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Abstract. In this study, we introduce fuzzy AF-open sets in a fuzzy topological space (X, τ). Some
properties and characterizations of the fuzzy AF-open set are studied. Also we investigate and research
the notions of fuzzy AF-interior and fuzzy AF-cluster points in a fuzzy topological space. Further fuzzy
AF-compactness is defined. Its properties and characterizations are examined.

1. Introduction

The concept of an ordinary set was become general with the emergence of fuzzy sets in Zadeh’s
1965 classical study [35]. In [15], this was further generalized by Goguen’s description of L-fuzzy sets.
Subsequently, Chang [6] led to an increase in the number of different fuzzy topology concepts. An alternative
definition of fuzzy topology was made by Lowen [24]. The algebraic properties of fuzzy sets were studied
by Luca and Termini [26]. The concept of fuzzy set, which is useful, used and has increasing applications
in many different fields including information theory, pattern recognition, probability theory, actually
corresponds to the physical situation where there is no definite criterion for membership value. Studies in
abstract mathematics based on the fuzzy set idea have solid foundations. At the same time the concepts of
fuzzy topological spaces [6], fuzzy groups [28], fuzzy regular spaces [25], fuzzy normed linear spaces ([21],
[22], [29]), fuzzy vector spaces ([18], [13]), fuzzy metric spaces ([1], [20]) and fuzzy proximity spaces [19]
were given by the respective authors. Fuzzy topological spaces have been found to be useful in solving
many problems in different fields. For example; geographic information theory ([8], [9], [10]), quantum
physics ([26], [27]), modeling [32] etc. Many mathematicians generalized many concepts in general topology
by examining them in fuzzy topological spaces. In 1981, Azad [3] studied in fuzzy topology the concept
of semi-open set given by Levine in [23]. This led to the study of weak versions of many concepts in these
spaces ([2], [17]). In this paper, we introduce fuzzy AF-open sets in a fuzzy topological space (X, τ). Some
properties and characterizations of the fuzzy AF-open set are studied. Also we investigate and research
the notions of fuzzy AF-interior and fuzzy AF-cluster points in a fuzzy topological space. Moreover fuzzy
AF-compactness is defined. Its properties and characterizations are examined.
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2. Preliminaries

We recall some well-known definitions.

Definition 2.1. ([35] Let X be a non-empty set a fuzzy setλ in X is characterized by its membership function
µλ : X → [0, 1] and µλ(x) is interpreted as the degree of membership of element x in fuzzy set λ, for each
x ∈ X. It is clear that λ is completely determined by the tipping set

λ = {(x, µλ(x)) : x ∈ X}.

Definition 2.2. ([35]) Let λ = {(x, µλ(x)) : x ∈ X} and β = {(x, µβ(x)) : x ∈ X} be two fuzzy sets in X. Then
their union λ ∨ β, intersection λ ∧ β and complement λc are also fuzzy sets with the membership functions
defined as follows:

(i) µ(λ∨β)(x) = max{µλ(x), µβ(x)}, every x ∈ X,

(ii) µ(λ∧β)(x) = min{µλ(x), µβ(x)(x)}, every x ∈ X,

(iii) µc
λ(x) = 1 − µλ(x), every x ∈ X.

Definition 2.3. ([6]) Let X be a non-empty set and I the unit interval [0, 1]. A fuzzy set in X is an element
of the set Ix of all functions from X to I. 0X and lX denote the fuzzy sets given by 0X(x) = 0, for all x ∈ X
and 1X(x) = 1, for all x ∈ X. Equality of two fuzzy sets λ and µ on X is determined by the usual equality
condition for mappings, i.e. λ = µ⇒ (for all x ∈ X) λ(x) = µ(x). A fuzzy set λ on X is said to be a subset of
a fuzzy set µ on X written λ ≤ µ, if λ(x) ≤ µ(x), for all x ∈ X. The complement of λ fuzzy set a on X is given
by 1 - λ. As outlined by Bellman and Giertz [2] the elementary operations on fuzzy sets λi on X are given
by ∨

i∈I λi(x) = sup{λi(x) : i ∈ I}, for all x ∈ X,∧
i∈I λi(x) = in f {λi(x) : i ∈ I}, for all x ∈ X,

where I denotes an arbitrary index set.

Definition 2.4. ([6]) A fuzzy topology is a family τ of fuzzy sets in X, which satisfies the following condi-
tions:

(i) 0X, lX ∈ τ,

(ii) If λ, µ ∈ τ, then λ ∧ µ ∈ τ,

(iii) If λi ∈ τ for each i ∈ I, then
∨

i λi ∈ τ.

τ is called a fuzzy topology for X, and the pair (X, τ) is a fuzzy topological space. Every member of τ is
called τ-open fuzzy set (or simply fuzzy open set). A fuzzy set is τ-closed if and only if its complement is
τ-open.
In the sequel, we write a fuzzy topological space X (or (X, τ)) in place of ‘a space X with fuzzy topology τ’.
For a fuzzy set λ of X, the closure Clλ and the interior Intλ of λ are defined respectively, as

Cl(λ) = in f {µ : µ ≥ λ, 1 − µ ∈ τ}, and Intλ = sup{µ : µ ≤ λ, µ ∈ τ}.

Definition 2.5. ([33]) A fuzzy set which is a fuzzy point with support x ∈ X and the value λ ∈ (0, 1] will be
denoted by xλ . The value of a fuzzy set β for some x ∈ X will be denoted by β(x). Also, for a fuzzy point xλ
and a fuzzy set βwe shall write xλ ∈ β to mean that λ ≤ β(x).

Definition 2.6. ([7]) Let (X, τ) fuzzy topological space and λ, β two fuzzy sets then λ ≤ β if and only if
λ(x) ≤ β(x) for all x ∈ X, and λ is said to be quasi-coincident with a fuzzy set β, denoted by λqβ, if there
exists x ∈ X such that λ(x) + β(x) > 1.



A. Acikgoz / Filomat 39:1 (2025), 131–143 133

Definition 2.7. ([15]) A fuzzy set on X is called a fuzzy singleton if it takes the value zero (0) for all points
x in X except one point. The point at which a fuzzy singleton takes the non-zero value is called the support
and the corresponding element of [0,1] its value. A fuzzy singleton with value 1 is called a crisp singleton.

Definition 2.8. ([7]) A fuzzy set V in (X, τ) is called a q− nei1hborhood (q− nbd, for short) of a fuzzy point xλ
if and only if there exists a fuzzy open set U such that xλqU ≤ V. We will denote the set of all q-nbd of xλ
in (X, τ) by Nq(xλ).

Definition 2.9. ([6]) Let f be a function from X to Y. Let B be a fuzzy set in Y with membership function
µB(y). Then the inverse of B, written as f−l(B), is a fuzzy set in X whose membership function is defined by

µ f−l(B)(x) = µB( f (x)) for all x in X.

Conversely, let A be a fuzzy set in X with membership function µA(x). The image of A, written as f (A), is a
fuzzy set in Y whose membership function is given by

µ f (A)(y) =
{

sup{µA(z) : z ∈ f−l(y)} i f f−l(y) is not empty,
0 otherwise,

for all y in Y, where f−1(y) = {x : f (x) = y}.

Theorem 2.10. ([6]) Let f be a function from X to Y. Then,

(1) f−l(λc)=( f−l(λ))c for any fuzzy set λ in Y,

(2) f (λc) ≥ ( f (λ))c,

(3) λ1 ≤ λ2 ⇒ f−1(λ1) ≤ f−1(λ2), where λ1 and λ2 are fuzzy sets in Y,

(4) µ1 ≤ µ2 ⇒ f (µ1) ≤ f (µ2), where µ1 and µ2 are fuzzy sets in X,

(5) λ ≥ f ( f−1(λ)) for any fuzzy set λ in Y,

(6) µ ≤ f−1( f (µ)) for any fuzzy set µ in X,

(7) Let f be a function from X to Y and 1 be a function from Y to Z.Then (1o f )−1(β) = f−1(1−1(β)) for any fuzzy
set β in Z, where 1o f is the composition of 1 and f .

Definition 2.11. A subset λ of a fuzzy topological space (X, τ) is said to be

(i) Fuzzy α − open([5]) λ ≤ Int(Cl(Int(λ))),

(ii) Fuzzy pre − open([5]) λ ≤ Int(Cl(λ)),

(iii) Fuzzy semi − open([3]) λ ≤ Cl(Int(λ)),

(iv) Fuzzy β − open([25]) λ ≤ Cl(Int(Cl(λ)]).

By Definition 2.11, the following diagram is obtained:

f uzzy − open→ f uzzy α − open→ f uzzy pre − open
↓ ↓

f uzzy semi − open→ f uzzy β − open

Diagram I

The fuzzy α-interior [31] fαInt(λ), of λ is defined as follows:
fαInt(λ) =

∨
{µ : µ ≤ λ, µ is fuzzy α − open}. The fuzzy pre-interior [30], f pInt(λ), fuzzy semi-interior [34]

f sInt(λ), fuzzy β interior [16] fβInt(λ) are similarly defined.
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3. AF-open sets with fuzzification

Definition 3.1. Let (X, τ) be a fuzzy topological space. A subset λ of X is said to be fuzzy AF-open set if
λ ≤ Int(λ∨ µ) for every µ is fuzzy open set such that 0X , µ , 1X. The complement of the fuzzy AF-open set
is called fuzzy AF-closed. We denote the family of all fuzzy AF-open (resp. fuzzy AF-closed) sets of a fuzzy
topological spece (X, τ) by FAFO(X)(resp. FAFC(X)).

Problem 3.2. Let (X, τ) be a fuzzy topological space. In Definition 3.1, for every µ ∈ τ such that 0X , µ , 1X, can
we obtain a new type of fuzzy AF-open sets by taking the fuzzy closure of µ instead of µ?

Theorem 3.3. Every fuzzy open set in a fuzzy topological space (X, τ) is fuzzy AF-open set.

Proof. Let (X, τ) be any fuzzy topological space and let λ ≤ X be any fuzzy open set. Therefore, λ = Int(λ) ≤
Int(λ ∨ µ) for every µ is fuzzy open set such that 0X , µ , 1X. Thus, A is fuzzy AF-open set. Then for the
collection of FAFO(X), τ ≤ FAFO(X).

Remark 3.4. The converse of Theorem 3.3 is not always true as shown by the following example.

Example 3.5. X = {a, b, c}, τ = {0X, λ, 1X},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.5), (b, 0.7), (c, 0.9)}
and µ = {(a, 0.4), (b, 0.3), (c, 0.9)}. Then µ ∈ FAFO(X) and but the set µ is not fuzzy open.

Theorem 3.6. Let (X, τ) be any fuzzy topological space and λ, µ be two fuzzy AF-open sets. Then, the following
properties are hold:

(1) λ ∧ µ is fuzzy AF-open set.

(2) λ ∨ µ is fuzzy AF-open set.

Proof. (1) Let λ and µ be two fuzzy AF-open sets. Then from Definition 3.1, λ ≤ Int(λ∨ β) and µ ≤ Int(µ∨ β)
for every β is fuzzy open set and 0X , β , 1X. Then λ ∧ µ ≤ Int(λ ∨ β) ∧ Int(µ ∨ β) =Int((λ ∨ β) ∧ (µ ∨ β)) ≤
Int((λ ∧ µ) ∨ β).
(2) Letλ andµ be two fuzzy AF-open sets. Then from Definition 3.1, λ ≤ Int(λ∨β) andµ ≤ Int(µ∨β) for every
β is fuzzy open set and 0X , β , 1X. Thenλ∨µ ≤ Int(λ∨β)∨Int(µ∨β)=Int((λ∨β)∨(µ∨β)) ≤ Int((λ∨µ)∨β).

Proposition 3.7. Let (X, τ) be any fuzzy topological space. If for every α ∈ ∆, λα ∈ FAFO(X), then
∨
α∈∆ λα ∈

FAFO(X).

Proof. Let λα ∈ FAFO(X) for every α ∈ ∆. Then λα ≤
∨
α∈∆ λα, for every α ∈ ∆. For any β is fuzzy open (0X ,

µ , 1X) and each α ∈ ∆, λα ≤ Int(λα ∨ β) ≤ Int[(
∨
α∈∆ λα)∨ β]. Hence, we have

∨
α∈∆ λα ≤ Int[(

∨
α∈∆ λα)∨ β].

Therefore
∨
α∈∆ λα ∈ FAFO(X).

Theorem 3.8. Let (X, τ) be any fuzzy topological space and τFAFO = {λ ≤ X / λ is a f uzzy AF− open set o f (X, τ)}.
Then is a τFAFO a fuzzy topology such that τ ≤ τFAFO.

Proof. According to Theorem 3.3, we have τ ≤ τFAFO. We show that τFAFO is a fuzzy topology:
(1) It is clear that 0X, 1X ∈ τFAFO.
(2) and (3) are seen that from Theorem 3.6 and Proposition 3.7.

4. Generalizations of fuzzy AF-open sets

Definition 4.1. A subset λ of a fuzzy topological space (X, τ) is said to be

(i) Fuzzy AFα − open if λ ≤ fαInt(λ ∨ µ) for every β is fuzzy open and 0X , µ , 1X,

(ii) Fuzzy AFpre − open if λ ≤ f pInt(λ ∨ µ) for every β is fuzzy open and 0X , µ , 1X,
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(iii) Fuzzy AFsemi − open if λ ≤ f sInt(λ ∨ µ) for every β is fuzzy open and 0X , µ , 1X,

(iv) Fuzzy AFβ − open if λ ≤ fβInt(λ ∨ µ) for every β is fuzzy open and 0X , µ , 1X.

The complement of a fuzzy AFα − open (resp. f uzzy AFp − open, f uzzy AFs − open, f uzzy AFβ − open) set is
said to be f uzzy AFα− closed (resp. f uzzy AFp− closed, f uzzy AFs− closed, f uzzy AFβ− closed). The family of
all fuzzy AFα-open (fuzzy AFα-closed) (resp. fuzzy AFp-open (fuzzy AFp-closed), fuzzy AFs-open (fuzzy
AFs-closed), fuzzy AFβ-open (fuzzy AFβ-closed)) sets in a fuzzy topological space (X, τ) is denoted by
FAFαO(X) (FAFαC(X)) (resp. FAFPO(X) (FAFPC(X)), FAFSO(X) (FAFSC(X)), FAFβO(X) (FAFβC(X))).

From Definition 4.1, we have the following diagram:

f uzzy − open→ f uzzy AF − open→ f uzzy AFα − open→ f uzzy AFp − open
↓ ↓

f uzzy AFs − open→ f uzzy AFβ − open

Diagram II

Problem 4.2. In the above definition, for every µ ∈ τ such that 0X , µ , 1X, can a new types of fuzzy AF-open set
be given by taking the fuzzy closure of µ instead of µ?

Remark 4.3. The inverses of the requirements in the diagram above may not always be true.

Example 4.4. It can be seen from Example 3.5 that not every fuzzy AF-open set is a fuzzy open set.

Example 4.5. X = {a, b, c}, τ = {0, λ, 1},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.2), (b, 0.7), (c, 0.4)}
and µ = {(a, 0.7), (b, 0.9), (c, 0.1)}. Then µ ∈ FAFα(X) and but the set µ is not fuzzy AF-open.

Example 4.6. X = {a, b, c}, τ = {0, µ, 1},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.2), (b, 0.3), (c, 0.7)}
and µ = {(a, 0.1), (b, 0.2), (c, 0.2)}. Then λ ∈ FAFSO(X) and but the set λ is neither fuzzy AFα-open nor fuzzy
AFp-open.

Example 4.7. X = {a, b, c}, τ = {0, µ, 1},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.3), (b, 0.8), (c, 0.7)}
and µ = {(a, 0.1), (b, 0.3), (c, 0.4)}. Then λ ∈ FAFPO(X) and but the set λ is neither fuzzy AFα-open nor fuzzy
AFs-open.

Remark 4.8. From Example 4.6 and Example 4.7, fuzzy AFp-open sets and fuzzy AFs-open sets are inde-
pendent of each other.

Example 4.9. X = {a, b, c}, τ = {0, λ, 1},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.1), (b, 0.3), (c, 0.1)}
and µ = {(a, 0.3), (b, 0.5), (c, 0.7)}. Then µ ∈ FhβO(X) and but the set µ is not fuzzy hp-open.

Example 4.10. X = {a, b, c}, τ = {0, λ, 1},λ, µ : X→ I be two fuzzy sets in X, defined as: λ = {(a, 0.2), (b, 0.8), (c, 0.5)}
and µ = {(a, 0.6), (b, 0.5), (c, 0.4)}. Then µ ∈ FhβO(X) and but the set µ is not fuzzy hs-open.

5. Fuzzy AF-interior and fuzzy AF-closure operators

Definition 5.1. Let (X, τ) be a fuzzy topological space and a fuzzy subset λ of X. The fuzzy AF-interior,
IntAF(λ), is defined as follows :

IntAF(λ) =
∨
{µ : µ ∈ FAFO(X), µ ≤ λ} = sup{µ : µ ∈ FAFO(X), µ ≤ λ}.

Theorem 5.2. Let (X, τ) be a fuzzy topological space and λ, µ fuzzy subsets of X. Then the following statements are
hold:
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(1) IntAF(λ) is fuzzy AF-open set,

(2) IntAF(λ) ≤ λ,

(3) IntAF(λ) is the largest fuzzy AF-open subset contained in the set λ,

(4) IntAF(IntAF(λ)) = IntAF(λ),

(5) If λ ≤ µ, IntAF(λ) ≤ IntAF(µ),

(6) IntAF(λ) ∨ IntAF(µ) ≤ IntAF(λ ∨ µ),

(7) IntAF(λ) ∧ IntAF(µ) = IntAF(λ ∧ µ).

Proof. (1) IntAF(λ) is fuzzy AF-open set. Indeed, the union of fuzzy AF-open sets belonging to the fuzzy
topological space τ is fuzzy AF-open from the Proposition 3.7.
(2) It is clear from Definition 5.1.
(3) Let’s assume the opposite, that is, a fuzzy AF-open set β that is larger than the set IntAF(λ) that the set λ
contains. That is, IntAF(λ) ≤ β ≤ λ. On the other hand, for every µ ≤ λ fuzzy AF-open set from Definition
5.1, µ ≤ IntAF(λ). If we take µ = β specifically, we find β ≤ IntAF(λ). Then β = IntAF(λ) is obtained. Thus,
the fuzzy set IntAF(λ) is the largest fuzzy AF-open subset contained in the set λ.
(4) Let β = IntAF(λ). By (2) and Definition 5.1, β = IntAF(β). Then IntAF(λ) = IntAF(IntAF(λ)).
(5) Since λ ≤ µ and IntAF(λ) ≤ λ, IntAF(λ) ≤ µ. By (2), IntAF(µ) ≤ µ. From (3), since IntAF(µ) is the largest
fuzzy open set contained in µ fuzzy sets, IntAF(λ) ≤ IntAF(µ) ≤ µ. In that case IntAF(λ) ≤ IntAF(µ).
(6) λ ≤ λ ∨ µ and µ ≤ λ ∨ µ always hold. From (5), IntAF(λ) ≤ IntAF(λ ∨ µ) and IntAF(µ) ≤ IntAF(λ ∨ µ),
respectively. Therefore IntAF(λ) ∨ IntAF(µ) ≤ IntAF(λ ∨ µ).
(7) It is always hold that λ ∧ µ ≤ λ and λ ∧ µ ≤ µ. From (5), we obtain IntAF(λ ∧ µ) ≤ IntAF(λ) and
IntAF(λ∧µ) ≤ IntAF(µ), respectively. Hence IntAF(λ∧µ) ≤ IntAF(λ)∧IntAF(µ). On the other hand IntAF(λ) ≤ λ
and IntAF(µ) ≤ µ. From here IntAF(λ)∧ IntAF(µ) ≤ λ∧µ. Since IntAF(λ)∧ IntAF(µ) are fuzzy AF-open sets and
IntAF(λ ∧ µ) is the largest fuzzy AF-open set contained in the λ ∧ µ fuzzy set, we have IntAF(λ) ∧ IntAF(µ) ≤
IntAF(λ ∧ µ) ≤ λ ∧ µ . Thus IntAF(λ) ∧ IntAF(µ) = IntAF(λ ∧ µ).

Theorem 5.3. Let (X, τ) be a fuzzy topological space and and a fuzzy subset λ of X. Then, λ fuzzy set to be AF-open
set if and only if IntAF(λ) = λ.

Proof. ⇒ Let λ be a fuzzy AF-open set. From Theorem 5.2 (2), IntAF(λ) ≤ λ. On the other hand, since λ is a
fuzzy AF-open set, λ ≤ λ and by Definition 5.1, λ ≤ IntAF(λ). In that case λ = IntAF(λ).
⇐According to the hypothesis, let’s takeλ = IntAF(λ). Since IntAF(λ) is a fuzzy AF-open set and IntAF(λ) = λ,
so λ is a fuzzy AF-open set.

Lemma 5.4. For 1X and 0X fuzzy AF-open sets, then IntAF(1X) = 1X and IntAF(0X) = 0X.

Definition 5.5. Let (X, τ) be a fuzzy topological space and a fuzzy subset λ of X. The fuzzy AF-closure of
λ, ClAF(λ), is defined as follows:

ClAF(λ) =
∧
{β : β ∈ FAFC(X), λ ≤ β} = in f {β : (1X − β) ∈ FAFO(X), λ ≤ β}.

It is obvious that ClAF(λ) is fuzzy AF-closed set for any λ ≤ X.

Theorem 5.6. Let (X, τ) be a fuzzy topological space and λ, µ fuzzy subsets of X. Then the following properties hold:

(1) ClAF(λ) is fuzzy AF-closed set,

(2) λ ≤ ClAF(λ),

(3) ClAF(λ) is the smallest fuzzy closed set containing λ,
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(4) ClAF(ClAF(λ)) = ClAF(λ),

(5) If λ ≤ µ, ClAF(λ) ≤ ClAF(µ),

(6) ClAF(λ ∧ µ) ≤ ClAF(λ) ∧ ClAF(µ),

(7) ClAF(λ ∨ µ) = ClAF(λ) ∨ ClAF(µ),

(8) ClAF(1X)=1X and ClAF(0X)=0X.

Theorem 5.7. Let λ be any fuzzy set in a fuzzy topological space (X, τ). Then ClAF(l − λ) =1 − IntAF(λ) and
IntAF(l − λ) = 1 − ClAF(λ).

Proof. We see that a fuzzy AF-open set β ≤ λ is precisely the complement of a fuzzy AF-closed set ν = 1−β ≥
1 − λ. Thus
IntAF(λ) =

∨
{l − ν : ν is f uzzy AF − closed and ν ≥ 1 − λ}

=1 −
∧
{ν : ν is f uzzy AF − closed and ν ≥ 1 − λ}

= 1 − ClAF(l − λ)
whence
ClAF(l − λ) = 1 − IntAF(λ).

Next let β be any fuzzy AF-open set. Then for a fuzzy AF-closed set µ ≥ λ, β = 1 − µ ≤ 1 − λ.
ClAF(λ) =

∧
{1 − β : β is f uzzy AF − open and β ≤ 1 − λ}

= 1 −
∨
{β : β is f uzzy AF − open and β ≤ 1 − λ}

= 1 − IntAF(l − λ).
As a result
IntAF(l − λ) = 1 − ClAF(λ).

Definition 5.8. Let β be a fuzzy set in a fuzzy topological space (X, τ) and xα is a fuzzy point of X. β is
called:

(i) AF − nei1hbourhood of xα if there exists a fuzzy set µ ∈ FAFO(X) such that xα ∈ µ ≤ β.

(ii) AF −Q − nei1hbourhood of xα if there exists a fuzzy set µ ∈ FAFO(X) such that xαqµ ≤ β.

Theorem 5.9. A fuzzy set β ∈ FAFO(X) if and only if β is a AF-neighbourhood of xα, for every fuzzy point xα ∈ β.

Proof. Straightforward.

Definition 5.10. Let (X, τ) be the fuzzy topological space, λ ≤ 1X and xα the fuzzy point. If every AF-Q-
neighborhood of xα fuzzy point is quasi-coincident with λ, the xα fuzzy point is called a AF-cluster point
of the fuzzy set λ. The notation νqµ (νq̃µ) will sense that it is quasi-coincident (not quasi-coincident) with ν
and µ.

Theorem 5.11. Let β be a fuzzy set of a fuzzy topological space X. Then a fuzzy point xα ∈ ClAF(β) if and only if
every AF-Q-neighbourhood of xα is quasi-coincident with β.

Proof. ⇒ Suppose xα ∈ ClAF(β) and if possible let there exist a AF-Q-neighbourhood µ of xα such that µq̃β.
Then there exists a fuzzy set µ1 ∈ FAFO(X) such that xαqµl ≤ µ which shows that µlq̃β and hence β ≤ (µl)c.
As (µl)c

∈ FAFC(X), ClAF(β) ≤ (µl)c. Since xα ∈ (µl)c, xαq̃µl. From this contradiction, µqβ.
⇐ Suppose every AF-Q-neighbourhood of xα is quasi-coincident with β. If xα < ClAF(β) then there exists a
fuzzy AF-closed set µ ≥ β such that xα < µ. So µc

∈ FAFO(X) such that xαqµc and (µcq̃β) a contradiction.
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6. Fuzzy AF-continous functions

Definition 6.1. A function f : (X, τ) → (Y, σ) is said to be fuzzy AF-continuous if for each λ ∈ σ, f−1(λ) is
fuzzy AF-open in (X, τ).

Theorem 6.2. Every fuzzy continuous function is fuzzy AF-continuous.

Proof. By Theorem 3.3, every fuzzy open set is fuzzy AF-open and the proof is obvious.

Example 6.3. X = {a, b}, Y = {0.1, 0.4}, λ, µ : X → I be two fuzzy sets in X and β : Y → I be fuzzy set in Y
defined as follows: λ = {(a, 0.2), (b, 0.2)}, µ = {(a, 0.3), (b, 0.7)} and β = {(0.1, 0.2), (0.4, 0.2)}. Let τ = {0X, µ, 1X},
σ = {0Y, β, 1Y}. Then the function f : X→ Y defined by f (a)=0.1, f (b)=0.4 is a fuzzy AF-continuous, but not
fuzzy continuous.

Definition 6.4. A function f : (X, τ) → (Y, σ) is said to be f uzzy AFα − continuous (resp. f uzzy AFp −
continuous, f uzzy AFs− continuous, f uzzy AFβ− continuous) if for each λ ∈ σ, f−1(λ) is fuzzy AFα-open (resp.
fuzzy AFp-open, fuzzy AFs-open, fuzzy AFβ-open) in (X, τ).

By Definitions 6.1 and 6.4, the following implications hold:

f uzzy − cont→ f uzzy AF − cont→ f uzzy AFα − cont→ f uzzy AFp − cont
↓ ↓

f uzzy AFs − cont→ f uzzyAFβ − cont

Diagram III

Remark 6.5. None of the implications in DIAGRAM III is reversible as shown by examples stated below.

Example 6.6. It can be seen from Example 6.3 that not every fuzzy AF-continuous function is a fuzzy
continuous.

Example 6.7. X = {a, b}, Y = {0.2, 0.5}, λ, µ : X → I be two fuzzy sets in X and β : Y → I be fuzzy set in Y
defined as follows: λ = {(a, 0.7), (b, 0.4)}, µ = {(a, 0.9), (b, 0.1)} and β = {(0.2, 0.9), (0.5, 0.1)}. Let τ = {0X, λ, 1X},
σ = {0Y, β, 1Y}. Then the function f : X → Y defined by f (a)=0.2, f (b)=0.5 is a fuzzy AFα-continuous, but
not fuzzy AF-continuous.

Example 6.8. X = {a, b}, Y = {0.1, 0.4}, λ, µ : X → I be two fuzzy sets in X and β : Y → I be fuzzy set in Y
defined as follows: λ = {(a, 0.3), (b, 0.7)}, µ = {(a, 0.2), (b, 0.2)} and β = {(0.1, 0.3), (0.4, 0.7)}. Let τ = {0X, µ, 1X},
σ = {0Y, β, 1Y}. Then the function f : X → Y defined by f (a)=0.1, f (b)=0.4 is a fuzzy AFs-continuous, but
neither fuzzy AFα-continuous nor fuzzy AFp-continuous.

Example 6.9. X = {a, b, c}, Y = {0.1, 0.3, 0.5}, λ, µ : X → I be two fuzzy sets in X and β : Y → I be
fuzzy set in Y defined as follows: λ = {(a, 0.4), (b, 0.9), (c, 0.8)}, µ = {(a, 0.2), (b, 0.4), (c, 0.5)} and β =
{(0.1, 0.4), (0.3, 0.9), (0.5, 0.8)}. Let τ = {0X, µ, 1X}, σ = {0Y, β, 1Y}. Then the function f : X → Y defined
by f (a)=0.1, f (b)=0.3, f (c)=0.5 is a fuzzy AFp-continuous, neither fuzzy AFα-continuous nor fuzzy AFs-
continuous.

Example 6.10. X = {a, b, c}, Y = {0.2, 0.5, 0.6}, λ, µ : X → I be two fuzzy sets in X and β : Y → I
be fuzzy set in Y defined as follows: λ = {(a, 0.1), (b, 0.4), (c, 0.1)}, µ = {(a, 0.4), (b, 0.5), (c, 0.8)} and β =
{(0.2, 0.3), (0.5, 0.5), (0.6, 0.8)}. Let τ = {0X, λ, 1X}, σ = {0Y, β, 1Y}. Then the function f : X → Y defined by
f (a)=0.2, f (b)=0.5, f (c)=0.6 is a fuzzy AFβ-continuous, but not fuzzy AFp-continuous.

Example 6.11. X = {a, b, c}, Y = {0.3, 0.5, 0.7}, λ, µ : X → I be two fuzzy sets in X and β : Y → I
be fuzzy set in Y defined as follows: λ = {(a, 0.2), (b, 0.8), (c, 0.5)}, µ = {(a, 0.6), (b, 0.5), (c, 0.4)} and β =
{(0.3, 0.6), (0.5, 0.5), (0.7, 0.4)}. Let τ = 0X, λ, 1X, σ = 0Y, β, 1Y. Then the function f : X → Y defined by
f (a)=0.3, f (b)=0.5, f (c)=0.7 is a fuzzy AFβ-continuous, but not fuzzy AFs-continuous.



A. Acikgoz / Filomat 39:1 (2025), 131–143 139

Corollary 6.12. A function f : (X, τ) → (Y, σ) is fuzzy AF-continuous if and only if f : (X, τ) → (Y, σ) is fuzzy
continuous.

Proof. This is an immediate consequence of Theorem 3.8.

Theorem 6.13. A function f : (X, τ) → (Y, σ) is fuzzy AF-continuous and 1 : (Y, σ) → (R, η) is fuzzy continuous,
then 1o f : (X, τ)→ (R, η) is fuzzy AF-continuous.

Proof. It is clear.

By using fuzzy AF-neighborhood, fuzzy AF-open sets, fuzzy AF-closed sets, fuzzy AF-interior and fuzzy
AF-closure, we obtain characterizations of fuzzy AF-continuous functions.

Lemma 6.14. Let (X, τ) be a fuzzy topological space. A fuzzy subset µ is fuzzy AF-closed if and only if Cl(µ∧β) ≤ µ
for every fuzzy closed set β of X such that 0X , β , 1X.

Proof. µ is fuzzy AF-closed if and only if 1X−µ is fuzzy AF-open. By Definition 3.1, (1X−µ) ≤ Int[(1X−µ)∨α]
for every α ∈ τ such that 0X , α , 1X.
This is equivalent to 1X − Int[(1X − µ)∨ α] ≤ µ. Now, we have 1X − Int[(1X − µ)∨ α] = Cl(1X − [(1X − µ)∨ α])
= Cl(µ ∧ (1X − α)).
Therefore, we obtain Cl(µ ∧ β) ≤ µ for every fuzzy closed set β of X such that 0X , β , 1X.

Theorem 6.15. For a function f : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) f is fuzzy AF-continuous,

(2) For each point x ∈ X and each fuzzy open µ ≤ Y containing f (x), there exists α ∈ FAFO(X) such that x ∈ α,
f (α) ≤ µ,

(3) For each point x ∈ X and each fuzzy open set µ of Y containing f (x), there exists a fuzzy AF-neighorhood λ of
x such that f (λ) ≤ µ,

(4) The inverse image of each fuzzy closed set in Y is fuzzy AF-closed,

(5) For each fuzzy closed set µ of Y, Cl( f−1(µ) ∧ β) ≤ f−1(µ) for every closed set in X such that 0X , β , 1X,

(6) For each fuzzy subset µ of Y, Cl( f−1(Cl(µ)) ∧ β) ≤ f−1(Cl(µ)) for every fuzzy closed set β in X such that
0X , β , 1X,

(7) For each fuzzy subset λ of X, f (Cl[λ ∧ β]) ≤ Cl( f (λ)) for every fuzzy closed set β in X such that 0X , β , 1X,

(8) For each fuzzy subset µ of Y, ClAF( f−1(µ)) ≤ f−1(Cl(µ)),

(9) For each fuzzy subset µ of Y, f−1(Int(µ)) ≤ IntAF( f−1(µ)).

Proof. (1) ⇒ (2): Let x ∈ X and µ be any fuzzy open set of Y containing f (x). Set α = f−1(µ), then by
Definition 6.1, α is a fuzzy AF-open set containing x and f (α) ≤ µ.
(2)⇒ (3): Every fuzzy AF-open set containing x is a fuzzy AF-neighborhood of x and the proof is obvious.
(3) ⇒ (1): Let µ be any fuzzy open set in Y. For each x ∈ f−1(µ), f (x) ∈ µ ∈ σ. By (3) there exists a
fuzzy AF-neighborhood ν of x such that f (ν) ≤ µ; hence x ∈ ν ≤ f−1(µ). There exists αx ∈ FAFO(X) such
that x ∈ αx ≤ ν ≤ f−1(µ). Hence f−1(µ) =

∨
{αx : x ∈ f−1(µ)} ∈ FAFO(X). This shows that f is fuzzy

AF-continuous.
(1)⇒ (4)⇒ (5)⇒ (1): By Lemma 6.14, the proof is obvious.
(5)⇒ (6): For each fuzzy subset µ of Y, Cl(µ) is fuzzy closed in Y and the proof is obvious.
(6) ⇒ (7): Let λ be any fuzzy subset of X. Set µ = f (λ), then by (6) Cl[λ ∧ β] ≤ Cl[ f−1(Cl( f (λ))) ∧ β] ≤
f−1(Cl( f (λ))) for every fuzzy closed set β in X such that 0X , β , 1X. Therefore, we obtain for each fuzzy
subset λ of X, f (Cl[λ ∧ β]) ≤ Cl( f (λ)) for every fuzzy closed set β in X such that 0X , β , 1X.
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(7) ⇒ (1): Let µ be any open set of Y. Then 1Y − µ is fuzzy closed in Y. Set α = f−1(1Y − µ), then by (7)
f (Cl[ f−1(1Y − µ) ∧ β]) ≤ Cl( f ( f−1(1Y − µ)))) = 1Y − µ for every fuzzy closed set β in X such that 0X , β , 1X.
Therefore, we have
Cl[ f−1(1Y − µ) ∧ β]
≤ f−1( f (Cl[ f−1(1Y − µ) ∧ β])
≤ f−1(1Y − µ) = 1X − f−1(µ).
Therefore, f−1(µ) ≤ 1X − Cl[ f−1(1Y − µ) ∧ β]
= Int[1X − f−1(1Y − µ) ∧ β]
= Int[ f−1(µ) ∨ (1X − β)]
= Int[ f−1(µ) ∨ α]
for every fuzzy open set α of X such that 0X , β , 1X .
(4)⇒ (8): Let µ be any fuzzy subset of Y. By (4) f−1(Cl(µ)) is fuzzy AF-closed in X and
f−1(µ) ≤ f−1(Cl(µ)). Therefore, ClAF( f−1(µ)) ≤ f−1(Cl(µ)).
(8)⇒ (9): Let µ be any fuzzy subset of Y. Then,
f−1(Int(µ)) = f−1(1Y − Cl(1Y − µ))
=1X − f−1(Cl(1Y − µ)) ≤ 1X − ClAF( f−1(1Y − µ))
= 1X − ClAF(1X − f−1(µ))
= IntAF( f−1(µ)).
(9) ⇒ (1): Let µ be any fuzzy open set of Y. By (9), f−1(µ) ≤ IntAF( f−1(µ)) ≤ f−1(µ). Therefore, we have
IntAF( f−1(µ)) = f−1(µ) and hence f is fuzzy AF-continuous.

Definition 6.16. A function f : (X, τ)→ (Y, σ) is said to be fuzzy AF-irresolute if for each fuzzy AF-open set
µ in Y, f−1(µ) is fuzzy AF-open in X.

Theorem 6.17. If a function f : (X, τ)→ (Y, σ) is fuzzy AF-irresolute, then f is fuzzy AF-continuous.

The converse of Theorem 6.17 is not always true as shown by the following example.

Example 6.18. X = {a, b, c}, Y = {0.1, 0.7, 0.5}, λ : X → I be two fuzzy sets in X and µ, β : Y → I be
fuzzy set in Y defined as follows: λ = {(a, 0.3), (b, 0.2), (c, 0.5)}, µ = {(0.1, 0.4), (0.7, 0.5), (0.5, 0.7)} and β =
{(0.1, 0.3), (0.7, 0.2), (0.5, 0.5)}. Let τ = {0X, 1X, λ}, σ = {0Y, 1Y, β}. Then the function f : X → Y defined by
f (a)=0.1, f (b)=0.7, f (c)=0.5 is a fuzzy AF-continuous, but not fuzzy AF-irresolute.

Definition 6.19. A function f : (X, τ) → (Y, σ) is said to be f uzzy AF − open (resp. f uzzy AFα − open,
f uzzy AFp − open, f uzzy AFs − open, f uzzy AFβ − open), if f (λ) is f uzzy AF − open (resp. f uzzy AFα −
open, f uzzy AFp − open, f uzzy AFs − open, f uzzy AFβ − open) in Y for every fuzzy open set λ in X.

Proposition 6.20. Every fuzzy open function is fuzzy AF-open.

Proof. It is obvious.

Remark 6.21. As can be seen from Example 3.5, the converse of Proposition 6.20 may not always be true.

Theorem 6.22. A function f : (X, τ)→ (Y, σ) is fuzzy AF-open if and only if for each fuzzy subset µ ≤ Y each fuzzy
closed set β of X containing f−1(µ), there exists a fuzzy AF-closed set ν ≤ Y containing µ such that f−1(ν) ≤ β.

Proof. ⇒ Let ν = 1Y − f (1X − β). Since f−1(µ) ≤ β, we have f (1X − β) ≤ 1Y −µ. Since f is fuzzy AF-open, then
ν is fuzzy AF-closed and f−1(ν) = 1X − f−1( f (1X − β)) ≤ 1X − (1X − β) = β.
⇐ Let α be any fuzzy open set of X and µ = 1Y − f (α). Then f−1(µ) = 1X − f−1( f (U)) ≤ 1X − α and
1X − α is fuzzy closed. By the hypothesis, there exists a fuzzy AF- closed set ν of Y containing µ such that
f−1(ν) ≤ 1X − α. Then, we have ν ≤ 1Y − f (α). Therefore, we obtain 1Y − f (α) ≤ ν ≤ 1Y − f (α) and f (α) is
fuzzy AF-open in Y. This shows that f is fuzzy AF-open.

Proposition 6.23. A function f : (X, τ) → (Y, σ) is fuzzy open and 1 : (Y, σ) → (Z, η) is fuzzy AF-open, then
1o f : (X, τ)→ (Z, η) is fuzzy AF-open.
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7. Fuzzy AF-compact

Definition 7.1. ([14]) A family of fuzzy subsets ξ of a fuzzy topological space X is called form a fuzzy
filterbases if and only if for every finite family {λ j : j = 1, 2, ...,n},

∧n
j=1 λ j , 0X.

Definition 7.2. Let (X, τ) be a fuzzy topological space and xα ∈ X for α ∈]0, 1]. A point xα is called a
AF-cluster point of filterbases β if and only if xα ∈ ClAF(F) such that for every F ∈ β.

Definition 7.3. A family ζ of fuzzy AF-open sets in a fuzzy topological space X is called a AF-open cover of
a fuzzy set ς of X if and only if (

∨
ω∈ζ ω)(y) = 1X, for each y ∈ X(ς). A fuzzy AF-open cover ζ of a fuzzy set

ς in a fuzzy topological space X is called have a finite subcover if and only if there exists a finite subfamily
ν = {ω1, ..., ωn} of ζ such that (

∨n
j=1 ω j)(y) ≥ ς(y), for every y ∈ X(ς) (The notation X(ς) stands for the support

of the fuzzy set ς).

Definition 7.4. ([6]) A fuzzy topological space X is called compact if and only if every open cover of X has
a finite subcover.

Definition 7.5. A fuzzy topological space (X, τ) is called fuzzy AF-compact if and only if for every filter base
β that the finite intersection of its elements to be quasi-coincident with ζ, (

∧
F∈β ClAF(F)) ∧ ζ , 0X.

Theorem 7.6. A fuzzy topological space (X, τ) is fuzzy AF-compact if and only if each family Aα (α ∈]0, 1] )
of AF-open fuzzy sets such that

∨
ζ∈Aα ζ = 1X there is a finite subfamily µ ≤ Aα such that

∨
ζ∈µ ζ = 1X.

Proof. Let the AF-open cover of Aα be ζ. Suppose that ζ does not have a finite subcover. Then there exists
an y ∈ X such that ξ j(y) < α ( j = 1, ...,n) for every finite subfamily {ξ1, ..., ξn} of ζ. From here ξc

j(y) > 1 − α .
Hence

∧n
j=1 ξ

c
j(y) , 0X and it includes a fuzzy point yλ for any y ∈ X. By the hypothesis,

∨
ξ∈ζ ξ(y) = 1X for

every y ∈ X, thus we have
∧
{ξc : ξ ∈ ζ} = 0X. This is contradiction. Therefore every AF-open cover of Aα

has a finite subcover.
On the other hand assume that X is not AF-compact. Then It has a filter base as follows:

∧
F∈β ClAF(F) = 0X

and
∨

F∈β(ClAF(F))c(y) = 1X for every y ∈ X. It follows from {(ClAF(F))c : F ∈ β} is a AF-open cover of Aα for
every 0 < α ≤ 1 and it has a finite subcover. Thus,

∨n
j=1(ClAF(F j))c(y) = 1X from here

∧n
j=1(ClAF(F j))(y) = 0X

for every y ∈ X. Hence we obtain that
∧n

j=1 F j = 0X . This is a contradiction, since members of a filter basis
are B j’ s. In that case X is AF-compact.

Remark 7.7. Since each open fuzzy set implies AF-open, so every fuzzy AF-compact space implies compact
space. But the converse need not be true.

Theorem 7.8. Every fuzzy AF-closed set in a fuzzy AF-compact space is fuzzy AF-compact.

Proof. Straightforward.

Theorem 7.9. Let (X, τ) be a fuzzy topological space and let {K j}1≤ j≤n be a collection of AF-closed subsets of X. If K j
is AF-compact for every j=1,...n, then K =

∨
1≤ j≤n K j is AF-compact.

Proof. It is clear.

Theorem 7.10. The image of a AF-compact space under a AF-irresolute function is AF-compact.

Proof. It is obvious.

Definition 7.11. A fuzzy set ν in a fuzzy topological space (X, τ) is called fuzzy AF-compact relative to X if
and only if for each family λ of AF-open fuzzy sets such that

∨
ζ∈λ ζ ≥ ν(y) there is a finite subfamily µ ≤ λ

such that
∨
ζ∈µ ζ ≥ ν(y) for each y ∈ X(ν).
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Theorem 7.12. A fuzzy topological space X is AF-compact if and only if for every family {ζ j : j ∈ J} of AF-closed
fuzzy sets of X,

∧
j∈J ζ j , 0X.

Proof. Let {ζ j : j ∈ J} be a family of AF-closed fuzzy sets with the finite intersection property. Assume that∧
j∈J ζ j = 0X. From here

∨
j∈J(ζ)c

j = 1X. Since {(ζ)c
j : j ∈ J} is a family of AF-open fuzzy sets cover of X, by the

hypotesis,
∨

j∈J(ζ)c
j = 1X for a finite subset K ⊂ J. Then

∧
j∈K ζ j = 0X . This a contradiction. Thus we have∧

j∈J ζ j , 0X.
On the other hand, let {ζ j : j ∈ J} be a family of AF-open fuzzy sets cover of X. Assume that

∨
j∈K ζ j , 1X for

every finite subset K ⊂ J. Then
∧

j∈K(ζ)c
j , 0X . Hence {(ζ)c

j : j ∈ J} provides the finite intersection property.
Then from the hypothesis

∧
j∈J(ζ)c

j , 0X it follows from
∨

j∈K ζ j , 1X. This is contradiction. Thus {ζ j : j ∈ J}
is a AF-open cover of X. Therefore, we have X is fuzzy AF-compact.

Theorem 7.13. A fuzzy topological space X is fuzzy AF-compact if and only if every filterbases β in X,
∧

F∈β ClAF(F) ,
0X.

Proof. Let ξ be the cover of fuzzy AF-open set X and let ξ not has a finite subcover. Then for every finite
subcollection {ζ1, ζ1, ..., ζn} of ξ, there exists y ∈ X such that ζ j(y) < 1 for every 1 ≤ j ≤ n. Then (ζ j)c(y) > 0,
from here

∧
1≤ j≤n(ζ j)c(y) , 0X. Hence {(ζ j)c(y) : ζ j ∈ ξ} forms a filterbases in X. Since ξ is the cover of fuzzy

AF-open set X, then (
∨
ζ j∈ξ ζ j)(y) = 1X for every y ∈ X and

∧
ζ j∈ξ ClAF(ζ j)c(y) =

∧
ζ j∈ξ(ζ j)c(y) = 0X, which

is a contradiction. Then every the cover of fuzzy AF-open set X has a finite subcover and thus X is fuzzy
AF-compact.
On the other hand, assume there exists a filterbasesβ such that

∧
F∈β ClAF(F) = 0X, from here (

∨
F∈β(ClAF(F))c)(y) =

1X for every y ∈ X and thus ξ = {(ClAF(F))c) : F ∈ β} is a cover of fuzzy AF-open set X. Since X is fuzzy
AF-compact, then ξ has a finite subcover. In that case (

∨
1≤ j≤n(ClAF(F j))c)(y) = 1X and it is obtained

(
∨

1≤ j≤n(F j)c)(y) = 1X. We have
∧

1≤ j≤n F j(y) = 0X. Since the elements of the β filterbases are F j , this is a
contradiction. In that case

∧
F∈β ClAF(F) , 0X.

Theorem 7.14. A fuzzy setv ν in a fuzzy topological space X is fuzzy AF-compact relative to X if and only if for
every filterbases β such that every finite of members of β is quasi coincident with ν, (

∧
F∈β ClAF(F)) ∧ ν , 0X.

Proof. Suppose that ν not be fuzzy AF-compact relative to X, then there exists a AF-open fuzzy set λ
cover of ν such that λ has not finite subcover µ. Then (

∨
ζ j∈µ ζ j)(y) < ν(y) for some y ∈ X(y), hence

(
∧
ζ j∈µ(ζ j)c)(y) > (ν)c(y) ≥ 0 and thus {(ζ j)c : ζ j ∈ λ} forms a filterbases and

∧
ζ j∈µ(ζ j)cqν. By hypotesis

(
∧
ζ j∈µ ClAF(ζ j)c) ∧ ν , 0X and so that (

∧
ζ j∈µ(ζ j)c) ∧ ν , 0X . Then for any y ∈ X(ν), (

∧
ζ j∈λ(ζ j)c)(y) > 0X, so

that (
∨
ζ j∈λ ζ j)(y) < 1X. This is a contradiction. Therefore ν is fuzzy AF-compact relative to X.

On the other hand, assume that there exists a filterbases β such that every finite of members of β is
quasi coincident with ν and (

∧
F∈β ClAF(F)) ∧ ν , 0X . Then for every y ∈ X(ν), (

∧
F∈β ClAF(F))(y) = 0X

and thus (
∨

F∈β(ClAF(F))c)(y) = 1X for every y ∈ X(ν) . Hence λ = {(ClAF(F))c : F ∈ β} is AF-open fuzzy
set cover ν. Since ν is fuzzy AF-compact relative to X, then there exists a finite subcover, consider
{(ClAF(F1))c, (ClAF(F2))c, ..., (ClAF(Fn))c

}, such that (
∨

1≤ j≤n(ClAF(F j))c)(y) ≥ ν(y) for every y ∈ X(ν). So that
(
∧

1≤ j≤n(ClAF(F j)))(y) ≤ νc(y) for every y ∈ X(ν), thus
∧

1≤ j≤n(ClAF(F j))q̃ν . This is a contradiction. Therefore for
every filterbases β such that every finite of members of β is quasi coincident with ν, (

∧
F∈β ClAF(F))∧ν , 0X.

Theorem 7.15. Every AF-closed fuzzy subset of a fuzzy AF-compact space is fuzzy AF-compact relative to X .

Proof. Let β be a fuzzy filterbases in X and a AF-closed fuzzy set ν. For each finite subfamily µ of β,
it is provided that νq ∧ {F : F ∈ µ} . Suppose that β⋆ = {ν} ∪ β. For every finite subfamily µ⋆ of
β⋆, if ν < µ⋆, then

∧
µ⋆ , 0X. If ν ∈ µ⋆ and since νq

∧
{F : F ∈ µ⋆ − ν}, then

∧
µ⋆ , 0X. Hence

µ⋆ is a fuzzy filterbases in X. Since X is fuzzy AF-compact, then
∧

F∈β⋆ ClAF(F) , 0X. It follows from
(
∧

F∈β ClAF(F)) ∧ ν = (
∧

F∈β ClAF(F)) ∧ ClAFν , 0X. By Theorem 7.14, ν is fuzzy AF-compact relative to X.

Theorem 7.16. If a function f : X→ Y is fuzzy AF-irresolute and ν is fuzzy AF-compact relative to X, then f (ν) is
fuzzy AF-compact relative to Y.
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Proof. Let the AF-open set cover of X( f (ν)) be family {ζ j} j∈J. For y ∈ X(ν), f (y) ∈ f (X(ν)) = X( f (ν)). Since
f fuzzy AF-irresolute, then { f−1(ζ j)} j∈J is fuzzy AF-open set cover of X(ν). Since ν is fuzzy AF-compact
relative to X, we have X(ν) ≤

∨n
j=1 f−1(ζ j). From here X(ν) ≤ f−1(

∨n
j=1 ζ j) and then X( f (ν)) = f (X(ν)) ≤

f f−1(
∨n

j=1 ζ j) ≤
∨n

j=1 ζ j.We obtain that f (ν) is fuzzy AF-compact relative to Y.

8. Conclusions

We define fuzzy AF-open sets in a fuzzy topological space (X, τ). We obtain some properties and of fuzzy
AF-open sets. We introduce and investigate fuzzy AF-continuous functions on a fuzzy topological space.
And also, we examine the notion of fuzzy AF-continuous functions and fuzzy AF-irresolute functions.
Further fuzzy AF-compactness is defined. Its properties and characterizations are examined. Moreover, we
offer two open problems in this study.
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[20] Lj. D. R. Kočinac, Selection properties in fuzzy metric spaces, Filomat 26 (2012), 305–312.
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