Filomat 39:1 (2025), 295–311 https://doi.org/10.2298/FIL2501295A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On dynamical systems and fixed point theory in Eilenberg-Jachymski spaces

Hafedh Abdelli^{a,b,*}, Maher Berzig^c, Imed Kedim^{d,e}

^aMonastir Preparatory Engineering Institute, University of Monastir, Monastir, Tunisia ^b(UR17ES21), "Dynamical Systems and their Applications", University of Carthage,Tunis, Tunisia ^cUniversité de Tunis, Ecole Nationale Supérieure d'Ingénieurs de Tunis, Département de Mathématiques, 1008 Montfleury, Tunisie ^dDepartment of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia ^eDepartment of Mathematics, Faculty of Sciences of Bizerte, University of Carthage, Tunisia

Abstract. We introduce the sets of periodic, recurrent, ω -limit and nonwandering points for a selfmap defined on a nonempty set endowed with an Eilenberg-Jachymski collection. Then, under some appropriate conditions, we show that these sets all coincide. Moreover, we establish fixed and periodic point theorems for a new class of φ -contractive mappings in ψ -dislocated metric spaces, and generalize some results obtained by Edelstein, Matkowski and Bessenyei-Páles.

1. Introduction and preliminaries

The last two authors have developed in [1] new fixed point results for mappings defined on an EJ-space, which is a nonempty set endowed with a structure not necessarily a base of uniformity. They studied the existence of fixed points for a self map $f: X \to X$, where X is a nonempty set endowed with an EJ-collection $\mathcal{R} = (P, R, B)$, where P is a partially ordered set, R is a family of binary relations on X indexed by P and B is an auxiliary binary relation on X. Observe that the EJ-spaces generalize the uniform spaces, and that the assumptions on \mathcal{R} play an important role in developing new fixed point results. For some recent developments on the minimal structure required by the fixed point theorems, see for instance [4, 8].

In this paper, we establish new results of dynamical systems and fixed point theory in appropriate EJ-spaces. More precisely, we consider a nonempty set *X* endowed with an EJ-collection $\mathcal{R} = (P, R, B)$, where *P* is a real interval, *R* is weakly nested and $B = X \times X$. We first introduce the sets \mathcal{R} -periodic, \mathcal{R} -recurrent, \mathcal{R} -limit and \mathcal{R} -nonwandering, and study the relationship between them. In particular, when *f* is an \mathcal{R} -contractive mapping, we show that $\Omega(f, \mathcal{R}) = \Lambda(f, \mathcal{R}) = \mathbb{R}(f, \mathcal{R}) = \mathbb{P}(f, \mathcal{R})$ (see Definitions 1.10 and 1.11). Then, we exhibit a bijection between a subclass of EJ-collections and the set of ψ -dislocated metrics on a same set *X*, in order to understand their interconnection. Finally, we present new fixed and periodic

²⁰²⁰ Mathematics Subject Classification. Primary 54Exx; Secondary 37B02, 47H10, 46Sxx.

Keywords. EJ-spaces, dynamics in topological spaces, fixed point theorems, dislocated metric.

Received: 08 April 2023; Revised: 16 July 2024; Accepted: 13 October 2024

Communicated by Adrian Petrusel

^{*} Corresponding author: Hafedh Abdelli

Email addresses: hafedhabdelli@yahoo.fr (Hafedh Abdelli), maher.berzig@gmail.com (Maher Berzig), i.kedim@psau.edu.sa (Imed Kedim)

ORCID iDs: https://orcid.org/0000-0003-1157-9655 (Hafedh Abdelli), https://orcid.org/0000-0002-0076-0056 (Maher Berzig), https://orcid.org/0000-0002-4791-9730 (Imed Kedim)

point theorems in ψ -dislocated metric spaces, which generalize some results of Edelstein [3], Matkowski [6] and Bessenyei-Páles [2].

The paper is organized as follows. Section 1 presents some basic definitions and notations. Section 2 studies the connection between EJ-spaces and ψ -dislocated metric spaces. Section 3 contains proofs of the main results. Some consequences in ψ -dislocated metric spaces are presented in Section 4.

Let *X* be a non-empty set and *f* be a self-mapping of *X*. Let \mathbb{N} , \mathbb{N}_0 and \mathbb{R}_+ be the set of all positive integers, the set of all non-negative integers and the set of non-negative real numbers, respectively. For $n \in \mathbb{N}_0$, denote by f^n the *n*-th iterate of *f*, where f^0 is the identity mapping. A point $x \in X$ is called *periodic* of period $n \in \mathbb{N}$ if $f^n x = x$ and $f^i x \neq x$ for $1 \leq i < n$; if n = 1, *x* is called a *fixed point* of *f*, that is, fx = x. Denote by P(f) the set of periodic points of *f* and by Fix(f) the set of all fixed points of *f*. For any $x \in X$, the orbit of *x* under *f* is the set $O(x, f) = \{f^n x : n \in \mathbb{N}_0\}$. A binary relation on *X* is a subset of $X \times X$. In particular, the diagonal relation on *X* is denoted by $\Delta := \{(x, x) : x \in X\}$. Let *S* be a binary relation on *X* and denote its symmetric by $S^{-1} := \{(y, x) \in X \times X : (x, y) \in S\}$. A composition of two binary relations *S* and *Q* is given by

$$S \circ Q := \{(x, y) \in X \times X : \text{ there exists } z \in X \text{ such that } (x, z) \in S \text{ and } (z, y) \in Q \}.$$

Definition 1.1 ([1]). *A poset P is said to be* extended *if it has a greatest element. We define the extension of a poset P, and we denote it by* \overline{P} *, the poset given by:*

- (i) $\overline{P} = P$, if P is extended.
- (ii) If *P* is not extended, then $\overline{P} = P \cup \{\top\}$, where \top is an extra element added to *P* with $x \leq \top$ for all $x \in P$, that is, \top is the greatest element of \overline{P} .

Denote by \top the greatest element of \overline{P} whether *P* is extended or not. The following definition generalizes that of EJ-collection given in [1].

Definition 1.2. *Let X be a nonempty set. An* Eilenberg-Jachymski collection *on X* (*shortly EJ*-collection) *is a triple* (*P*, *R*, *B*) *satisfying the following assumptions:*

- (i) (P, \leq) is a poset.
- (ii) $R = \{R_{\lambda}\}_{\lambda \in \overline{P}}$ is a family of binary relations over X with

$$R_{\top} \subseteq \Delta \coloneqq \{(x, x) \in X \times X\}.$$

(iii) *B* is a nonempty binary relation over *X*.

A nonempty set endowed with an EJ-collection is called an EJ-space.

In the sequel, we assume that *X* is a nonempty set, $f: X \to X$ is a mapping and *I* is a closed subset of \mathbb{R}_+ endowed with the dual order of \mathbb{R} such that $0 \in I$. In this case, we have $I = \overline{I}$, $\top = 0$ and any EJ-collection $\mathcal{R} = (I, R, X \times X)$ can be identified with its family of binary relations

 $R = \left\{ R_{\lambda} \right\}_{\lambda \in I}.$

Denote by $\mathcal{J}(I)$ the set of all families of binary relations indexed by *I* and satisfying (ii) of Definition 1.2.

Definition 1.3. Let $\widehat{I} = I \cup \{\infty\}$ and $\psi \colon \widehat{I} \times \widehat{I} \to \widehat{I}$ be a function. A family $\mathcal{R} \in \mathcal{J}(I)$ is said to be:

- Symmetric if $R_{\lambda}^{-1} = R_{\lambda}$ for all $\lambda \in I$.
- ψ -transitive if $R_{\lambda} \circ R_{\mu} \subseteq R_{\psi(\lambda,\mu)}$ for all $\lambda, \mu \in \widehat{I}$, where $R_{\infty} = \bigcup_{\lambda \in I} R_{\lambda}$.

Definition 1.4. A family $\mathcal{R} \in \mathcal{J}(I)$ is said to be weakly-nested (resp. nested) if for every non-increasing sequence $\{\lambda_n\}_{n \in \mathbb{N}} \subseteq I$ converges to λ , we have

$$\bigcap_{n\in\mathbb{N}}R_{\lambda_n}\subseteq R_{\lambda}\quad (resp. \ \bigcap_{n\in\mathbb{N}}R_{\lambda_n}=R_{\lambda}).$$

Remark 1.5. *Note that if* $\mathcal{R} \in \mathcal{J}(I)$ *is nested, then*

 $\lambda,\mu\in I:\lambda\leq\mu\implies R_\lambda\subseteq R_\mu.$

Definition 1.6. Let $\psi: \widehat{I} \times \widehat{I} \to \widehat{I}$ be a function. We define the following sets:

- $\mathcal{J}^t(I) := \{ \mathcal{R} \in \mathcal{J}(I) : R_\infty = X \times X \}.$
- $\mathcal{J}^{s}(I, \psi) := \{ \mathcal{R} \in \mathcal{J}(I) : \mathcal{R} \text{ is symmetric and } \psi \text{-transitive } \}.$
- $\mathcal{J}^n(I,\psi) \coloneqq \{\mathcal{R} \in \mathcal{J}^s(I,\psi) : \mathcal{R} \text{ is nested }\}.$
- $\mathcal{J}^w(I,\psi) \coloneqq \{\mathcal{R} \in \mathcal{J}^s(I,\psi) : \mathcal{R} \text{ is weakly-nested }\}.$

Clearly, we have $\mathcal{J}^n(I, \psi) \subseteq \mathcal{J}^w(I, \psi) \subseteq \mathcal{J}^s(I, \psi)$ *.*

Remark 1.7. Recall that a family \mathcal{R} of binary relations indexed by I is said to be a base of uniformity for X if:

- (i) $\Delta \subseteq R_{\lambda}$ for all $\lambda \in I$.
- (ii) For all $\lambda \in I$, there exists $\mu \in I$ such that $R_{\mu} \subseteq R_{\lambda}^{-1}$.
- (iii) For all $\lambda \in I$, there exists $\mu \in I$ such that $R_{\mu} \circ R_{\mu} \subseteq R_{\lambda}$.
- (iv) For all $\lambda, \lambda' \in I$ there exists $\mu \in I$ such that $R_{\mu} \subseteq R_{\lambda} \cap R_{\lambda'}$.

For further details on uniform spaces, we refer the reader to [5, Chapter 6]. If $\mathcal{R} \in \mathcal{J}^n(I, \psi)$ and $R_0 = \Delta$, then \mathcal{R} contains a base of uniformity of X. However, if $R_0 \neq \Delta$ or if $R_0 = \Delta$ and $\mathcal{R} \in \mathcal{J}^w(I, \psi)$, then R does not necessarily contains a base of uniformity of X, since (i) may fail.

Definition 1.8. For $\mathcal{R} \in \mathcal{J}(I)$ and $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$, let $I_{\varepsilon} := I \cap [0, \varepsilon)$ and $\mathcal{R}_{\varepsilon} = \{R_{\lambda}\}_{\lambda \in I}$.

• We say that $\mathcal{R}_{\varepsilon}$ is *f*-invariant if for all $\lambda \in I_{\varepsilon}$, we have

$$(x, y) \in R_{\lambda} \setminus \Delta \implies (fx, fy) \in R_{\lambda}.$$
(1)

• We say that f is $\mathcal{R}_{\varepsilon}$ -contractive if $\mathcal{R}_{\varepsilon}$ is f-invariant and there exists a mapping $m: X \times X \times I \to \mathbb{N}$ such that for all $\lambda \in I_{\varepsilon}$, we have

$$(x, y) \in R_{\lambda} \setminus \Delta \implies \exists \mu < \lambda : (f^{m(x, y, \lambda)} x, f^{m(x, y, \lambda)} y) \in R_{\mu}.$$
(2)

- We say that f is \mathcal{R} -contractive, if (1) and (2) are satisfied for all $\lambda \in I$.
- **Remark 1.9.** Any \mathcal{R} -contractive mapping is also $\mathcal{R}_{\varepsilon}$ -contractive for all $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$.

Definition 1.10. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}(I)$. The $\omega_{\mathcal{R}}$ -limit set of $x \in X$ under f will be denoted by:

$$\omega_{\mathcal{R}}(x,f) := \left\{ y \in X : \exists \{n_k\} \subset \mathbb{N}, \{\lambda_k\} \in I \mid \begin{cases} n_k \} \text{ is increasing,} \\ \{\lambda_k\} \text{ is convergent to } 0, \\ (f^{n_k}x, y) \in R_{\lambda_k}, \forall k \in \mathbb{N} \end{cases} \right\}.$$

The set of R-limit points of f is

$$\Lambda(f,\mathcal{R}) := \bigcup_{x \in X} \omega_{\mathcal{R}}(x,f)$$

Definition 1.11. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}(I)$.

- If $x \in Fix(f)$ and $(x, x) \in R_0$, we say that x is an \mathcal{R} -fixed point of f.
- If $x \in P(f)$ and $(x, x) \in R_0$, we say that x is an \mathcal{R} -periodic point of f.
- If $x \in \omega_{\mathcal{R}}(x, f)$, we say that x is an \mathcal{R} -recurrent point of f.
- If there exist a sequence $\{x_k\}$ in X, a non-decreasing sequence of positive integers $\{n_k\}$ and two convergent sequences $\{\lambda_k\}$ and $\{\mu_k\}$ in I to zero such that for all k, we have

 $(x_k, x) \in R_{\mu_k}$ and $(f^{n_k} x_k, x) \in R_{\lambda_k}$,

we say that x is an \mathcal{R} -nonwandering point of f.

The sets of \mathcal{R} *-fixed,* \mathcal{R} *-periodic,* \mathcal{R} *-recurrent and* \mathcal{R} *-nonwandering points of* f *will be denoted respectively by* $\text{Fix}(f, \mathcal{R})$ *,* $P(f, \mathcal{R})$ *,* $R(f, \mathcal{R})$ *and* $\Omega(f, \mathcal{R})$ *.*

The following Lemma is a direct consequence of Definitions 1.10 and 1.11.

Lemma 1.12. The following inclusions hold:

$$\operatorname{Fix}(f,\mathcal{R}) \subseteq \operatorname{P}(f,\mathcal{R}) \subseteq \operatorname{R}(f,\mathcal{R}) \subseteq \Lambda(f,\mathcal{R}) \subseteq \Omega(f,\mathcal{R})$$

Proof. The inclusions are obvious except the last one. Let $x \in X$ and $y \in \Lambda(f, \mathcal{R})$ be such that $y \in \omega_{\mathcal{R}}(x, f)$. Consider the sequences $\{n_k\}$ and $\{\lambda_k\}$ given by Definition 1.10. As $\{n_k\}$ is an increasing sequence (up to extraction of a subsequence, if necessary), we may assume that the sequence $\{m_k\}$, defined by $m_k = n_k - n_{k-1}$ for all k > 0, is non-decreasing sequence of positive integers. Then for $x_k = f^{n_{k-1}}x$, we have

 $(x_k, y) \in R_{\lambda_{k-1}}$ and $(f^{m_k} x_k, y) \in R_{\lambda_k}$.

Hence, $y \in \Omega(f, \mathcal{R})$. \Box

Definition 1.13. Let $\psi: \widehat{I} \times \widehat{I} \to \widehat{I}$ be a mapping. We say that $\delta: X \times X \to I$ is a ψ -dislocated metric if for all $x, y, z \in X$, we have

- (i) $\delta(x, y) = 0$ implies x = y.
- (ii) $\delta(x, y) = \delta(y, x)$.
- (iii) $\delta(x, y) \le \psi(\delta(x, z), \delta(z, y)).$

We say that (X, δ) is a ψ -dislocated metric space. We denote by $\mathcal{D}(I, \psi)$ the set of all ψ -dislocated metrics on X. If $I = \mathbb{R}_+$ and $\psi(\lambda, \mu) = \lambda + \mu$, the pair (X, δ) is called dislocated metric space.

Question 1.1. Let δ : $X \times X \to \mathbb{R}_+$ be a mapping satisfying (i) and (ii) of Definition 1.13. Is there a ψ function for which δ is a ψ -dislocated metric?

Remark 1.14. In case where δ is a semi-metric on X, the response of Question 1.1 is positive, and ψ is the basic triangular function introduced by Bessenyei and Páles [2].

We later show how to derive a ψ -dislocated metric from a family of binary relations in $\mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi)$.

Definition 1.15. A function $\psi: \widehat{I} \times \widehat{I} \to \widehat{I}$ is said to be monotone if it is increasing in both of its arguments.

Definition 1.16. *For* $\delta \in \mathcal{D}(I, \psi)$ *and* $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$ *.*

• We say that f is δ_{ε} -nonexpansive, if for all $x \neq y$, we have

$$\delta(x,y) \in I_{\varepsilon} \implies \delta(fx,fy) \le \delta(x,y). \tag{3}$$

• We say that f is δ_{ε} -contractive, if f is δ_{ε} -nonexpansive and there exists $m: X \times X \times I \to \mathbb{N}$ such that for all $x \neq y$, we have

$$\delta(x, y) \in I_{\varepsilon} \implies \delta(f^{m(x, y, \delta(x, y))}x, f^{m(x, y, \delta(x, y))}y) < \delta(x, y).$$
(4)

• We say that f is δ -contractive, if (3) and (4) are satisfied for all $x, y \in X$ such that $x \neq y$.

Remark 1.17. Any δ -contractive mapping is also δ_{ε} -contractive for all $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$.

Definition 1.18. Let $\delta \in \mathcal{D}(I, \psi)$. The ω_{δ} -limit set of a point $x \in X$ under f will be denoted by:

$$\omega_{\delta}(x,f) \coloneqq \left\{ y \in X : \exists \{n_k\} \subset \mathbb{N} \mid \begin{cases} n_k \} \text{ is increasing} \\ \lim_{k \to +\infty} \delta(f^{n_k}x,y) = 0 \end{cases} \right\}.$$

The set of δ *-limit points of f is*

$$\Lambda(f,\delta) \coloneqq \bigcup_{x \in X} \omega_{\delta}(x,f).$$

Definition 1.19. Let $\delta \in \mathcal{D}(I, \psi)$.

- If $x \in Fix(f)$ and $\delta(x, x) = 0$, we say that x is a δ -fixed point of f.
- If $x \in P(f)$ and $\delta(x, x) = 0$, we say that x is a δ -periodic point of f.
- If $x \in \omega_{\delta}(x, f)$, we say that x is a δ -recurrent point of f.
- If there exist a sequence $\{x_k\}$ in X, a non-decreasing sequence of positive integers $\{n_k\}$ such that

 $\lim_{k\to\infty}\delta(x_k,x)=\lim_{k\to\infty}\delta(f^{n_k}x_k,x)=0,$

we say that x is a δ -nonwandering point of f.

The sets of δ *-fixed,* δ *-periodic,* δ *-recurrent and* δ *-nonwandering points of* f *will be denoted respectively by* Fix(f, δ), P(f, δ), R(f, δ) and $\Omega(f, \delta)$.

The following lemma is a direct consequence of Definitions 1.18 and 1.19.

Lemma 1.20. The following inclusions hold:

 $\operatorname{Fix}(f,\delta) \subseteq \operatorname{P}(f,\delta) \subseteq \operatorname{R}(f,\delta) \subseteq \Lambda(f,\delta) \subseteq \Omega(f,\delta).$

Definition 1.21. Let $\delta \in \mathcal{D}(I, \psi)$.

- A sequence $\{x_n\}$ is said to be convergent to $x \in X$ if $\lim_{n \to \infty} \delta(x_n, x) = 0$.
- A sequence $\{x_n\}$ is said to be Cauchy if for all $\varepsilon > 0$, there exists an integer N such that for all $n, m \ge N$, we have $\delta(x_n, x_m) < \varepsilon$.
- (X, δ) is complete if every Cauchy sequence is convergent.

2. Connections between the sets $\mathcal{J}^t(I)$, $\mathcal{J}^n(I, \psi)$, $\mathcal{J}^w(I, \psi)$ and $\mathcal{D}(I, \psi)$.

In this section, we point out some connections between the sets given in Definitions 1.6 and 1.13. More precisely, we show that any element of $\mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi)$ induces a ψ -dislocated metric on X. Moreover, we compare the sets given in Definitions 1.10 and 1.11 to those of Definitions 1.18 and 1.19.

Proposition 2.1. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}^{t}(I)$. Then the mapping $\delta_{\mathcal{R}} : X \times X \to I$ given by:

$$\delta_{\mathcal{R}}(x, y) = \inf \left\{ \lambda \in I : (x, y) \in R_{\lambda} \right\}$$

satisfies the following properties:

- (i) If \mathcal{R} is weakly-nested, then for all $x, y \in X$, we have $(x, y) \in R_{\delta_{\mathcal{R}}(x,y)}$. In particular, if $\delta_{\mathcal{R}}(x, y) = 0$, then x = y. Moreover, if $R_0 = \Delta$, then $\delta_{\mathcal{R}}(x, x) = 0$ for all $x \in X$.
- (ii) If \mathcal{R} is symmetric, then $\delta_{\mathcal{R}}(x, y) = \delta_{\mathcal{R}}(y, x)$ for all $x, y \in X$.
- (iii) If \mathcal{R} is weakly-nested and ψ -transitive, then for all $x, y, z \in X$, we have

$$\delta_{\mathcal{R}}(x,y) \leq \psi (\delta_{\mathcal{R}}(x,z), \delta_{\mathcal{R}}(z,y)).$$

In particular, if $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi)$, then $\delta_{\mathcal{R}} \in \mathcal{D}(I, \psi)$.

Proof. Firstly, observe that the mapping $\delta_{\mathcal{R}}$ is well defined, since $R_{\infty} = X \times X$. Let $x, y, z \in X$.

(i) By definition of $\delta_{\mathcal{R}}(x, y)$, there exists a non-increasing sequence $\{\alpha_n\}_{n \in \mathbb{N}} \subset \{\lambda \in I : (x, y) \in R_{\lambda}\}$, which converges to $\delta_{\mathcal{R}}(x, y)$. Since \mathcal{R} is weakly-nested, then

$$(x, y) \in \bigcap_{n \in \mathbb{N}} R_{\alpha_n} \subseteq R_{\delta_{\mathcal{R}}(x, y)}.$$

In particular, if $\delta_{\mathcal{R}}(x, y) = 0$, then $(x, y) \in R_0 \subseteq \Delta$. Moreover, if $R_0 = \Delta$, then by definition of $\delta_{\mathcal{R}}$, we have $\delta_{\mathcal{R}}(x, x) = 0$.

(ii) If \mathcal{R} is symmetric, then $(x, y) \in R_{\lambda}$ if and only if $(y, x) \in R_{\lambda}$. Thus, we have

$$\left\{\lambda \in I: (x, y) \in R_{\lambda}\right\} = \left\{\lambda \in I: (y, x) \in R_{\lambda}\right\},\$$

which implies $\delta_{\mathcal{R}}(x, y) = \delta_{\mathcal{R}}(y, x)$.

(iii) Again since \mathcal{R} is weakly-nested, it follows that $(x, z) \in R_{\delta_{\mathcal{R}}(x,z)}$ and $(z, y) \in R_{\delta_{\mathcal{R}}(z,y)}$. Then using the ψ -transitivity of \mathcal{R} , we obtain $(x, y) \in R_{\psi(\delta_{\mathcal{R}}(x,z),\delta_{\mathcal{R}}(z,y))}$, which implies $\delta_{\mathcal{R}}(x, y) \leq \psi(\delta_{\mathcal{R}}(x, z), \delta_{\mathcal{R}}(z, y))$.

Theorem 2.2. The mapping $F: \mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi) \to \mathcal{D}(I, \psi), \mathcal{R} \mapsto \delta_{\mathcal{R}}$ is onto. Moreover, the restriction of F to $\mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$ is a bijection.

Proof. By Proposition 2.1, *F* is well defined. Let *H* be the restriction of *F* to $\mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$. Thus, to conclude, it suffices to show that *H* is a bijection. Let $\mathcal{R} = \{R_\lambda\}, \mathcal{R}' = \{R'_\lambda\} \in \mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$ such that $H(\mathcal{R}) = H(\mathcal{R}')$, that is, $\delta_{\mathcal{R}} = \delta_{\mathcal{R}'}$. By nestedness, for all $\lambda \in \widehat{I}$, we have

 $(x, y) \in R_{\lambda} \iff \delta_{\mathcal{R}}(x, y) \le \lambda \iff \delta_{\mathcal{R}'}(x, y) \le \lambda \iff (x, y) \in R'_{\lambda},$

so $R_{\lambda} = R'_{\lambda}$. Hence $\mathcal{R} = \mathcal{R}'$ and therefore *H* is one-to-one. Let $\delta \in \mathcal{D}(I, \psi)$. Define the set of binary relations $\mathcal{R} = \{R_{\lambda}\}_{\lambda \in \widehat{I}}$ on *X* as follow:

$$R_{\lambda} = \{(x, y) : \delta(x, y) \le \lambda\}.$$

It is not difficult to see that $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$. Now we shall prove that $H(\mathcal{R}) = \delta$. Indeed, it's enough to prove that $\delta_{\mathcal{R}} = \delta$. Let $(x, y) \in X \times X$,

$$\delta_{\mathcal{R}}(x, y) = \inf \left\{ \lambda \in I : (x, y) \in R_{\lambda} \right\}$$
$$= \inf \left\{ \lambda \in I : \delta(x, y) \le \lambda \right\} \ge \delta(x, y)$$

Conversely, as $(x, y) \in R_{\delta(x,y)}$, so by definition of $\delta_{\mathcal{R}}$, we get $\delta_{\mathcal{R}}(x, y) \leq \delta(x, y)$. \Box

Proposition 2.3. For each $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi)$, we have

- (i) $\omega_{\mathcal{R}}(x, f) = \omega_{\delta_{\mathcal{R}}}(x, f)$, for all $x \in X$.
- (ii) $\operatorname{Fix}(f, \mathcal{R}) = \operatorname{Fix}(f, \delta_{\mathcal{R}}).$
- (iii) $P(f, \mathcal{R}) = P(f, \delta_{\mathcal{R}}).$
- (iv) $R(f, \mathcal{R}) = R(f, \delta_{\mathcal{R}}).$
- (v) $\Lambda(f, \mathcal{R}) = \Lambda(f, \delta_{\mathcal{R}}).$
- (vi) $\Omega(f, \mathcal{R}) = \Omega(f, \delta_{\mathcal{R}}).$

Proof. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}^{t}(I) \cap \mathcal{J}^{w}(I,\psi)$. Let $x \in X$ and assume that $y \in \omega_{\mathcal{R}}(x, f)$. Consider $\{n_{k}\}_{k\in\mathbb{N}}$ be a increasing sequence and $\{\lambda_{k}\}_{k\in\mathbb{N}}$ be a sequence convergent to 0 such that $(f^{n_{k}}x, y) \in R_{\lambda_{k}}$ for all $k \in \mathbb{N}$. By definition of $\delta_{\mathcal{R}}$, we have $\delta_{\mathcal{R}}(f^{n_{k}}x, y) \leq \lambda_{k}$, for all $k \in \mathbb{N}$. Then $\lim_{k\to\infty} \delta_{\mathcal{R}}(f^{n_{k}}x, y) = 0$, which implies that $y \in \omega_{\delta_{\mathcal{R}}}(x, f)$. Conversely, let $y \in \omega_{\delta_{\mathcal{R}}}(x, f)$. Then there exists an increasing sequence $\{n_{k}\}$ such that $\lim_{k\to\infty} \delta_{\mathcal{R}}(f^{n_{k}}x, y) = 0$. Consider the sequence $\{\lambda_{k}\}_{k\in\mathbb{N}} \subset I$ defined by $\lambda_{k} = \delta_{\mathcal{R}}(f^{n_{k}}x, y)$. Hence $\{\lambda_{k}\}_{k\in\mathbb{N}} \subset I$, converges to 0 and by Proposition 2.1-(i), we have $(f^{n_{k}}x, y) \in R_{\lambda_{k}}$ for all $k \in \mathbb{N}$, that is, $y \in \omega_{\mathcal{R}}(x, f)$, which proves (i). A point $x \in P(f, \delta_{\mathcal{R}})$ (resp. Fix $(f, \delta_{\mathcal{R}})$) if and only if $x \in P(f)$ (resp. $x \in Fix(f)$) and $\delta_{\mathcal{R}}(x, x) = 0$, which is equivalent to $x \in P(f)$ (resp. $x \in Fix(f)$) and $(x, x) \in R_{0}$, that is, $x \in P(f, \mathcal{R})$ (resp. $x \in Fix(f, \mathcal{R})$), then (ii) (resp. (iii)) holds. The assertions (iv) and (v) follow from (i). Finally, $x \in \Omega(f, \delta_{\mathcal{R}})$ if and only if there exist a sequence $\{x_{k}\}$ in X and non-decreasing sequence of integers $\{n_{k}\}$ such that $\lim_{k\to\infty} \delta_{\mathcal{R}}(x_{k}, x) = \lim_{k\to\infty} \delta_{\mathcal{R}}(f^{n_{k}}x_{k}, x) = 0$, which is equivalent to $(x_{k}, x) \in R_{\lambda_{k}}$ and $(f^{n_{k}}x_{k}, x) \in R_{\mu_{k}}$, where $\lambda_{k} = \delta_{\mathcal{R}}(x_{k}, x)$ and $\mu_{k} = \delta_{\mathcal{R}}(f^{n_{k}}x_{k}, x)$, that is, $x \in \Omega(f, \mathcal{R})$, which proves (vi). \Box

Proposition 2.4. Let $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^w(I, \psi)$ and $\varepsilon \in \mathbb{R}_+ \setminus \{0\}$. If f is $\mathcal{R}_{\varepsilon}$ -contractive, then f is $(\delta_{\mathcal{R}})_{\varepsilon}$ -contractive. In addition, if \mathcal{R} is nested, then the converse is true.

Proof. Suppose that f is $\mathcal{R}_{\varepsilon}$ -contractive. Let $x, y \in X \setminus \Delta$ satisfying $\delta_{\mathcal{R}}(x, y) \in I_{\varepsilon}$. From the weak-nestedness of \mathcal{R} , we have $(x, y) \in R_{\delta_{\mathcal{R}}(x,y)} \setminus \Delta$. Then

 $(fx, fy) \in R_{\delta_{\mathcal{R}}(x,y)}$ and $(f^{m(x,y,\delta_{\mathcal{R}}(x,y))}x, f^{m(x,y,\delta_{\mathcal{R}}(x,y))}y) \in R_{u}$

for some $\mu < \delta_{\mathcal{R}}(x, y)$. Hence by definition of $\delta_{\mathcal{R}}$, we obtain

 $\delta_{\mathcal{R}}(fx, fy) \leq \delta_{\mathcal{R}}(x, y)$ and $\delta_{\mathcal{R}}(f^{m(x,y,\delta_{\mathcal{R}}(x,y))}x, f^{m(x,y,\delta_{\mathcal{R}}(x,y))}y) \leq \mu < \delta_{\mathcal{R}}(x, y).$

Thus *f* is $(\delta_{\mathcal{R}})_{\varepsilon}$ -contractive.

Now, assume that $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$ and f is $(\delta_{\mathcal{R}})_{\varepsilon}$ -contractive. Consider the mapping $m' : X \times X \times I \to I$ defined by

$$m'(x, y, \lambda) = \begin{cases} m(x, y, \delta_{\mathcal{R}}(x, y)) & \text{for all } \lambda \ge \delta_{\mathcal{R}}(x, y), \\ 0 & \text{otherwise.} \end{cases}$$

Let $\lambda \in I_{\varepsilon}$ and $(x, y) \in R_{\lambda} \setminus \Delta$. By definition of $\delta_{\mathcal{R}}$, it follows that $0 < \delta_{\mathcal{R}}(x, y) \le \lambda < \varepsilon$. Therefore, by the nestedness of \mathcal{R} , we have

$$\delta_{\mathcal{R}}(fx, fy) \leq \delta_{\mathcal{R}}(x, y) \leq \lambda \implies (fx, fy) \in R_{\lambda},$$

and

$$\delta_{\mathcal{R}}(f^{m(x,y,\delta_{\mathcal{R}}(x,y))}x, f^{m(x,y,\delta_{\mathcal{R}}(x,y))}y) < \delta_{\mathcal{R}}(x,y) \leq \lambda,$$

if and only if,

 $\delta_{\mathcal{R}}(f^{m'(x,y,\lambda)}x, f^{m'(x,y,\lambda)}y) < \delta_{\mathcal{R}}(x,y) \le \lambda,$

which implies that

 $(f^{m'(x,y,\lambda)}x, f^{m'(x,y,\lambda)}y) \in R_{\mu},$

where $\mu = \delta_{\mathcal{R}}(f^{m'(x,y,\lambda)}x, f^{m'(x,y,\lambda)}y)$. Thus, *f* is $\mathcal{R}_{\varepsilon}$ -contractive. \Box

3. Main results

The first result of this section deals with the special case where 0 is an isolated point of *I*.

Theorem 3.1. Let $\mathcal{R} \in \mathcal{J}(I)$. If 0 is an isolated point of *I*, then

 $\mathbb{P}(f,\mathcal{R})=\mathbb{R}(f,\mathcal{R})=\Lambda(f,\mathcal{R})=\Omega(f,\mathcal{R}).$

Proof. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}(I)$. From Lemma 1.12, we have $P(f, \mathcal{R}) \subseteq R(f, \mathcal{R}) \subseteq \Lambda(f, \mathcal{R}) \subseteq \Omega(f, \mathcal{R})$. To conclude, we have to show that $P(f, \mathcal{R}) \supseteq \Omega(f, \mathcal{R})$. Indeed, for $x \in \Omega(f, \mathcal{R})$ there exist a sequence $\{x_k\}$ in X, a non-decreasing sequence of positive integers $\{n_k\}$ and two sequences $\{\lambda_k\}$ and $\{\mu_k\}$ in I convergent to 0, such that $(x_k, x) \in R_{\lambda_k}$ and $(f^{n_k}x_k, x) \in R_{\mu_k}$ for all k. As, 0 is an isolated point of I, we deduce that $\mu_k = \lambda_k = 0$, for k sufficiently large, thus $(x_k, x) \in R_0$ and $(f^{n_k}x_k, x) \in R_0$. Hence, $x_k = x$, $(x, x) \in R_0$ and $f^{n_k}x = x$, which means that $x \in P(f, \mathcal{R})$. \Box

Until the end of this section, we will assume that *I* contains a decreasing sequence convergent to zero and ψ is continuous at (0, 0) with $\psi(0, 0) = 0$.

Theorem 3.2. Let $\mathcal{R} \in \mathcal{J}^w(I, \psi)$ and $\varepsilon \in \mathbb{R}_+ \setminus \{0\}$. If \mathcal{R}_ε is *f*-invariant, then

$$\mathbf{R}(f,\mathcal{R}) = \Lambda(f,\mathcal{R}) = \Omega(f,\mathcal{R}).$$

Proof. It suffices to prove that $R(f, \mathcal{R}) \supseteq \Omega(f, \mathcal{R})$. Let $\mathcal{R} = \{R_{\lambda}\}$, $\{x_k\}$ be a sequence in X, $\{n_k\}$ be a nondecreasing sequence of positive integers and $\{\lambda_k\}$, $\{\mu_k\}$ be two sequences in I convergent to 0 such that $(x_k, x) \in R_{\lambda_k}$ and $(f^{n_k}x_k, x) \in R_{\mu_k}$. By taking a subsequence if necessary, we may assume that λ_k , $\mu_k < \varepsilon$ for all k. From the invariance assumption, we get $(f^{n_k}x_k, f^{n_k}x) \in R_{\lambda_k}$. Using the transitivity hypothesis, we obtain $(f^{n_k}x, x) \in R_{\alpha_k}$, where $\alpha_k = \psi(\lambda_k, \mu_k)$. By continuity of ψ at (0,0), we see that the sequence $\{\alpha_k\}$ is convergent to 0. If $\{n_k\}$ contains an increasing subsequence, then we deduce that $x \in \omega_{\mathcal{R}}(x, f)$, that is, $x \in R(f, \mathcal{R})$. Otherwise we may suppose that $\{n_k\}$ is constant with $n_k = n_0$ for all k. Then $(f^{n_0}x, x) \in R_{\alpha_k}$. Using the weak-nestedness property, we get

$$(f^{n_0}x,x)\in \bigcap_{k\in\mathbb{N}}R_{\alpha_k}\subseteq R_0.$$

Hence $f^{n_0}x = x$ and $(x, x) \in R_0$, that is, $x \in P(f, \mathcal{R}) \subseteq R(f, \mathcal{R})$. \Box

The following example shows, under the hypotheses of Theorem 3.2, that in general P(f, R) and R(f, R) are different.

Example 3.3. Let $X = \mathbb{D}^1$ be the unit disc in \mathbb{R}^2 , endowed by the euclidean metric *d*, and let $I = \mathbb{R}_+$. The family $\mathcal{R} = \{R_\lambda\}_{\lambda \in \widehat{I}}$ of binary relations defined by

$$R_{\lambda} := \{ (x, y) \in \mathbb{D}^1 \times \mathbb{D}^1 : d(x, y) \le \lambda \}, \text{ for all } \lambda \in I$$

is an element of $\mathcal{J}^t(I) \cap \mathcal{J}^n(I,\psi) \subseteq \mathcal{J}^w(I,\psi)$, where and $\psi(\lambda,\mu) = \lambda + \mu$. Let f be an irrational rotation. For all $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}, \mathcal{R}_\varepsilon$ is f-invariant and $\mathbb{P}(f,\mathcal{R}) = \mathbb{P}(f,d) = \{(0,0)\}$. However, $\mathbb{R}(f,\mathcal{R}) = \mathbb{R}(f,d) = \mathbb{D}^1$.

Theorem 3.4. Let $\mathcal{R} \in \mathcal{J}^w(I, \psi)$ and $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$ such that f is an $\mathcal{R}_{\varepsilon}$ -contractive mapping. If 0 is the unique cluster point of I, then

$$P(f, \mathcal{R}) = R(f, \mathcal{R}) = \Lambda(f, \mathcal{R}) = \Omega(f, \mathcal{R}).$$

Theorem 3.5. Let $\mathcal{R} \in \mathcal{J}^w(I, \psi)$ and $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$. Assume that,

- (i) ψ is continuous at (0, x) for all $x \in I$.
- (ii) $\psi(0, x) \le x$ for all $x \in I$.
- (iii) f is $\mathcal{R}_{\varepsilon}$ -contractive.

Then, $P(f, \mathcal{R}) = R(f, \mathcal{R}) = \Lambda(f, \mathcal{R}) = \Omega(f, \mathcal{R}).$

To prove our results we need a few lemmas.

Lemma 3.6. Let q be a non-negative integer, $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}(I)$ and $\varepsilon \in \mathbb{R}_{+} \setminus \{0\}$ such that $\mathcal{R}_{\varepsilon}$ is f-invariant. Assume that O(x, f) is infinite and $y \in \omega_{\mathcal{R}}(x, f)$. Then the sequences $\{n_k\}_{k \in \mathbb{N}}$ and $\{\lambda_k\}_{k \in \mathbb{N}}$ given by Definition 1.10 can be chosen so that

$$(f^{n_k+i}x, f^iy) \in R_{\lambda_k} \setminus \Delta, \quad k \in \mathbb{N} \text{ and } 0 \le i \le q.$$
(5)

Proof. Observe that for all $i \ge 0$ there exists at most an integer m_i such that $f^{m_i}x = f^iy$, otherwise the orbit O(x, f) is finite. For $M = \max\{m_i : 0 \le i \le q\}$, we have $f^n x \ne f^i y$ for all n > M and $0 \le i \le q$. As $\{n_k\}$ is increasing, there exists k_0 such that $n_k + i > M$ for all $k > k_0$ and $0 \le i \le q$. Consequently, $(f^{n_k+i}x, f^iy) \notin \Delta$, for all $k > k_0$ and $0 \le i \le q$. Now, as $\{\lambda_k\}$ converges to 0, there exists k_1 such that $\lambda_k < \varepsilon$ for all $k > k_1$. Then by the f-invariance of $\mathcal{R}_{\varepsilon}$, we obtain $(f^{n_k+i}x, f^iy) \in R_{\lambda_k} \setminus \Delta$ for all $k > k_2 = \max\{k_0, k_1\}$ and $0 \le i \le q$. Consequently, the subsequences $\{n_k\}$ and $\{\lambda_k\}$, for $k > k_2$ give the desired result. \Box

Lemma 3.7. Let $x \in X$ and $\mathcal{R} \in \mathcal{J}(I)$. If \mathcal{R} is weakly-nested and O(x, f) is finite, then

$$\omega_{\mathcal{R}}(x,f) \subseteq \mathbf{P}(f,\mathcal{R}).$$

Proof. Assume that $\mathcal{R} = \{R_{\lambda}\}$. If $\omega_{\mathcal{R}}(x, f) = \emptyset$, we are done. Otherwise, let $y \in \omega_{\mathcal{R}}(x, f)$, so there exist $\{n_k\} \subset \mathbb{N}$ and a sequence $\{\lambda_k\} \subset I$ which converges to 0 such that

 $(f^{n_k}x, y) \in R_{\lambda_k}, \quad k \in \mathbb{N}.$

As O(x, f) is finite, without loss of generality, modulo a choice of a subsequence, we may assume that $\{f^{n_k}x\}$ is constant, that is, $f^{n_k}x = f^{n_0}x$ for all k and $f^{n_0}x \in P(f)$. Now, we have

 $(f^{n_0}x, y) \in R_{\lambda_k}, \quad k \in \mathbb{N}.$

From the weak-nestedness of \mathcal{R} , we deduce that $(f^{n_0}x, y) \in R_0$, so $y \in P(f, \mathcal{R})$. \Box

Lemma 3.8. Let $\mathcal{R} = \{R_{\lambda}\} \in \mathcal{J}^{s}(I, \psi), \varepsilon \in \overline{\mathbb{R}}_{+} \setminus \{0\}$ and $x \in X$. Assume that O(x, f) is infinite and $\omega_{\mathcal{R}}(x, f)$ is nonempty. Then there exists $p \in \mathbb{N}$ such that the set

$$\mathcal{L}_p(x,\varepsilon) := \left\{ \beta \in I_{\varepsilon} : \exists m \in \mathbb{N}, (f^{m+p}x, f^m x) \in R_{\beta} \right\},\$$

is nonempty and $0 \notin \mathcal{L}_p(x, \varepsilon)$ *. If in addition,*

(i) *f* is $\mathcal{R}_{\varepsilon}$ -invariant and there exists $y \in \omega_{\mathcal{R}}(x, f)$ such that $y = f^{p}y$, then

$$\inf \mathcal{L}_p(x,\varepsilon) = 0.$$

(ii) *f* is $\mathcal{R}_{\varepsilon}$ -contractive, then $\inf \mathcal{L}_p(x, \varepsilon) \notin \mathcal{L}_p(x, \varepsilon)$.

Proof. Let $y \in \omega_{\mathcal{R}}(x, f)$, $\{n_k\}$ be an increasing sequence in \mathbb{N} and $\{\lambda_k\} \subseteq I$ be a convergent sequence to 0 such that

$$(f^{n_k}x, y) \in R_{\lambda_k}$$
, for all $k \in \mathbb{N}$.

Since ψ is continuous at (0,0) and $\psi(0,0) = 0$, then $\psi(\lambda_k, \lambda_{k+1})$ tends to zero. Thus, there exists $q \in \mathbb{N}$ such that $\psi(\lambda_q, \lambda_{q+1}) < \varepsilon$. Let $\ell = n_q$ and $p = n_{q+1} - \ell$. Then,

$$(f^{\iota}x, y) \in R_{\lambda_q} \text{ and } (f^{\iota+p}x, y) \in R_{\lambda_{q+1}},$$

and by the symmetry and the ψ -transitivity of \mathcal{R} , we deduce that $(f^{\ell+p}x, f^{\ell}x) \in R_{\alpha}$, where $\alpha = \psi(\lambda_q, \lambda_{q+1})$. Hence, $\mathcal{L}_p(x, \varepsilon) \neq \emptyset$. If $0 \in \mathcal{L}_p(x, \varepsilon)$, then there exists m such that $f^m x = f^{m+p}x$, and therefore O(x, f) is finite, which is a contradiction. Now, assume that $y = f^p y$ and f is $\mathcal{R}_{\varepsilon}$ -invariant, then

 $(f^{n_k}x, y) \in R_{\lambda_k}, (f^{n_k+p}x, y) \in R_{\lambda_k}.$

Using the symmetry and the ψ -transitivity of \mathcal{R} , we obtain

$$(f^{n_k}x, f^{n_k+p}x) \in R_{\psi(\lambda_k,\lambda_k)}.$$

Hence, $\psi(\lambda_k, \lambda_k) \in \mathcal{L}_p(x, \varepsilon)$ for all $k \in \mathbb{N}$. Since, the sequence $\{\lambda_k\}$ converges to zero, ψ is continuous at (0,0) and $\psi(0,0) = 0$, we deduce that $\inf \mathcal{L}_p(x,\varepsilon) = 0$. Finally, assume that f is $\mathcal{R}_{\varepsilon}$ -contractive and let $\tau = \inf \mathcal{L}_p(x, \varepsilon)$. If $\tau \in \mathcal{L}_p(x, \varepsilon)$, then there exists $m \in \mathbb{N}$ such that $(f^{m+p}x, f^mx) \in \mathcal{R}_{\tau}$. Using the $\mathcal{R}_{\varepsilon}$ -contractive condition, we obtain a contradiction with the minimality of τ , so $\tau \notin \mathcal{L}_p(x, \varepsilon)$. \Box

Lemma 3.9. Under the hypotheses of Lemma 3.8, assume that f is $\mathcal{R}_{\varepsilon}$ -contractive. Then, for $y \in \omega_{\mathcal{R}}(x, f)$, there exist a sequence $\{\lambda_k\}_{k\in\mathbb{N}} \subseteq I$ convergent to 0, and a sequence $\{\alpha_k\}_{k\in\mathbb{N}} \subset \mathcal{L}_p(x, \varepsilon)$ convergent to $\tau := \inf \mathcal{L}_p(x, \varepsilon)$, for some integer p such that

$$(f^{p}y, y) \in R_{\psi(\lambda_{k}, \psi(\lambda_{k}, \alpha_{k}))}, \text{ for all } k \in \mathbb{N}.$$
(6)

Proof. Let $y \in \omega_{\mathcal{R}}(x, f)$, $\{n_k\}$ be an increasing sequence in \mathbb{N} and $\{\lambda_k\}$ be a sequence in I convergent to 0 such that

$$(f^{n_k}x, y) \in R_{\lambda_k}$$
, for all $k \in \mathbb{N}$.

By Lemma 3.8, there exists $p \in \mathbb{N}$ such that $\mathcal{L}_p(x, \varepsilon)$ is nonempty and $\tau \notin \mathcal{L}_p(x, \varepsilon)$. Therefore, there exist a decreasing sequence $\{\alpha_k\}_{k\in\mathbb{N}} \subset \mathcal{L}_p(x, \varepsilon)$ convergent to τ and $\{m_k\}_{k\in\mathbb{N}}$ a sequence in \mathbb{N} such that $(f^{m_k+p}x, f^{m_k}x) \in R_{\alpha_k}$, for all $k \in \mathbb{N}$. Up to extraction of a subsequence of $\{n_k\}_{k\in\mathbb{N}}$, we may assume that $n_k \ge m_k$ for all k. Since $\mathcal{R}_{\varepsilon}$ is f-invariant, then by applying $f^{n_k-m_k}$, we obtain

$$(f^{n_k+p}x, f^{n_k}x) \in R_{\alpha_k}.$$

Using the symmetry and the ψ -transitivity, by applying Lemma 3.6 for i = 0 and i = p combined with (7), we conclude that (6) holds. \Box

Proof. [**Proof of Theorem 3.4**] From Theorem 3.2, we have $\mathbb{R}(f, \mathcal{R}) = \Lambda(f, \mathcal{R}) = \Omega(f, \mathcal{R})$. Then, it suffices to prove that $\Lambda(f, \mathcal{R}) \subseteq \mathbb{P}(f, \mathcal{R})$, since the reverse inclusion is obvious. Let $y \in \Lambda(f, \mathcal{R})$, so there exists $x \in X$ such that $y \in \omega_{\mathcal{R}}(x, f)$. According to Lemma 3.7, the result holds when O(x, f) is finite. Assume now that O(x, f) is infinite. By Lemma 3.9, there exist an integer p, a sequence $\{\lambda_k\}_{k \in \mathbb{N}} \subseteq I$, which converges to 0, and a sequence $\{\alpha_k\}_{k \in \mathbb{N}} \subset \mathcal{L}_p(x, \varepsilon)$ convergent to $\tau := \inf \mathcal{L}_p(x, \varepsilon)$ such that

$$(f^p y, y) \in R_{\psi(\lambda_k, \psi(\lambda_k, \alpha_k))}, \quad k \in \mathbb{N}.$$

By Lemma 3.8, $\tau \notin \mathcal{L}_p(x, \varepsilon)$. According to the fact that $\{\alpha_k\} \subseteq I$ is convergent to τ , then τ is a cluster point of *I*. Since 0 is the unique cluster point of *I*, then the sequence $\{\alpha_k\}$ converges to 0. Using the continuity of ψ at (0,0) and the weak-nestedness property, it follows that $(f^p y, y) \in R_0 \subseteq \Delta$, therefore $y \in P(f, \mathcal{R})$. \Box

Proof. [**Proof of Theorem 3.5**] By Theorem 3.2, it's enough to show that $\Lambda(f, \mathcal{R}) \subseteq P(f, \mathcal{R})$. Indeed, let $y \in \Lambda(f, \mathcal{R})$, so there exists $x \in X$ such that $y \in \omega_{\mathcal{R}}(x, f)$. If O(x, f) is finite, then by Lemma 3.7, we get $y \in P(f, \mathcal{R})$. Assume that O(x, f) is infinite, by Lemma 3.9, we obtain (6). Let $\tau = \inf \mathcal{L}_p(x, \varepsilon)$. If $\tau = 0$, up to extraction of a subsequence, for $v_k = \psi(\lambda_k, \psi(\lambda_k, \alpha_k))$ for all $k \in \mathbb{N}$, we can suppose that the sequence $\{v_k\}$ is decreasing to zero. Then using the week-nestedness of \mathcal{R} , we deduce that $(f^p y, y) \in R_0$, then $y \in P(f, \mathcal{R})$. If $\tau \neq 0$, by lemma 3.8-(i), we have $(y, f^p y) \notin \Delta$. By condition (i), the sequence v_k converges to $\mu = \psi(0, \psi(0, \tau))$ and by (ii), $\mu \leq \tau$. Now, we distinguish two cases each of them leads to a contradiction.

Case 1. $\tau \neq 0$ and $\nu_k \ge \mu$, for infinitely many $k \in \mathbb{N}$. By taking a subsequence if necessary, we may assume that the sequence ν_k is non-increasing. Hence, from the weak-nestedness of \mathcal{R} it follows that

$$(f^p y, y) \in R_\mu \setminus \Delta$$

and from (iii), we deduce that there exists $0 \le \gamma < \mu$ such that

$$(f^{m(f^{p}y,y,\mu)+p}y, f^{m(f^{p}y,y,\mu)}y) \in R_{\gamma}.$$
(8)

Now, by Lemma 3.6, we can choose the sequences $\{n_k\}$ and $\{\lambda_k\}$, so that

$$(f^{n_k+i}x, f^iy) \in R_{\lambda_k} \setminus \Delta, \text{ for } 0 \le i \le m(f^py, y, \mu) + p \text{ and } k \in \mathbb{N}.$$
(9)

And from the condition (i), $\{\psi(\lambda_k, \psi(\lambda_k, \gamma))\}_{k \in \mathbb{N}}$ converges to $\psi(0, \psi(0, \gamma))$ such that $\psi(0, \psi(0, \gamma)) \leq \gamma < \mu$. Then, there exists $k_0 \in \mathbb{N}$ such that $\psi(\lambda_k, \psi(\lambda_k, \gamma)) < \mu \leq \tau$, for all $k \geq k_0$. By the symmetry and the ψ -transitivity of \mathcal{R} , it follows from (8) and (9) for $i = m(f^p y, y, \mu) + p$ that

$$(f^{n_{k_0}+m(f^p y, y, \mu)+p} x, f^{m(f^p y, y, \mu)} y) \in R_{\psi(\lambda_{k_0}, \gamma)}.$$
(10)

Combining (9) for $i = m(f^p y, y, \mu)$ and (10), we get

$$(f^{n_{k_0}+m(f^p y, y, \mu)+p} x, f^{n_{k_0}+m(f^p y, y, \mu)} x) \in R_{\psi(\lambda_{k_0}, \psi(\lambda_{k_0}, \gamma))}$$

So $\psi(\lambda_{k_0}, \psi(\lambda_{k_0}, \gamma)) \in \mathcal{L}_p(x, \varepsilon)$, and we have $\psi(\lambda_{k_0}, \psi(\lambda_{k_0}, \gamma)) < \tau$, then we obtain a contradiction. **Case 2.** $\tau \neq 0$ and there exists k_0 such that $\nu_k < \mu$ for all $k \ge k_0$. As $(f^p y, y) \in R_{\nu_k}$ for all $k \ge k_0$. Then by (iii), there exists $\beta < \nu_{k_0}$ such that

$$(f^{m(f^{p}y,y,v_{k_{0}})+p}y,f^{m(f^{p}y,y,v_{k_{0}})}y) \in R_{\beta}.$$

By the symmetry and the ψ -transitivity of \mathcal{R} , and using (5) of Lemma 3.6 for $i = m(f^p y, y, v_{k_0})$ and $i = m(f^p y, y, v_{k_0}) + p$, we obtain

$$(f^{n_k+m(f^p y, y, \nu_{k_0})+p} x, f^{n_k+m(f^p y, y, \nu_{k_0})} x) \in R_{\psi(\lambda_k, \psi(\lambda_k, \beta))}.$$

Then $\psi(\lambda_k, \psi(\lambda_k, \beta)) \in \mathcal{L}_p(x, \varepsilon)$ for all $k \ge k_0$. Finally, from (i)-(ii), there exists $k_1 \ge k_0$ such that $\psi(\lambda_{k_1}, \psi(\lambda_{k_1}, \beta)) < \tau$, which is a contradiction. \Box

Corollary 3.10. Under hypotheses of Theorem 3.4 or Theorem 3.5, assume that:

(i) $\operatorname{Gr}(f) \subseteq \bigcup_{\lambda \in I_{\epsilon}} R_{\lambda}$, where $\operatorname{Gr}(f)$ is the graph of f.

Then $\Omega(f, \mathcal{R}) = \text{Fix}(f, \mathcal{R})$. If in addition, the following conditions hold:

- (ii) f is \mathcal{R} -contractive.
- (iii) $\mathcal{R} \in \mathcal{J}^t(I)$ and $\omega_{\mathcal{R}}(x, f)$ is nonempty for some $x \in X$.

Then, f has a unique R-fixed point.

Proof. By Theorem 3.4 or Theorem 3.5, we have $\Omega(f, \mathcal{R}) = P(f, \mathcal{R})$. Assume that there exists $x \in P(f, \mathcal{R})$ such that the period of x is p > 1. By (i), there exists $\lambda \in I_{\varepsilon}$ such that $(x, fx) \in R_{\lambda}$. Then, the set

$$\mathcal{S} := \left\{ \lambda \in I_{\varepsilon} : (f^k x, f^r x) \in R_{\lambda} \text{ with } 0 \le k < r < p \right\}.$$

is nonempty. Let $\alpha := \inf S$ and consider a non-increasing sequence $\{\lambda_n\} \subseteq S$, which converges to α . By definition of S, there exist two sequences $\{k_n\}$ and $\{r_n\}$ satisfying $0 \le k_n < r_n < p$ such that $(f^{k_n}x, f^{r_n}x) \in R_{\lambda_n}$, for all n. By taking a subsequence, we can suppose that $k_n = k$ and $r_n = r$ are constants. Using the weak-nestedness of \mathcal{R} , we deduce that $(f^kx, f^rx) \in R_{\alpha}$. Then by the \mathcal{R}_{ϵ} -contractive condition, it follows that $\alpha = 0$ and hence $(f^kx, f^rx) \in R_0$. Thus, we have

$$f^k x = f^r x \implies f^p x = f^{p+(r-k)} x \implies x = f^{(r-k)} x,$$

which implies that $p \le r - k$, a contradiction. Then p = 1 and x is a fixed point, that is, $x \in Fix(f, \mathcal{R})$. Moreover, if $\omega_{\mathcal{R}}(x, f) \ne \emptyset$ for some $x \in X$ then $Fix(f, \mathcal{R}) \ne \emptyset$. If, in addition, $\mathcal{R} \in \mathcal{J}^t(I)$ and $x, y \in X$ are two \mathcal{R} -fixed points, then the set

$$\mathcal{T} \coloneqq \{\lambda \in I : (x, y) \in R_{\lambda}\}$$

is nonempty. Let $\beta := \inf \mathcal{T}$, so by the weak-nestedness, we obtain $(x, y) \in R_{\beta}$. Consequently, it follows from the \mathcal{R} -contractive condition that $\beta = 0$ and hence x = y. \Box

4. Some consequences in ψ -dislocated metric space.

4.1. Matkowski-Edelstein type results.

The following result is a consequence of Theorem 3.5 and extends [3, Theorem 2] of Edelstein to a class of ψ -dislocated metric spaces.

Theorem 4.1. Let $\delta \in \mathcal{D}(I, \psi)$ and $\varepsilon \in \overline{\mathbb{R}}_+ \setminus \{0\}$ such that f is δ_{ε} -contractive mapping. Assume that:

- (i) ψ is continuous at (0, x) for all $x \in I$.
- (ii) $\psi(0, x) \le x$ for all $x \in I$.

Then, $\Omega(f, \delta) = P(f, \delta)$. In addition, if 0 is a cluster point of I, then the following assertions hold:

- (iii) If for all $x \in X$, $\delta(x, fx) < \varepsilon$, then $\Omega(f, \delta) = Fix(f, \delta)$.
- (iv) If f is δ -contractive and there exists $x \in X$ such that $\omega(x, f, \delta) \neq \emptyset$, then f has a unique δ -fixed point.

Proof. Since $\delta \in \mathcal{D}(I, \psi)$, by Theorem 2.2, there exists $\mathcal{R} \in \mathcal{J}^t(I) \cap \mathcal{J}^n(I, \psi)$ such that $\delta = \delta_{\mathcal{R}}$. If 0 is an isolated point of *I*, then by Theorem 3.1, $\Omega(f, \mathcal{R}) = P(f, \mathcal{R})$. Otherwise, By Proposition 2.4, *f* is $\mathcal{R}_{\varepsilon}$ -contractive, and according to Theorem 3.5, we obtain also $\Omega(f, \mathcal{R}) = P(f, \mathcal{R})$. So by applying Proposition 2.3, we get the result. Moreover, if the hypothesis of (iii) is satisfied, then $Gr(f) \subseteq \bigcup_{\lambda \in I_{\varepsilon}} R_{\lambda}$. We conclude by Corollary 3.10-(i) and Proposition 2.3 that $\Omega(f, \delta) = Fix(f, \delta)$. Finally, if the hypothesis of (iv) is verified, we deduce the result by Corollary 3.10-(iii). \Box

Denote by $\overline{\Phi}(I)$ the set of all monotone functions $\varphi: I \to I$ satisfying

 $\lim \varphi^n(t) = 0$, for all $t \in I$.

Note that $\varphi(t) < t$ for all $t \in I \setminus \{0\}$. Let $t_0 \in I$, $\delta \in \mathcal{D}(I, \psi)$, $\varphi \in \overline{\Phi}(I)$ and define the following sets:

$$I_{\varphi,t_0} \coloneqq \{0\} \cup \{\lambda_n \coloneqq \varphi^n(t_0) : n \in \mathbb{N}_0\} \quad and \quad \widehat{I}_{\varphi,t_0} \coloneqq I_{\varphi,t_0} \cup \{\infty\}.$$

Denote $\psi_1 : \widehat{I}_{\varphi,t_0} \times \widehat{I}_{\varphi,t_0} \to \widehat{I}_{\varphi,t_0}$ the mapping given by

$$\psi_1(\lambda, \mu) = \begin{cases} \lambda_k & \text{if there exists } k \text{ such that } \lambda_{k+1} < \psi(\lambda, \mu) \le \lambda_k \\ 0 & \text{if } \psi(\lambda, \mu) = 0 \\ t_0 & \text{otherwise.} \end{cases}$$

We define a family of binary relations $\mathcal{R}_{(\delta,\varphi,t_0)} = \{R_{\lambda}\}_{\lambda \in \widehat{I}_{\varphi,t_0}}$ by

$$R_{\infty} = R_{t_0} = X \times X \text{ and } R_{\lambda} = \{(x, y) \in X \times X : \delta(x, y) \le \lambda\}, \text{ for all } \lambda \in I_{\varphi, t_0} \setminus \{t_0\}.$$

Remark 4.2. Observe that if $\varphi(t) = 0$ for some t > 0, then I_{φ,t_0} is finite. Otherwise, 0 is the unique cluster point of I_{φ,t_0} .

Lemma 4.3. Let $t_0 \in I \setminus \{0\}$, $\varphi \in \overline{\Phi}(I)$ and $\delta \in \mathcal{D}(I, \psi)$ such that ψ is monotone. Then,

- (i) $\mathcal{R}_{(\delta,\varphi,t_0)} \in \mathcal{R}^t(I_{\varphi,t_0}) \cap \mathcal{R}^n(I_{\varphi,t_0},\psi_1).$
- (ii) for $\delta_1 = F(\mathcal{R}_{(\delta,\varphi,t_0)})$ and $x, y \in X$, we have

 $\delta_1(x, y) = 0$ if and only if $\delta(x, y) = 0$.

In particular, $P(f, \delta_1) = P(f, \delta)$ and $Fix(f, \delta_1) = Fix(f, \delta)$.

(iii) If for some $x, y \in X$ there exists a subsequence $\{f^{n_k}x\}$ in O(x, f) such that $\lim_{k \to +\infty} \delta(f^{n_k}x, y) = 0$, then $\Lambda(f, \mathcal{R}_{(\delta, \varphi, t_0)})$ is nonempty.

Proof. It is clear from its definition that $\mathcal{R}_{(\delta,\varphi,t_0)}$ is nested, symmetric and belongs to $\mathcal{R}^t(I_{\varphi,t_0})$. To prove (i), we have to show that $\mathcal{R}_{(\delta,\varphi,t_0)}$ is ψ_1 -transitive. Let $(x, y) \in R_\lambda$ and $(y, z) \in R_\mu$, by monotony of ψ , we have

 $\delta(x,z) \le \psi(\delta(x,y),\delta(y,z)) \le \psi(\lambda,\mu).$

If there exists *k* such that $\lambda_{k+1} < \psi(\lambda, \mu) \le \lambda_k$ or $\psi(\lambda, \mu) = 0$, then $\psi(\lambda, \mu) \le \psi_1(\lambda, \mu)$ and we deduce that $(x, z) \in R_{\psi_1(\lambda, \mu)}$. Otherwise, $\psi(\lambda, \mu) > t_0$, in this case $\psi_1(\lambda, \mu) = t_0$ and we have $(x, z) \in R_{t_0} = X \times X$. To show (ii), let $x, y \in X$ such that $\delta_1(x, y) = 0$. Then,

$$0 = \inf \left\{ \lambda \in I_{\varphi, t_0} : (x, y) \in R_\lambda \right\} = \inf \left\{ \lambda \in I_{\varphi, t_0} : \delta(x, y) \le \lambda \right\} \ge \delta(x, y),$$

which implies that $\delta(x, y) = 0$. Conversely, if $\delta(x, y) = 0$, then $(x, y) \in R_0$ and hence $\delta_1(x, y) = 0$, by definition of δ_1 . To prove (iii), since $\lim_{n \to +\infty} \delta(f^{n_k}x, y) = 0$, then by taking a subsequence if necessary, we may assume that $\delta(f^{n_k}x, y) \leq \lambda_k$, for all $\lambda_k \in I_{\varphi,t_0}$, that is, $(f^{n_k}x, y) \in R_{\lambda_k}$, thus we conclude that $y \in \omega_{\mathcal{R}(\lambda,\varphi,t_0)}(x, f)$. \Box

Lemma 4.4. Let $t_0 \in I \setminus \{0\}$, $\varepsilon \in (0, t_0)$, $\varphi \in \overline{\Phi}(I)$ and $\delta \in \mathcal{D}(I, \psi)$ such that ψ is monotone.

(i) If f is a δ -nonexpansive mapping such that for all $x \in X$ there exists an integer p = p(x) satisfying

$$\delta(f^{p}x, f^{p}y) \le \varphi(\delta(x, y)), \text{ for all } y \in X,$$
(11)

then f is $\mathcal{R}_{(\delta,\varphi,t_0)}$ -contractive.

(ii) If f is δ_{ε} -nonexpansive mapping such that for all $x \in X$ there exists an integer p = p(x) satisfying

$$\delta(x,y) < \varepsilon \implies \delta(f^p x, f^p y) \le \varphi(\delta(x,y)), \text{ for all } y \in X,$$
(12)

then f is $(\mathcal{R}_{(\delta,\varphi,t_0)})_{\varepsilon}$ -contractive.

Proof. We observe that if f is δ_{ε} -nonexpansive (resp. δ -nonexpansive), then $(\mathcal{R}_{(\delta,\varphi,t_0)})_{\varepsilon}$ (resp. $\mathcal{R}_{(\delta,\varphi,t_0)})$ is f-invariant.

(i): For $(x, y) \in X \times X$, consider

$$(x_0, y_0) = (x, y)$$
 and $(x_{n+1}, y_{n+1}) = (f^{p(x_n)}x_n, f^{p(x_n)}y_n)$.

Then obviously from (11), we get

$$\delta(x_{n+1}, y_{n+1}) \leq \varphi(\delta(x_n, y_n)) \leq \cdots \leq \varphi^{n+1}(\delta(x, y)).$$

Define then $m(x, y, \lambda) = \sum_{i=0}^{n(x,y)} p(x_i)$, for all $\lambda \in I$, where

 $n(x, y) = \min \left\{ k \in \mathbb{N} : \varphi^k(\delta(x, y)) \le t_0 \right\}.$

Note that, as $\lim_{n\to+\infty} \varphi^n(t) = 0$ for all t > 0, the integer n(x, y) is well defined. Now, assume that $(x, y) \in R_\lambda \setminus \Delta$. If $\lambda = \varphi^n(t_0)$ for some positive integer n, then n(x, y) = 0 and from (11), the monotony of φ and the definition of R_λ , we obtain

$$\delta(f^{m(x,y,\lambda)}x, f^{m(x,y,\lambda)}y) = \delta(f^{p(x)}x, f^{p(x)}y) \le \varphi(\delta(x,y)) \le \varphi^{n+1}(t_0).$$

Thus, for $\mu = \varphi^{n+1}(t_0)$, we have $\mu < \lambda$ and $(f^{m(x,y,\lambda)}x, f^{m(x,y,\lambda)}y) \in R_{\mu}$. If $\lambda = t_0$, then by definition of n(x, y), we have

$$\delta(f^{m(x,y,\lambda)}x, f^{m(x,y,\lambda)}y) \le \varphi^{n(x,y)+1}(\delta(x,y)) \le \varphi(t_0)$$

Then for $\mu = \varphi(t_0)$, we have $\mu < \lambda$ and $(f^{m(x,y,\lambda)}x, f^{m(x,y,\lambda)}y) \in R_{\mu}$.

(ii): Let $(x, y) \in X \times X$. If $\lambda \ge \varepsilon$, then take $m(x, y, \lambda) = 1$ (or any other values in \mathbb{N}). Otherwise, we define $m(x, y, \lambda)$ as in (i). Now, if $(x, y) \in R_{\lambda} \setminus \Delta$ and $\lambda < \varepsilon$. Then there exists *n* such that $\lambda = \varphi^{n}(t_{0})$ and we have n(x, y) = 0. From (12), the monotony of φ and the definition of R_{λ} , using the same argument as in (i), we obtain $(f^{m(x,y,\lambda)}x, f^{m(x,y,\lambda)}y) \in R_{\mu}$ for $\mu = \varphi^{n+1}(t_{0})$.

Theorem 4.5. Let $\varepsilon > 0$, $\varphi \in \overline{\Phi}(I)$, $\delta \in \mathcal{D}(I, \psi)$ such that (X, δ) is complete and f is δ_{ε} -nonexpansive. Assume that:

- (i) ψ is monotone and continuous at (0,0) with $\psi(0,0) = 0$.
- (ii) There exists $x_0 \in X$ such that $Diam(O(x_0, f)) < \varepsilon$, where

$$\operatorname{Diam}(O(x_0, f)) \coloneqq \sup \left\{ \delta(y, z) : y, z \in O(x_0, f) \right\}$$

(iii) For all $x \in X$ there exists an integer p = p(x) such that for all $y \in X$ satisfying $\delta(x, y) < \varepsilon$, we have

$$\delta(f^p x, f^p y) \le \varphi(\delta(x, y)). \tag{13}$$

Then f has a δ -periodic point. Moreover,

(a) If $\sup \{\delta(x, fx) : x \in X\} \le \varphi(\varepsilon)$, then f has a δ -fixed point.

(b) If f is δ -nonexpansive and (13) is satisfied for all x, $y \in X$, then f has a unique δ -fixed point.

Proof. Fix a positive real t_0 such that $t_0 > \varepsilon$. By Lemma 4.3-(i), $\mathcal{R}_{(\delta,\varphi,t_0)} \in \mathcal{R}^n(I_{\varphi,t_0},\psi_1)$, and from Lemma 4.4-(ii), we see that f is $(\mathcal{R}_{(\delta,\varphi,t_0)})_{\varepsilon}$ -contractive. If 0 is the unique cluster point of I_{φ,t_0} , by Proposition 2.3-(iii), Lemma 4.3-(ii) and Theorem 3.4, we have $\Lambda(f, \mathcal{R}_{(\delta,\varphi,t_0)}) = P(f, \delta)$. If 0 is an isolated point of I_{φ,t_0} , then by Proposition 2.3-(iii), Lemma 4.3-(ii) and Theorem 3.1, we have also $\Lambda(f, \mathcal{R}_{(\delta,\varphi,t_0)}) = P(f, \delta)$. To conclude that f has a δ -periodic point, it is enough to show that the set $\Lambda(f, \mathcal{R}_{(\delta,\varphi,t_0)})$ is nonempty. Let $\{x_n\}$ be the sequence defined by $x_{n+1} = f^{p(x_n)}x_n$. Now, we shall prove that $\{x_n\}$ is convergent. Denote $p_n = p(x_n)$ and for $k, n \in \mathbb{N}$ let $s_{k,n} = \sum_{i=n}^{n+k-1} p_i$. By condition (i), we obtain

$$\begin{split} \delta(x_n, x_{n+k}) &= \delta(x_n, f^{s_{n,k}} x_n) &= \delta(f^{p_{n-1}} x_{n-1}, f^{s_{n,k}} f^{p_{n-1}} x_{n-1}) \\ &\leq \varphi \Big(\delta(x_{n-1}, f^{s_{n,k}} x_{n-1}) \Big) \\ &\leq \varphi \Big(\delta(f^{p_{n-2}} x_{n-2}, f^{p_{n-2}} f^{s_{n,k}} x_{n-2}) \Big) \\ &\leq \varphi^2 \Big(\delta(x_{n-2}, f^{s_{n,k}} x_{n-2}) \Big) \\ &\vdots \\ &\leq \varphi^n \Big(\delta(x_0, f^{s_{n,k}} x_0) \Big) \\ &\leq \varphi^n(\varepsilon) \end{split}$$

Then $\{x_n\}$ is a Cauchy sequence. By completeness, the sequence $\{x_n\}$ is convergent. It follows from Lemma 4.3-(iii) that $\Lambda(f, \mathcal{R}_{(\delta, \varphi, t_0)}) \neq \emptyset$. Assume now that the assumption of (a) is satisfied. As $\varepsilon < t_0$, there exists a non-negative integer *n* such that

$$\varphi^{n+1}(t_0) \le \varepsilon < \varphi^n(t_0).$$

Then, by monotony of φ , we obtain

$$\delta(x, fx) \le \varphi(\varepsilon) \le \varphi^{n+1}(t_0), \quad x \in X.$$

It comes out that, for $I_{\varepsilon} := I_{\varphi,t_0} \cap (0, \varepsilon)$, we have

$$Gr(f) \subseteq R_{\varphi^{n+1}(t_0)} \subseteq \bigcup_{\lambda \in I_{\varepsilon}} R_{\lambda}.$$

Thus we conclude by Proposition 2.3-(ii) and Corollary 3.10-(i) that $\Lambda(f, \mathcal{R}_{(\delta,\varphi,t_0)})$ is equal to Fix (f, δ) and hence f has a δ -fixed point. Finally, if the hypothesis of (b) holds, then from Lemma 4.4-(i), we deduce that f is $\mathcal{R}_{(\delta,\varphi,t_0)}$ -contractive. Since $\mathcal{R}_{(\delta,\varphi,t_0)} \in \mathcal{R}^t(I_{\varphi,t_0})$, we conclude that f has a unique δ -fixed point, by Corollary 3.10. \Box

4.2. Some fixed point results

If *I* is bounded, then the condition (ii) of Theorem 4.5 is obviously satisfied. In the context where *I* is not bounded, we state the following upshot.

Corollary 4.6. Let $\delta \in \mathcal{D}(I, \psi)$ such that (X, δ) is complete, $\varphi \in \overline{\Phi}(I)$ and f be a δ -nonexpansive mapping. If the following conditions hold:

- (i) ψ is monotone and continuous at (0,0) with $\psi(0,0) = 0$.
- (ii) For all $h \in I$ there exists $c \in I$, c > h such that

$$t > c \implies t > \psi(h, \varphi(t)).$$

(iii) For all $x \in X$ there exists an integer p = p(x) such that for all $y \in X$, we have

$$\delta(f^p x, f^p y) \le \varphi(\delta(x, y)).$$

Then f has a unique δ *-fixed point.*

Proof. Note that the conditions (i) and (b) of Theorem 4.5 are satisfied. Let $x \in X$, to conclude, we have to show that Diam(O(x, f)) < M, for some M > 0. If *I* is bounded, then obviously Diam(O(x, f)) is finite. Otherwise, define

$$u_k = \delta(x, f^k x) \text{ and } h = \max \{ u_0, \dots, u_p \},\$$

where p = p(x). By (i), it follows that there exists c > h such that

$$t > c \implies t > \psi(h, \varphi(t))$$

Assume that there exists k > p such that $u_k > c$. Let j > p be the smallest integer such that $u_j > c$. Consider $q \ge 0$ and $0 \le r < p$ such that j = pq + r. Hence, by (iii), the monotony of ψ and φ ,

$$\begin{split} u_j &= \delta(x, f^j x) &\leq \psi \Big(\delta(x, f^p x), \delta(f^p x, f^p f^{(q-1)p+r} x) \Big) \\ &\leq \psi \Big(\delta(x, f^p x), \varphi(\delta(x, f^{(q-1)p+r} x)) \Big) \\ &= \psi \Big(u_p, \varphi(u_{(q-1)p+r}) \Big) \\ &\leq \psi \Big(h, \varphi(u_j) \Big), \end{split}$$

that is, $u_j \leq \psi(h, \varphi(u_j))$ which a contraction. Then $u_j \leq c$ for all $j \geq 0$. Therefore, $\delta(x, f^j x) < c$ for all $j \geq 0$. Now, by the monotony of ψ , for all i, j, we have

 $\delta(f^i x, f^j x) \le \psi(u_i, u_j) \le \psi(c, c).$

Thus, the orbit of *x* is bounded. \Box

Remark 4.7. In Corollary 4.6, if δ is a dislocated metric, then the condition (ii) is equivalent to $\lim_{t\to+\infty} t - \varphi(t) = +\infty$. Consequently, the next results extend Matkowski fixed point [7, Theorem 2], to the context of dislocated metric spaces, under some additional conditions.

Corollary 4.8. Let (X, δ) be a complete dislocated metric space, f be a δ -nonexpansive mapping and $\varphi \in \overline{\Phi}(\mathbb{R}_+)$. Assume that:

- (i) $\lim_{t \to +\infty} t \varphi(t) = +\infty$.
- (ii) for all $x \in X$ there exists an integer p = p(x) such that for all $y \in X$, we have

$$\delta(f^p x, f^p y) \le \varphi(\delta(x, y)).$$

Then f has a unique δ *-fixed point.*

It has been proved in [2] that any semimetric $d: X \times X \to \mathbb{R}_+$ has a monotone triangular function $\psi: \overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}_+$. The following result generalizes [2, Theorem 1] to the context of ψ -dislocated metric space.

Corollary 4.9. Let $\varphi \in \overline{\Phi}(I)$, $\delta \in \mathcal{D}(I, \psi)$ such that (X, δ) is complete. Assume that:

(i) ψ is monotone and continuous at (0,0) with $\psi(0,0) = 0$.

(ii)
$$\delta(fx, fy) \le \varphi(\delta(x, y))$$
 for all $x, y \in X$.

Then f has a unique δ *-fixed point.*

Proof. From Theorem 4.5, it suffices to shows that the orbit of some $x \in X$ is bounded. Let $x \in X$, $x_0 = x$ and $x_{n+1} = fx_n$, then from the monotony of ψ , we deduce

$$\delta(x_{n+k}, x_n) \le \varphi^n \left(\delta(f^k x_0, x_0) \right), \quad n, k \in \mathbb{N}.$$

$$\tag{14}$$

Let $\varepsilon > 0$, by continuity of ψ there exist an integer n_{ε} and $\eta(\varepsilon) > 0$ such that

$$\varphi^{n_{\varepsilon}}(\varepsilon) < \eta(\varepsilon)$$
 and $\psi(u, v) < \varepsilon$, for all $u, v \le \eta(\varepsilon)$.

Similarly, there exists $n_0 > 0$ such that

$$\varphi^{n_0}(\delta(x_0, f^k x_0)) < \min\{\eta(\varepsilon), \varepsilon\}, \text{ for all } k = 0, \dots, n_{\varepsilon}.$$
(15)

Let $B(x_{n_0}, \varepsilon)$ the ball of center x_{n_0} and radius ε . Then from (14) and (15), we have $x_{n_0+k} \in B(x_{n_0}, \varepsilon)$ for all $k = 0, ..., n_{\varepsilon} - 1$. For $z \in B(x_{n_0}, \varepsilon)$, we have

$$\begin{split} \delta(f^{n_{\varepsilon}}z,x_{n_{0}}) &\leq \psi \big(\delta(f^{n_{\varepsilon}}z,f^{n_{\varepsilon}}x_{n_{0}}),\delta(f^{n_{\varepsilon}}x_{n_{0}},x_{n_{0}}) \big) \\ &\leq \psi \big(\varphi^{n_{\varepsilon}}(\delta(z,x_{n_{0}})),\varphi^{n_{0}}(\delta(f^{n_{\varepsilon}}x_{0},x_{0})) \big) \\ &\leq \psi \big(\eta(\varepsilon),\eta(\varepsilon) \big) < \varepsilon \end{split}$$

In particular, $f^{n_{\varepsilon}}(B(x_{n_0}, \varepsilon)) \subseteq B(x_{n_0}, \varepsilon)$. Now, for any positive integer $m = qn_{\varepsilon} + k, 0 \le k < n_{\varepsilon}$, we have

$$x_{n_0+m} = f^m x_{n_0} = f^{qn_{\varepsilon}} f^k x_{n_0} = f^{qn_{\varepsilon}} x_{n_0+k} \in f^{qn_{\varepsilon}} (B(x_{n_0}, \varepsilon)) \subseteq B(x_{n_0}, \varepsilon).$$

Consequently, $\delta(x_{n_0+m}, x_{n_0}) < \varepsilon$, for all m > 0, so x_n is a Cauchy sequence. Then O(x, f) is bounded.

Finally, if (X, δ) is a complete dislocated metric space, then the condition (i) of Corollary 4.9 is obviously satisfied, and we obtain a generalized version of the Matkowski result [6, Theorem 1.2] to the context of dislocated metric space.

Corollary 4.10. Let $\varphi \in \overline{\Phi}(\mathbb{R}_+)$ and (X, δ) be a complete dislocated metric space. Assume that

$$\delta(fx, fy) \le \varphi(\delta(x, y)), \text{ for all } x, y \in X.$$

Then f has a unique fixed point.

References

- M. Berzig and I. Kedim, Eilenberg-Jachymski collections and its first consequences for the fixed point theory, J. Fixed Point Theory Appl., 23 (2021), 1–13.
- [2] M. Bessenyei and Z. Páles, A contraction principle in semimetric spaces, J. Nonlinear Convex Anal., 18 (2017), 515–524.
- [3] M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 1 (1962), 74–79.
- [4] I. Kedim and M. Berzig, A fixed point theorem in abstract spaces with application to Cauchy problem, Fixed Point Theory, 24 (2023), 265–282.
- [5] J.L. Kelley, General topology, Graduate Texts in Mathematics 21, 1955.
- [6] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math., (1975), 1–63.
- [7] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62 (1977), 344–348.
- [8] J. Savaliya, D. Gopal, S.K. Srivastava and V. Rakočevič, Search of minimal metric structure in the context of fixed point theorem and corresponding operator equation problems, Fixed Point Theory, 25 (2024), 379–398.