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Numerical solution of a class of quadratic matrix equations
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aSchool of Mathematics and Statistics, Taiyuan Normal University, Jinzhong, China

Abstract. Quadratic matrix equations arise in many fields of scientific computing and engineering ap-
plications. In this paper, we study a class of quadratic matrix equations. Firstly, we prove the existence
of minimal nonnegative solution for this quadratic matrix equation under a certain condition. Then, we
propose some numerical methods for solving it. Finally, convergence analysis and numerical examples are
given to verify the theories and the numerical methods of this paper.

1. Introduction

In this paper, we study quadratic matrix equations of the form

X2
− BX + C = 0, (1)

where B ∈ Rn×n is a nonsingular M-matrix and C ∈ Rn×n is a nonnegative matrix. Quadratic matrix
equations usually arise in many fields of scientific computing and engineering applications, such as the
quadratic eigenvalue problem in the analysis of damped structural systems and vibration problems [19], the
Quasi-Birth-Death problem in telecommunication computer performance and inventory control [4, 6, 15],
and the noisy Wiener-Hopf problem in Markov chains [10] and so on. In particular, equation (1) is motivated
from the study of quadratic eigenvalue problem and noisy Wiener-Hopf problem.

The study on the theories and numerical methods for quadratic matrix equations is very earlier and
extensive. Davis [8] first considered Newton method for solving quadratic matrix equations. Higham and
Kim [12, 13] improved the convergence of Newton method by incorporating with exact line searches. Some
modifications of Newton method are proposed in [9, 17]. In general, Newton method is not competitive in
terms of CPU time, since a Sylvester equation is needed to solve at each iteration which is very expensive,
while Bernoulli method is usually linearly convergent and sometimes can be very slow. Bai et al [1, 2]
constructed a modified Bernoulli method for quadratic matrix equations. For a class of quadratic matrix
equation with an M-matrix, Yu et al [20, 21] proved the existence and uniqueness of the maximal nonpositive
solution, and discussed the convergence analysis of Newton method and Bernoulli method in details. Kim et
al [14] developed a diagonal update method for solving a quadratic matrix equation, which is a modification
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of the Bernoulli method and is a little faster than Bernoulli method. Chen [7] proposed a structure-preserving
doubling algorithm for a quadratic matrix equation with an M-matrix, which is quadratically convergent
and less expensive than Newton method. For more discussions on quadratic matrix equations one can refer
to [5, 16, 18].

In the following, we give some notations and definitions that are needed in the sequel. For more details,
we refer to [3].

Let A = (ai j) ∈ Rm×n. If ai j ≥ 0 for all i, j, then A is called a nonnegative matrix, denoted by A ≥ 0. If ai j > 0
for all i, j, then A is called a positive matrix, denoted by A > 0. For A = (ai j) ∈ Rm×n and B = (bi j) ∈ Rm×n, we
write A ≥ B if A − B ≥ 0, and A > B if A − B > 0. For A = (ai j) ∈ Rn×n, if ai j ≤ 0 for all i , j, then A is called a
Z-matrix. A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that A = sI−B and
s ≥ ρ(B) where ρ(B) is the spectral radius of B. In particular, A is called a nonsingular M-matrix if s > ρ(B)
and singular M-matrix if s = ρ(B).

Definition 1.1. ([11]) Let A ∈ Rn×n be an M-matrix. Then A is said to be regular if Av ≥ 0 for some v > 0.

Lemma 1.2. ([3]) Let A ∈ Rn×n be a Z-matrix. Then the following statements are equivalent:
(1) A is a nonsingular M-matrix;
(2) A−1

≥ 0;
(3) Av > 0 for some vector v > 0.

Lemma 1.3. ([3]) Let A and B be Z-matrices. If A is a nonsingular M-matrix and A ≤ B, then B is also a nonsingular
M-matrix.

It is easy to verify that nonsingular M-matrices are always regular M-matrices. Any Z-matrix A such
that Av ≥ 0 for some v > 0 is a regular M-matrix.

The rest of the paper is organized as follows. In Section 2, under a weak condition, we prove the
existence of minimal nonnegative solution for equation (1). In Section 3, we propose some numerical
methods for solving equation (1), and discuss convergence analysis of them. In Section 4, we use some
numerical examples to validate the theories and numerical behaviours of the methods. Conclusions are
given in Section 5.

2. Theoretical analysis

In applications, the solution of practical interest for equation (1) is the minimal nonnegative solution.
In this section, we show the existence of minimal nonnegative solution for equation (1) under certain
conditions.

To achieve this goal, we first write equation (1) as a fixed-point form

X = B−1(X2 + C),

and then consider the iteration

Xk+1 = B−1(X2
k + C), X0 = 0. (2)

Since B is a nonsingular M-matrix, it is evident that the sequence {Xk} is well defined. In addition, we have
the following results.

Theorem 2.1. For equation (1), if B − I − C is a regular M-matrix, then the sequence {Xk} generated by (2) is
monotonically increasing and is bounded from above.

Proof. We prove the assertion by induction.
(1) First we show that the sequence {Xk} is monotonically increasing. When k = 0, we have X1 = B−1C ≥

0 = X0. If Xk ≥ Xk−1 holds true, then from

Xk+1 = B−1(X2
k + C), Xk = B−1(X2

k−1 + C),
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we have
Xk+1 − Xk = B−1(X2

k − X2
k−1) ≥ 0.

By induction, the sequence {Xk} is monotonically increasing.
(2) Next we show that the sequence {Xk} is bounded from above. Since B − I − C is a regular M-matrix,

there is a positive vector u > 0 such that

(B − I − C)u = Bu − u − Cu ≥ 0.

Hence we have Cu ≤ Bu − u < Bu. Now we will show that Xku < u holds for all k ≥ 0. When k = 0, it is
evident. If Xku < u holds for k, then

Xk+1u = B−1(X2
k + C)u

≤ B−1(X2
ku + Bu − u)

= B−1X2
ku + u − B−1u

< B−1u + u − B−1u
= u.

By induction, Xku < u hold for all k ≥ 0.

Theorem 2.2. If B− I−C is a regular M-matrix, then equation (1) has a minimal nonnegative solution X, and B−X
is a regular M-matrix. In particular, if B − I − C is nonsingular, B − X is also nonsingular.

Proof. (1) We have shown in Theorem 2.1 that the sequence {Xk} generated by (2) is monotonically increasing
and is bounded from above. Thus it has a limit limk→∞ Xk = X. Taking limit on both sides of (2), we know
that X is a solution of (1). Since X ≥ 0, it is a nonnegative solution. If Y ≥ 0 is another nonnegative solution
of (1), we can prove by induction as in Theorem 2.1 that Xk ≤ Y. Taking limit we have X ≤ Y. Hence X is
the minimal nonnegative solution.

(2) In Theorem 2.1, we have shown that Cu ≤ Bu − u and that Xku < u holds for all k ≥ 0. Taking limit
we have Xu ≤ u. Since B − X is a Z-matrix, and

(B − X)u = Bu − Xu ≥ Bu − u
≥ Cu ≥ 0,

we can conclude that B − X is a regular M-matrix. If B − I − C is nonsingular, we can obtain similarly that
Cu < Bu − u, and

(B − X)u = Bu − Xu ≥ Bu − u
> Cu ≥ 0.

Hence by Lemma 1.2, B − X is a nonsingular M-matrix.

In the following, a few examples are given to verify Theorem 2.2.
Example 2.1. Consider equation (1) with

B =
(

4 −1
−1 4

)
, C =

(
1 1
1 1

)
.

In this example, B − I − C is an irreducible singular M-matrix. By direct computation, we can find four
solutions

X1 =

(
1 1
1 1

)
, X2 =

(
3 −2
−2 3

)
,
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X3 =
1
2

(
1 1
1 1

)
, X4 =

1
2

(
7 −3
−3 7

)
.

Here X3 is the minimal nonnegative solution and B − X3 is a nonsingular M-matrix.
Example 2.2. Consider equation (1) with

B =
(

3 −1
−1 3

)
, C =

(
1 0
0 1

)
.

In this example, B − I − C is an irreducible singular M-matrix. By direct computation, we can find two
solutions

X1 =

√
3 − 1
2

( √
3 1

1
√

3

)
, X2 =

√
3 + 1
2

( √
3 −1
−1

√
3

)
.

Here X1 is the minimal nonnegative solution and it is easy to verify that B − X1 is a nonsingular M-matrix.

3. Newton method and Bernoulli method

In this section, we propose some numerical methods for solving equation (1), and then discuss conver-
gence analysis of them.

It is evident that the fixed-point iteration (2) in Section 2 can be used to compute the minimal nonnegative
solution of equation (1). However, the fixed-point iteration method is usually very slow to converge and
requires a lot of iterations. So we need consider some quick iteration methods.

Newton method has been used to solve general quadratic matrix equations. Apply Newton method to
equation (1), we have the following iteration:

(B − Xk)Xk+1 − Xk+1Xk = C − X2
k , X0 = 0. (3)

However, a Sylvester equation is must to be solved in each iteration, which will cost 60n3 if we use the
Bartels-Stewart algorithm. Hence Newton method is a little expensive.

In the following, we consider Bernoulli iteration method. Write equation (1) as a fixed-point form

(B − X)X = C,

then we have Bernoulli’s iteration as follows

(B − Xk)Xk+1 = C, X0 = 0. (4)

At each iteration, a linear matrix equation is to be solved, which will cost 8n3/3 and is cheaper than Newton
method.

In the following, we give convergence analysis of the Bernoulli method.

Lemma 3.1. For the equation (1), if B− I − C is a regular M-matrix and B−X is a nonsingular M-matrix, then the
sequence {Xk} generated by (4) is well-defined and satisfies

0 ≤ Xk ≤ X, Xk ≤ Xk+1, k ≥ 0, (5)

where X is the minimal nonnegative solution.

Proof. We prove (5) by induction.
When k = 0, we have 0 = X0 ≤ X. Since BX1 = C, X1 is well-defined and satisfies X1 = B−1C ≥ 0 = X0.

Thus (5) is true for k = 0.
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Suppose now that (5) is true for k− 1. Since B−X is a nonsingular M-matrix and 0 ≤ Xk−1 ≤ X, we know
from Lemma 1.3 that B − Xk−1 is also a nonsingular M-matrix, and thus Xk is well-defined. In addition, we
have

X − Xk = (B − X)−1C − (B − Xk−1)−1C

= (B − X)−1[(B − Xk−1) − (B − X)](B − Xk−1)−1C

= (B − X)−1(X − Xk−1)(B − Xk−1)−1C
≥ 0.

Since 0 ≤ Xk ≤ X, B − Xk is a nonsingular M-matrix. Thus Xk+1 is well-defined and

Xk+1 − Xk = (B − Xk)−1C − (B − Xk−1)−1C

= (B − Xk)−1[(B − Xk−1) − (B − Xk)](B − Xk−1)−1C

= (B − Xk)−1(Xk − Xk−1)(B − Xk−1)−1C
≥ 0.

Hence (5) is true for k. By induction, (5) holds true for all k ≥ 0.

Theorem 3.2. For the equation (1), if B− I−C is a regular M-matrix and B−X is a nonsingular M-matrix, then the
sequence {Xk} generated by (4) is well-defined, monotonically increasing and converges to X, where X is the minimal
nonnegative solution.

Proof. We have shown in Lemma 3.1 that the sequence {Xk} generated by (4) is well-defined, monotonically
increasing and is bounded from above. Thus it has a limit X∗. Taking limit on both side of (4), we know
that X∗ is a nonnegative solution of (1). By Lemma 3.1, we have X∗ ≤ X. On the other hand, since X is the
minimal nonnegative solution, we have X ≤ X∗. Thus X∗ = X.

Theorem 3.3. The convergent rate of (4) is given by

lim sup
k→∞

k
√
∥X − Xk∥ ≤ ρ((B − X)−1) · ρ(X).

Proof. We have

X − Xk = (B − X)−1C − (B − Xk−1)−1C

= (B − X)−1(X − Xk−1)(B − Xk−1)−1C

≤ (B − X)−1(X − Xk−1)(B − X)−1C

= (B − X)−1(X − Xk−1)X
≤ · · ·

= (B − X)−k(X − X0)Xk

After taking norm and then k-th square root, we can get

k
√
∥X − Xk∥ ≤

k
√
∥(B − X)−k∥ ·

k
√
∥X − X0∥ ·

k
√
∥Xk∥.

Taking limit on both side and noting that limk→∞
k
√
∥Ak∥ = ρ(A), we have

lim sup
k→∞

k
√
∥X − Xk∥ ≤ ρ((B − X)−1) · ρ(X).
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4. Numerical examples

In this section we use some numerical examples to verify the theories and the numerical methods
presented in this paper. We will compare the numerical behaviours of Newton method (3), Fixed-point
iteration method (2), and Bernoulli method (4), denoted by Newton, FP, and Bernoulli respectively. In
addition, we will present numerical results in terms of the numbers of iterations (IT), CPU time (CPU, in
seconds) and the residue (RES), where

RES :=
∥X2
− BX + C∥∞
∥C∥∞

.

In our implementations all iterations are performed in Matlab (R2012a) on a personal computer with 2 GHz
CPU and 16 GB of memory and are terminated when the current iterate satisfies RES < 10−6 or the number
of iterations is more than 3000.
Example 4.1. Consider equation (1) with

B =
(

4 −1
−1 4

)
, C =

(
1 1
1 1

)
.

In this example, B − I − C is a regular M-matrix and the minimal nonnegative solution is

X =
(

0.5 0.5
0.5 0.5

)
.

The numerical results are summarized in Table 1. From Table 1, we can conclude that all the three methods
can compute the solution as required accuracy. In addition, Newton method has the best numerical
behaviours.

Table 1: Numerical results of Example 4.1
Method IT RES
Newton 5 1.1642e-10
Bernoulli 18 9.5368e-07

FP 30 8.3995e-07

Example 4.2. Consider equation (1) with

B =


4 −1
−1 4 −1

. . .
. . .

. . .
−1 4 −1

−1 4


, C = I.

This example is from [1], where B− I −C is a nonsingular M-matrix and is near to singular when n is large.
For different sizes of n, the numerical results are summarized in Table 2. From Table 2, we can conclude
that though the number of iterations and CPU time for all the three methods increase as n increases, all
the three methods can compute the solution as required accuracy. So all the three methods are feasible. In
addition, Newton method needs the lest CPU time and the lest iteration numbers.
Example 4.3. Consider equation (1) with

B =


5 −1
−1 5 −1

. . .
. . .

. . .
−1 5 −1

−1 5


, C = I.
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Table 2: Numerical results of Example 4.2
n Method IT CPU RES

Newton 8 0.0361 5.9804e-10
100 Bernoulli 136 0.0293 9.8108e-07

FP 264 0.0574 9.9903e-07
Newton 8 0.1688 4.1669e-07

200 Bernoulli 228 0.1956 9.6992e-07
FP 447 0.4340 9.9356e-07

Newton 9 0.5222 1.2665e-08
300 Bernoulli 302 0.7151 9.9731e-07

FP 597 1.6047 9.9236e-07
Newton 9 1.2093 1.0261e-07

400 Bernoulli 367 2.0646 9.8517e-07
FP 725 4.5574 9.9707e-07

Newton 9 1.9882 3.2685e-07
500 Bernoulli 423 4.0132 9.9192e-07

FP 838 9.5393 9.9519e-07

This example is a modification of Example 4.2. For different sizes of n, the numerical results are summarized
in Table 3. From Table 3, we can conclude that all the three methods can compute the solution as required
accuracy. In particular, Newton method needs the most CPU time in this example, while Bernoulli method
is a little cheaper.

Table 3: Numerical results of Example 4.3
n Method IT CPU RES

Newton 4 0.0170 2.3446e-13
100 Bernoulli 8 0.0025 1.4977e-07

FP 10 0.0033 4.4914e-07
Newton 4 0.0795 2.7085e-13

200 Bernoulli 8 0.0088 1.4977e-07
FP 10 0.0109 4.4914e-07

Newton 4 0.8969 3.4633e-13
500 Bernoulli 8 0.1136 1.4977e-07

FP 10 0.1845 4.4914e-07
Newton 4 4.1688 4.0366e-13

800 Bernoulli 8 0.8154 1.4977e-07
FP 10 1.1216 4.4914e-07

Newton 4 8.0529 4.4677e-13
1000 Bernoulli 8 1.5944 1.4977e-07

FP 10 1.9230 4.4914e-07

From the above three examples we can conclude that in general Newton method can converge quickly,
but is a little expensive. Bernoulli method needs more iterations than Newton method usually, but may be
cheaper than Newton method in some cases.

5. Conclusions

We studied a class of quadratic matrix equations in this paper. Under a weak condition, we proved the
existence of minimal nonnegative solution for this quadratic matrix equation. In addition, some numerical
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methods are proposed to solve this quadratic matrix equation. Theoretical analysis and numerical examples
have shown the validations of the theories and the numerical methods in this paper.
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