 No No [[7, 3, 3]]7

3 C3 = ⟨(x + 1)3
⟩ 4 No No [[7, 1, 4]]7

4 C4 = ⟨(x + 1)4
⟩ 5 No No No

5 C5 = ⟨(x + 1)5
⟩ 6 No No No

6 C6 = ⟨(x + 1)6
⟩ 7 No No No

7 C7 = ⟨0⟩ 0 No No No

Table 25: qAMDS codes of length 7 over F49.

Example 4.24. Let C j = ⟨(x − 1) j
⟩ of F289[x]

⟨x17−1⟩ , where 0 ≤ j ≤ 17 be cyclic codes of length 17 over F289. Hence,
C⊥H

j = ⟨(x − 1)ps
− j
⟩, where 0 ≤ j ≤ 17. Here, γ = γ0 = 1, q = 17, p = 17, s = 1 and m = 2. If 0 ≤ j ≤ 8, then

C⊥H
j ⊆ C j. Applying Theorem 4.18, all qAMDS codes constructed from C j using the Hermitian construction
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are determined in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[17, 17, 1]]17

1 C1 = ⟨(x − 1)⟩ 2 No No [[17, 15, 2]]17

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[17, 13, 3]]17

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[17, 11, 4]]17

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[17, 9, 5]]17

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[17, 7, 6]]17

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[17, 5, 7]]17

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[17, 3, 8]]17

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[17, 1, 9]]17

9 C9 = ⟨(x − 1)9
⟩ 10 No No No

10 C10 = ⟨(x − 1)10
⟩ 11 No No No

11 C11 = ⟨(x − 1)11
⟩ 12 No No No

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨0⟩ 0 No No No

Table 26: qAMDS codes of length 17 over F289.

Example 4.25. Let C j = ⟨(x − 1) j
⟩ of F361[x]

⟨x19−1⟩ , where 0 ≤ j ≤ 19 be cyclic codes of length 19 over F361. Here,
p = 19, s = 1 and m = 2. Applying Theorem 2.3, we can compute all Hamming distances of cyclic codes
dH(C j). Using Theorem 3.1, all AMDS cyclic codes of length 19 are determined. If 0 ≤ j ≤ 9, then C⊥j ⊆ C j.
Using Theorem 4.18 again, we give all qAMDS codes constructed from C j using the Hermitian construction
in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[19, 19, 1]]19

1 C1 = ⟨(x − 1)⟩ 2 No No [[19, 17, 2]]19

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[19, 15, 3]]19

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[19, 13, 4]]19

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[19, 11, 5]]19

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[19, 9, 6]]19

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[19, 7, 7]]19

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[19, 5, 8]]19

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[19, 3, 9]]19

9 C9 = ⟨(x − 1)9
⟩ 10 No No [[19, 1, 10]]19

10 C10 = ⟨(x − 1)10
⟩ 11 No No No

11 C11 = ⟨(x − 1)11
⟩ 12 No No No

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨(x − 1)17
⟩ 18 No No No

18 C18 = ⟨(x − 1)18
⟩ 19 No No No

19 C19 = ⟨0⟩ 0 No No No



H. Q. Dinh et al. / Filomat 38:33 (2024), 11889–11912 11910

Table 27: qAMDS codes of length 19 over F361.

Example 4.26. Let C j = ⟨(x − 1) j
⟩ of F529[x]

⟨x23−1⟩ , where 0 ≤ j ≤ 23 be cyclic codes of length 23 over F529. Here,
p = 23, s = 1 and m = 2. Applying Theorem 2.3, we can compute all Hamming distances of cyclic codes
dH(C j). Using Theorem 3.1, all AMDS cyclic codes of length 23 are determined. If 0 ≤ j ≤ 11, then C⊥j ⊆ C j.
Using Theorem 4.18 again, we give all qAMDS codes constructed from C j using the Hermitian construction
in the following table.

j C j dH(C j) AMDS code qAMDS code qMDS code
0 C0 = ⟨1⟩ 1 No No [[23, 23, 1]]23

1 C1 = ⟨(x − 1)⟩ 2 No No [[23, 21, 2]]23

2 C2 = ⟨(x − 1)2
⟩ 3 No No [[23, 19, 3]]23

3 C3 = ⟨(x − 1)3
⟩ 4 No No [[23, 17, 4]]23

4 C4 = ⟨(x − 1)4
⟩ 5 No No [[23, 15, 5]]23

5 C5 = ⟨(x − 1)5
⟩ 6 No No [[23, 13, 6]]23

6 C6 = ⟨(x − 1)6
⟩ 7 No No [[23, 11, 7]]23

7 C7 = ⟨(x − 1)7
⟩ 8 No No [[23, 9, 8]]23

8 C8 = ⟨(x − 1)8
⟩ 9 No No [[23, 7, 9]]23

9 C9 = ⟨(x − 1)9
⟩ 10 No No [[23, 5, 10]]23

10 C10 = ⟨(x − 1)10
⟩ 11 No No [[23, 3, 11]]23

11 C11 = ⟨(x − 1)11
⟩ 12 No No [[23, 1, 12]]23

12 C12 = ⟨(x − 1)12
⟩ 13 No No No

13 C13 = ⟨(x − 1)13
⟩ 14 No No No

14 C14 = ⟨(x − 1)14
⟩ 15 No No No

15 C15 = ⟨(x − 1)15
⟩ 16 No No No

16 C16 = ⟨(x − 1)16
⟩ 17 No No No

17 C17 = ⟨(x − 1)17
⟩ 18 No No No

18 C18 = ⟨(x − 1)18
⟩ 19 No No No

19 C19 = ⟨(x − 1)19
⟩ 20 No No No

20 C20 = ⟨(x − 1)20
⟩ 21 No No No

21 C21 = ⟨(x − 1)21
⟩ 22 No No No

22 C22 = ⟨(x − 1)22
⟩ 23 No No No

23 C23 = ⟨0⟩ 0 No No No

Table 28: qAMDS codes of length 23 over F529.
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