Filomat 38:33 (2024), 11929–11938 https://doi.org/10.2298/FIL2433929S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Estimates for the zeros of a polynomial using matrix inequalities

 \mathbf{M} ohmmad Shafi Wani^{a,}*, Nisar Ahmad Rather^a, Suhail Gulzar Mattoo^b

^aDepartment of Mathematics, University of Kashmir, Jammu and Kashmir, India ^bDepartment of Mathematics, Sri Pratap College, Jammu and Kashmir, India

Abstract. In this paper, we apply several matrix inequalities to the generalized companion matrix of monic-polynomial and thereby obtain some new estimates for the moduli of their zeros.

1. Introduction

In the realm of applied mathematics, polynomial is a widely used mathematical entity. It finds its application in almost every domain of Science. Finding circular disks in the complex plane C containing all the zeros of a polynomial is a classical problem and have attracted the attention of numerous mathematicians. One can refer to [13] for a comprehensive account on classical results on this topic.

It is well-known that matrix methods can be used to obtain classical zero-bounds for polynomials (see [6, p. 316]). The roots of a given polynomial could be found as the eigenvalues of a companion matrix.

Linden [10] used (generalized) companion matrices, which are based on special multiplicative decompositions of the coefficients of the polynomial, to obtain estimates for the zeros of the polynomial *p*(*z*) mainly by the application of Gersgorin's theorem to the companion matrices or by computing the singular values of the companion matrices.

Let

$$
p(z) = zn - a1zn-1 - a2zn-2 - ... - an
$$
 (1)

be a monic polynomial of degree *n* with complex coefficients, then one of the (generalized) companion matrix due to Linden can be illustrated in the following theorem.

Theorem 1.1. [10] Let $p(z)$ be a monic polynomial of degree $n \ge 1$ given by (1). Let there exist complex numbers c_1, c_2, \ldots, c_n *and* $b_1(\neq 0), b_2, \ldots, b_{n-1}$ *such that*

 $a_1 = c_1$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $a_2 = c_2 b_1$, $a_3 = c_3b_2b_1$, . . . $a_n = c_n b_{n-1} b_{n-2} \cdots b_2 b_1$

(2)

Communicated by Fuad Kittaneh

Email addresses: wanishafi1933@gmail.com (Mohmmad Shafi Wani), dr.narather@gmail.com (Nisar Ahmad Rather),

²⁰²⁰ *Mathematics Subject Classification*. Primary 26C10, 30C15, 15A60.

Keywords. Companion matrix, zeros of polynomials, bounds.

Received: 31 January 2023; Revised: 01 November 2023; Accepted: 10 November 2023

^{*} Corresponding author : Mohmmad Shafi Wani

sgmattoo@gmail.com (Suhail Gulzar Mattoo)

and

$$
C(p) = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_1 \\ c_n & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix} .
$$
 (3)

Then $\det(zI_n - C(p)) = p(z)$ *where* I_n *denotes the* $n \times n$ *identity matrix.*

In ([1], [3], [4]), using results on the numerical range and the numerical radius of the Frobenius companion matrix of $f(z)$, bounds for the zeros of $f(z)$ were given: In ([1], [4]) an estimate of the numerical radius of a matrix is applied to the Frobenius companion matrix, and in [3] a formula for the numerical radius of a matrix of rank one is applied to the Frobenius companion matrix which was decomposed in the sum of a matrix of rank one and a right shift matrix. Linden [12] extended these methods and gave further estimates for the zeros of *f*(*z*) using properties of the numerical ranges and the numerical radii of some other types of companion matrices of *f*(*z*). One such type of companion matrix is given by (3).

Let $M_n(\mathbb{C})$ denote the algebra of all $n \times n$ complex matrices. For $A \in M_n(\mathbb{C})$, let $r(A)$, $w(A)$, and $||A||$ denote the spectral radius, the numerical radius and the spectral norm of *A* respectively. It is known that [6]

$$
|\lambda_j(A)| \le r(A) \le w(A) \le ||A|| = s_1(A),
$$

where $\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A)$ and $s_1(A), s_2(A), \ldots, s_n(A)$ are respectively the eigenvalues and singular values of *A* and are arranged so that $|\lambda_1(A)| \ge |\lambda_2(A)| \ge \cdots \ge |\lambda_n(A)|$ and $s_1(A) \ge s_2(A) \ge \cdots \ge s_n(A)$. Recall that $s_j^2(A) = \lambda_j(A^*A) = \lambda_j(AA^*)$ for $j = 1, 2, ..., n$.

In this paper, we employ certain matrix inequalities concerning spectral radius, numerical radius and spectral norm to the generalized companion matrix of Linden to estimate new bounds for the zeros of a polynomial. The technique is similar to that of [8], [9], [14] and [15].

2. Lemmas

To achieve our goal, we need the following two lemmas due to Hou and Du [7].

Lemma 2.1. *Let* $A \in M_n(\mathbb{C})$ *be partitioned as*

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}
$$

where A_{ij} *is an* $n_i \times n_j$ *matrix for i, j* = 1, 2 *with* $n_1 + n_2 = n$. If

$$
\widetilde{A} = \begin{bmatrix} ||A_{11}|| & ||A_{12}|| \\ ||A_{21}|| & ||A_{22}|| \end{bmatrix},
$$

then $r(A) \leq r(\tilde{A})$.

Lemma 2.2. *Let* $A \in M_k(\mathbb{C})$, $B \in M_{k \times m}(\mathbb{C})$, $C \in M_{m \times k}(\mathbb{C})$ and $D \in M_m(\mathbb{C})$ *and let T* = $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ *. Then*

$$
w(T) \le w \left(\begin{bmatrix} ||A|| & ||B|| \\ ||C|| & ||D|| \end{bmatrix} \right)
$$

= $\frac{1}{2} (||A|| + ||D|| + \sqrt{(||A|| - ||D||)^2 + (||B|| + ||C||)^2}).$

3. Main Results

Through out this paper c_1, c_2, \ldots, c_n and $b_1, b_2, \ldots, b_{n-1}$ denote the complex numbers satisfying (2). Our first result is obtained by using a property of spectral radius.

Theorem 3.1. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + 4|b_1| \left(\sum_{j=2}^n |c_j|^2 \right)^{1/2}} \right\},\,
$$

where b = $max\{|b_2|, |b_3|, \ldots, |b_{n-1}|\}.$

Proof. Partition the companion matrix $C(p)$ of $p(z)$ defined by (3) as:

$$
C(p) = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_1 \\ \hline c_n & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},
$$

where $C_{11} = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_2 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}, C_{12} = \begin{bmatrix} 0 & 0 & \cdots & 0 & b_1 \end{bmatrix}^t$,

$$
C_{21} = [c_n \ c_{n-1} \ \ldots \ c_2]
$$
 and $C_{22} = [c_1]$.

Let
$$
\widetilde{C}(p) = \begin{bmatrix} ||C_{11}|| & ||C_{12}|| \\ ||C_{21}|| & ||C_{22}|| \end{bmatrix}
$$
, therefore,
\n
$$
\widetilde{C}(p) = \begin{bmatrix} b & |b_1| \\ \left(\sum_{j=2}^{n} |c_j|^2\right)^{1/2} & |c_1| \end{bmatrix}
$$
, where $b = \max\{|b_2|, |b_3|, \ldots, |b_{n-1}|\}$.

Now, by Lemma 2.1, we have

$$
r(C(p)) \le r(\widetilde{C}(p))
$$

= $\frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + 4|b_1| \left(\sum_{j=2}^n |c_j|^2 \right)^{1/2} \right\}}$

.

Consequently all the zeros of *p*(*z*) lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + 4|b_1| \left(\sum_{j=2}^n |c_j|^2 \right)^{1/2}} \right\}.
$$

This completes the proof of Theorem 3.1. \Box

By suitably choosing the parameters c_j 's and b_j 's satisfying (2), new zero-bounds can be obtained, here we make some special choices.

Let
$$
b_j = a_1 \neq 0
$$
 for $j = 2, 3, ..., n - 1$, then $c_j = \frac{a_j}{a_1^{j-2}b_1}$ for $j = 2, 3, ..., n - 1$ and $c_n = \frac{a_n}{a_1^{n-2}b_1}$. By using these

values in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let $p(z)$ be a polynomial as given by (1) of degree $n \ge 3$ such that $a_1 \ne 0$, then all its zeros lie in

$$
|z| \le |a_1| + \left(\sum_{j=2}^n \left| \frac{a_j}{a_1^{j-2}} \right|^2 \right)^{1/4}.
$$

By choosing $b_1 = b_2 = \cdots = b_{n-1} = 1$ and $c_j = a_j$, $j = 1, 2, \ldots, n$ in Theorem 3.1, the following result due to Kittaneh [8] can be obtained.

Corollary 3.3. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |a_1| + 1 + \sqrt{(|a_1| - 1)^2 + 4\left(\sum_{j=2}^n |a_j|^2\right)^{1/2}} \right\}.
$$

Example 1. Let $p(z) = z^3 - z^2 - 2z - 0.5$ be a polynomial. Here, $a_1 = 1$, $a_2 = 2$ and $a_3 = 0.5$. Let $b_1 = 1$, $b_2 = \frac{1}{2}$ and $c_1 = 1$, $c_2 = 2$, $c_3 = 1$, such that

$$
a_1 = c_1,
$$

\n
$$
a_2 = c_2 b_1,
$$

\n
$$
a_3 = c_3 b_2 b_1.
$$

Then by applying Theorem 3.1 to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| \le 2.2660$. Whereas if we apply the result of Kittaneh [8] (Theorem 1) to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| \leq 2.4357$.

If
$$
a_j \neq 0
$$
, $j = 1, 2, ..., n$, then by taking $b_1 = c_1 = a_1$, $b_j = c_j = \frac{a_j}{a_{j-1}}$, $j = 2, 3, ..., n - 1$, $c_n = \frac{a_n}{a_{n-1}}$, in

Theorem 3.1, we obtain the following result:

Corollary 3.4. *All the zeros of polynomial given by* (1) *of degree* $n \geq 3$ *lie in*

$$
|z| \leq \frac{1}{2} \left\{ b + |a_1| + \sqrt{(b - |a_1|)^2 + 4|a_1| \left(\sum_{j=2}^n \left| \frac{a_j}{a_{j-1}} \right|^2 \right)^{1/2}} \right\},\,
$$

where $b = \max \left\{ \left| \frac{a_2}{a_1} \right\}$ $\frac{a_2}{a_1}$, *a*3 $\frac{a_3}{a_2}$, ..., *an*−¹ $\left| \frac{a_{n-1}}{a_{n-2}} \right|$ o .

Next, if we choose $b_1 = b_2 = \cdots = b_{n-1} = b = \max_{2 \le j \le n} |a_j|^{1/j}$, $c_j =$ *aj* $\frac{i}{b^{j-1}}$, *j* = 1, 2, . . . , *n*, in Theorem 3.1, we get the following result:

Corollary 3.5. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |a_1| + \sqrt{(b - |a_1|)^2 + 4b \left(\sum_{j=2}^n \left| \frac{a_j}{b^{j-1}} \right|^2 \right)^{1/2}} \right\},\,
$$

where $b = \max_{2 \leq j \leq n} |a_j|^{1/j}$.

Our next result is obtained by using some properties of the numerical radius of a matrix.

Theorem 3.6. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |c_1| + \sqrt{\sum_{j=1}^n |c_j|^2 + b + \sqrt{b^2 + |b_1|^2}} \right\},\,
$$

where b = $max\{|b_2|, |b_3|, \ldots, |b_{n-1}|\}.$

Proof. The companion matrix $C(p)$ of $p(z)$ given by (3) can be expressed as

$$
C(p) = Q + R,
$$

where
$$
Q = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \\ c_n & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix}
$$
 and $R = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$.

Now partition *Q* as

$$
Q = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \\ \hline c_n & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix},
$$

where $D_{11} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}, D_{12} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \end{bmatrix}^t$,

 $D_{21} = [c_n \ c_{n-1} \ \dots \ c_3 \ c_2]$ and $D_{22} = [c_1].$

Invoking Lemma 2.2, we get

$$
w(Q) \le w \left(\begin{bmatrix} ||D_{11}|| & ||D_{12}|| \\ ||D_{21}|| & ||D_{22}|| \end{bmatrix} \right)
$$

= $\frac{1}{2} \left\{ |c_1| + \sqrt{|c_1|^2 + \left(\sum_{j=2}^n |c_j|^2 \right)} \right\}$
= $\frac{1}{2} \left\{ |c_1| + \sqrt{\sum_{j=1}^n |c_j|^2} \right\}.$

Partition *R* as

$$
R = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_1 \\ \hline 0 & 0 & \cdots & 0 & 0 \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix},
$$

M. Shafi Wani et al. / *Filomat 38:33 (2024), 11929–11938* 11934

where
$$
E_{11} = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_2 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}
$$
, $E_{12} = \begin{bmatrix} 0 & 0 & \cdots & 0 & b_1 \end{bmatrix}^t$,

$$
E_{21} = [0 \ 0 \ \ldots \ 0]
$$
 and $E_{22} = [0]$.

Employing Lemma 2.2 again , we get

$$
w(R) \le w \left(\begin{bmatrix} ||E_{11}|| & ||E_{12}|| \\ ||E_{21}|| & ||E_{22}|| \end{bmatrix} \right)
$$

= $\frac{1}{2} \left\{ b + \sqrt{b^2 + |b_1|^2} \right\}$, where $b = \max\{|b_2|, |b_3|, \dots, |b_{n-1}|\}$.

Now by using sub-additive property of numerical radius, we have

$$
w(C(p)) = w(Q + R)
$$

\n
$$
\leq w(Q) + w(R)
$$

\n
$$
= \frac{1}{2} \left\{ |c_1| + \sqrt{\sum_{j=1}^{n} |c_j|^2 + b + \sqrt{b^2 + |b_1|^2}} \right\}.
$$

Accordingly, all the zeros of polynomial *p*(*z*) lie in

$$
|z| \leq \frac{1}{2} \left\{ |c_1| + \sqrt{\sum_{j=1}^n |c_j|^2} + b + \sqrt{b^2 + |b_1|^2} \right\}.
$$

This completes the proof of Theorem 3.6. \Box

By suitably choosing the parameters c_j 's and b_j 's satisfying (2), new zero-bounds can be obtained, here we make some special choices.

Let
$$
b_j = a_1 \neq 0
$$
 for $j = 2, 3, ..., n - 1$, then $c_j = \frac{a_j}{a_1^{j-2}b_1}$ for $j = 2, 3, ..., n - 1$ and $c_n = \frac{a_n}{a_1^{n-2}b_1}$. By using these values in Theorem 3.6, we obtain the following corollary.

Corollary 3.7. Let $p(z)$ be a polynomial as given by (1) of degree $n \ge 3$ such that $a_1 \ne 0$, then all its zeros lie in

$$
|z|\leq |a_1|+\frac{1}{2}\left\{\sqrt{|a_1|^2+\sum_{j=2}^n\left|\frac{a_j}{a_1^{j-2}b_1}\right|^2}+\sqrt{|a_1|^2+|b_1|^2}\right\}.
$$

By choosing $b_1 = b_2 = \cdots = b_{n-1} = 1$ and $c_j = a_j$, $j = 1, 2, \ldots, n$ in Theorem 3.6, the following result can be obtained.

Corollary 3.8. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |a_1| + \sqrt{\sum_{j=1}^n |a_j|^2 + \sqrt{2} + 1} \right\}.
$$

If $a_j \neq 0$, $j = 1, 2, ..., n$, then by taking $b_1 = c_1 = a_1$, $b_j = c_j = \frac{a_j}{a_j}$ $\frac{a_j}{a_{j-1}}$, $j = 2, 3, ..., n - 1$, $c_n = \frac{a_n}{a_{n-1}}$ $\frac{n_n}{a_{n-1}}$, in Theorem 3.6, we obtain the following result:

Corollary 3.9. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |a_1| + \sqrt{|a_1|^2 + \left(\sum_{j=2}^n \left|\frac{a_j}{a_{j-1}}\right|^2\right)} + b + \sqrt{b^2 + |b_1|^2} \right\},\,
$$

where $b = \max \left\{ \left| \frac{a_2}{a_1} \right\| \right.$ $\frac{a_2}{a_1}$, *a*3 $\frac{a_3}{a_2}$, ..., *an*−¹ $\left| \frac{a_{n-1}}{a_{n-2}} \right|$ o .

Next, if we choose $b_1 = b_2 = \cdots = b_{n-1} = b = \max_{2 \le j \le n} |a_j|^{1/j}$, $c_j =$ *aj* $\frac{f}{b^{j-1}}$, *j* = 1, 2, . . . , *n*, in Theorem 3.6, we get the following result:

Corollary 3.10. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |a_1| + \sqrt{\left(\sum_{j=1}^n \left| \frac{a_j}{b^{j-1}} \right|^2 \right)} + \left(1 + \sqrt{2} \right) b \right\},\,
$$

where $b = \max_{2 \le j \le n} |a_j|^{1/j}$.

Example 2. Let $p(z) = z^3 - 3z^2 - 4z + 0.5$ be a polynomial. Here, $a_1 = 3$, $a_2 = 4$ and $a_3 = -0.5$. Let $b_1 = 2$, $b_2 = -0.5$ and $c_1 = 3$, $c_2 = 2$, $c_3 = \frac{1}{2}$, such that

$$
a_1 = c_1,
$$

\n
$$
a_2 = c_2 b_1,
$$

\n
$$
a_3 = c_3 b_2 b_1.
$$

Then by applying Theorem 3.6 to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| \le 4.6007$. Whereas if we apply the result of Linden [11] to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| \le 5.0207$.

Our third result is obtained by using again a property of numerical radius.

Theorem 3.11. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + \left(|b_1| + \sqrt{\sum_{j=2}^n |c_j|^2} \right)^2} \right\},
$$

where b = $max\{|b_2|, |b_3|, \ldots, |b_{n-1}|\}.$

Proof. Let $u = [0 \ 0 \ ... \ 0 \ b_1]^t$ be the $(n-1)$ column vector and $v = [c_n \ c_{n-1} \ ... \ c_3 \ c_2]$ be the $(n-1)$ row vector. Then the companion matrix *C*(*p*) of *p*(*z*) given by (3) can be expressed as

$$
C(p) = \begin{bmatrix} T & u \\ v & c_1 \end{bmatrix}, \quad where \quad T = \begin{bmatrix} 0 & b_{n-1} & 0 & \cdots & 0 \\ 0 & 0 & b_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & b_2 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}_{n-1 \times n-1}.
$$

Now in the light of Lemma 2.2, we have

$$
w(C(p)) \le w \left(\begin{bmatrix} ||T|| & ||u|| \\ ||v|| & ||c_1|| \end{bmatrix} \right)
$$

= $\frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + \left(|b_1| + \sqrt{\sum_{j=2}^n |c_j|^2} \right)^2} \right\},$

where $b = \max\{|b_2|, |b_3|, \ldots, |b_{n-1}|\}.$ Hence all the zeros of *p*(*z*) lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |c_1| + \sqrt{(b - |c_1|)^2 + \left(|b_1| + \sqrt{\sum_{j=2}^n |c_j|^2} \right)^2} \right\}.
$$

This completes the proof of Theorem 3.11. \Box

By suitably choosing the parameters c_j 's and b_j 's satisfying (2), new zero-bounds can be obtained, here we make some special choices. *aj*

Let
$$
b_j = a_1 \neq 0
$$
 for $j = 2, 3, ..., n - 1$, then $c_j = \frac{a_j}{a_1^{j-2}b_1}$ for $j = 2, 3, ..., n - 1$ and $c_n = \frac{a_n}{a_1^{n-2}b_1}$. By using these values in Theorem 3.11, we obtain the following corollary.

Corollary 3.12. *Let p*(*z*) *be a polynomial as given by* (1) *of degree* $n \geq 3$ *such that* $a_1 \neq 0$ *, then all its zeros lie in*

$$
|z| \le |a_1| + \frac{1}{2} \left\{ \sqrt{\left(|b_1| + \sqrt{\sum_{j=2}^n \left| \frac{a_j}{a_1^{j-2}b_1} \right|^2} \right)^2} \right\}
$$

By choosing $b_1 = b_2 = \cdots = b_{n-1} = 1$ and $c_j = a_j$, $j = 1, 2, \ldots, n$ in Theorem 3.11, the following result can be obtained.

Corollary 3.13. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ |a_1| + 1 + \sqrt{(|a_1| - 1)^2 + \left(1 + \sqrt{\sum_{j=2}^n |a_j|^2} \right)^2} \right\}.
$$

If $a_j \neq 0$, $j = 1, 2, ..., n$, then by taking $b_1 = c_1 = a_1$, $b_j = c_j = \frac{a_j}{a_j}$ $\frac{a_j}{a_{j-1}}$, $j = 2, 3, ..., n - 1$, $c_n = \frac{a_n}{a_{n-1}}$ $\frac{n}{a_{n-1}}$, in Theorem 3.11, we obtain the following result:

Corollary 3.14. *All the zeros of polynomial given by* (1) *of degree* $n \geq 3$ *lie in*

$$
|z| \leq \frac{1}{2} \left\{ b + |a_1| + \sqrt{(b - |a_1|)^2 + \left(|a_1| + \sqrt{\sum_{j=2}^n \left| \frac{a_j}{a_{j-1}} \right|^2} \right)^2} \right\},
$$

where $b = \max \left\{ \left| \frac{a_2}{a_1} \right\}$ $\frac{a_2}{a_1}$, *a*3 $\frac{a_3}{a_2}$, ..., *an*−¹ $\left| \frac{a_{n-1}}{a_{n-2}} \right|$ o .

Next, if we choose $b_1 = b_2 = \cdots = b_{n-1} = b = \max_{2 \le j \le n} |a_j|^{1/j}$, $c_j =$ *aj* $\frac{i}{b^{j-1}}$, *j* = 1, 2, . . . , *n*, in Theorem 3.11, we get the following result:

Corollary 3.15. All the zeros of polynomial given by (1) of degree $n \geq 3$ lie in

$$
|z| \leq \frac{1}{2} \left\{ b + |a_1| + \sqrt{(b - |a_1|)^2 + \left(b + \sqrt{\sum_{j=2}^n \left| \frac{a_j}{b^{j-1}} \right|^2} \right)^2} \right\}.
$$

where $b = \max_{2 \leq j \leq n} |a_j|^{1/j}$.

Example 3. Let $p(z) = z^3 - 3z^2 - 4z - 6$ be a polynomial. Here, $a_1 = 3$, $a_2 = 4$ and $a_3 = 6$. Let $b_1 = 2$, $b_2 = 1$ and $c_1 = 3$, $c_2 = 2$, $c_3 = 3$, such that

$$
a_1 = c_1,
$$

\n
$$
a_2 = c_2 b_1,
$$

\n
$$
a_3 = c_3 b_2 b_1.
$$

Then by applying Theorem 3.11 to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| < 4.9758$. Whereas if we apply the result of Fujii and Kubo [3] to $p(z)$, it follows that all the zeros of $p(z)$ lie in the disc $|z| \le 6.1122$.

Now we set up an example where we compare our results with the classical results concerning to the zero bounds of polynomials obtained by famous mathematicians.

Example 4. Consider the polynomial equation $p(z) = z^4 - z^2 - z + 3 = 0$. Here, $a_1 = 0$, $a_2 = 1$, $a_3 = 1$, and $a_4 = -3$.

Let *b*₁ = 2, *b*₂ = 1, *b*₃ = $\frac{1}{2}$ and *c*₁ = 0, *c*₂ = $\frac{1}{2}$, *c*₃ = $\frac{1}{2}$, *c*₄ = -3 such that

 $a_1 = c_1$, $a_2 = c_2b_1$, $a_3 = c_3b_2b_1$ $a_4 = c_4b_3b_2b_1$.

Then the upper bounds for the zeros of this polynomial equation $z^4 - z^2 - z + 3 = 0$ estimated by our results are much better than the estimates obtained by different mathematicians as shown in table below:

References

- [1] A. A. Abdurakhmanov, The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices, Math. USSR Sbornik **59**, (1988), 39-51.
- [2] M. Fujii and F. Kubo, "Operator norms as bounds for roots of algebraic equations," Proceedings of the Japan Academy, vol. **49**, pp. 805–808, 1973.

- [3] M. Fujii and F. Kubo, "Buzano's inequality and bounds for roots of algebraic equations," Proceedings of the American Mathematical Society, vol. **117**, no. 2, pp. 359–361, 1993.
- [4] K. E. Gustafson and D. K. M. Rao,*Numerical Range*, Springer-Verlag, New York, (1997).
- [5] R. A. Horn and C. R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, UK, 1985.
- [6] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge 1991.
- [7] J.C. Hou and H.K. Du, Norm inequalities for positive operator matrices, Integral Equations Operator Theory, **22** (1995), 281-294.
- [8] Faud Kittaneh, Bounds for the zeos of polynomials from matrix inequalities, Arch. Math. **81** (2003) 601–608
- [9] Faud Kittaneh, Mohammad Odeh and Khalid Shebrawi, Bounds for the zeros of polynomials from Compression Matrix inequalities, Filomat **34** (2020), 1035-1051.
- [10] Hansjörg Linden, Bounds for the zeros of polynomials from eigenvalues and singular values of some companion matrices, *Linear Algebra Appl.,* **271** (1998), pp. 41-82.
- [11] Hansjorg Linden, Bounds for zeros of polynomials using traces and determinants, Seminarberichte Fachbereich Mathematik FeU ¨ Hagen., **69** (2000), 127–146.
- [12] H. Linden, Numerical radii of some companion matrices and bounds for the zeros of polynomials, In: Analytic and Geometric Inequalities (Th.M. Rassias and H.M. Srivastava, eds.), Kluwer, Dordrecht, (1999), pp. 205–229.
- [13] M. Marden, *Geometry of Polynomials*, Mathematical Surveys of the American Mathematical Society, Vol. **3**, Rhode Island, USA, 1966.
- [14] Amer Abu Omar and Fuad Kittaneh, Estimates for the numerical radius of the Frobenius Companion matrix and bounds for the zeros of plynnomials, Ann. Funct. Anal. **5** (1): 56-62 (2014).
- [15] Kallol Paul and Santanu Bag, Estimation of bounds for the zeros of a polynomial using numerical radius, Applied Math Compt, **222** (2013) 231-243.
- [16] Kallol Paul and Santanu Bag, On numerical radius of a matrix and estimation of bounds for zeros of a polynomial, Int. J. Math. Math. Sci. (2012). Art. ID 129132, 15 pp.