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Abstract. The objective of this paper is to obtain generalised Wintgen inequalities for submanifolds that
are immersed in golden Riemannian manifolds endowed with semi-symmetric metric and semi-symmetric
non-metric connections by employing mathematical operators.

1. Introduction

Let M2 represents any surface in the Euclidean space E4, then Wintgen inequality can be asserted as
follows [25]

||H||
2
≥ K + |K⊥|, (1)

in above case, H stands for the squared norm of mean curvature, K , K⊥ indicates Gauss and normal
curvature ofM2, respectively. In addition to this, equality sign holds in (1) provided ellipse of the curvature
becomes exactly a circle.

Further, the inequality (1) was investigated independently and generalized to the case of surfaces of any
co-dimension in real space forms by ([24],[15])

K − c ≤ ||H||2 − |K⊥|.

Let ρ represent the normalized scalar curvature. Then, the generalized Wintgen inequality is reproduced
in [12] with

||H||
2
≥ ρ⊥ − c + ρ,

here ρ⊥ means the normalized normal scalar curvature. This one had been termed as DDVV conjecture. In
the recent years, DDVV inequalities appeared for various ambient manifolds and a survey can be found in
[6].
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On the other side, the semi-symmetric linear connection has been studied in different ways since its
introduction in 1924 [13] and that paved the way of studying differentiable manifolds with new settings.
Hayden [16] has the credit of defining semi-symmetric metric connection onto manifold endowed with Rie-
mannian metric. Imai [18], Yano [27] investigated several interesting properties of Riemannian manifold
equipped with semi-symmetric metric connection . Nakao [23] generalized the results of Imai and estab-
lished Gauss like and Codazzi-Mainardi like equations. In 1925, Agashe and Chafle ([2],[1]), investigated
Riemannian manifolds endowed with a semi-symmetric non-metric connection. Optimal inequalities have
also been derived for various manifolds with semi-symmetric connection (see [5]).

It is to be noted that polynomial structures were investigated on manifolds in the early 1970s due to
Goldberg, Yano and Petridis [14] and structure of golden type was discussed in [11] producing several
interesting results. Recently, submanifolds of slant type in golden Riemannian manifolds has been taken to
study in ([3],[8],[10], [19] etc.).

Here, the generalized Wintgen inequalities are investigated for golden Riemannian manifolds equipped
with semi-symmetric connections. We also investigate inequalities for different slant cases as application
of main theorems.

Following are proved:
Theorem 1.1 For any θ-slant submanifold Sn isometrically immersed in locally golden product space form
S

m
endowed with semi-symmetric metric connection . We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(c1 + c2)
{
3 −

2
n

trφ +
2

n(n − 1)
[tr2φ − (trT + n) cos2 θ]

}
+

1
√

5n
(cp − cq)

(
2trφ − n

)
−

4
n

trβ. (2)

Moreover, (2) satisfies equality case iff in view of some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um}, S
reduces to

Sn+1 =



ð1 1 0 . . . 0 0
1 ð1 0 . . . 0 0
0 0 ð1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð1 0
0 0 0 . . . 0 ð1


, (3)

Sn+2 =



ð2 +⅁ 0 0 . . . 0 0
0 ð2 −⅁ 0 . . . 0 0
0 0 ð2 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . ð2 0
0 0 0 . . . 0 ð2


, (4)

Sn+3 =



ð3 0 0 . . . 0 0
0 ð3 0 . . . 0 0
0 0 ð3 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð3 0
0 0 0 . . . 0 ð3


, Sn+4 = · · · = Sm = 0, (5)
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where ð1, ð2, ð3 and ⅁ are real functions on S.
Theorem 1.2 For any θ-slant submanifold Sn isometrically immersed in locally golden product space

form S
m

endowed with a semi-symmetric non-metric connection. We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(cp + cq)
{
3 +

2
n(n − 1)

[tr2φ − (trT + n) cos2 θ] −
2
n

trφ
}

−
4
n

trβ +
1
√

5n
(cp − cq)

(
4trφ − 2n

)
− 4ϕ(H). (6)

Moreover, (6) satisfies equality iff for some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um}, S takes the
form of

Sn+1 =



ð1 1 0 . . . 0 0
1 ð1 0 . . . 0 0
0 0 ð1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð1 0
0 0 0 . . . 0 ð1


, (7)

Sn+2 =



ð2 +⅁ 0 0 . . . 0 0
0 ð2 −⅁ 0 . . . 0 0
0 0 ð2 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . ð2 0
0 0 0 . . . 0 ð2


, (8)

Sn+3 =



ð3 0 0 . . . 0 0
0 ð3 0 . . . 0 0
0 0 ð3 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð3 0
0 0 0 . . . 0 ð3


, Sn+4 = · · · = Sm = 0, (9)

where ð1, ð2, ð3 and ⅁ are real functions on S.

2. Preliminaries

2.1. Semi-Symmetric Metric Connection

Suppose (S
m
, 1) represents Riemannian manifold and T stands for torsion tensor of linear connection

∇
∗ on S satisfying [27]

T (ℓ2, ℓ3) = γ(ℓ3)(ℓ2) − γ(ℓ2)(ℓ3), (10)

∇
∗ in above situation is termed as semi-symmetric connection. Further, assume that η be any vector field

and γ be 1-form associated with η by
γ(ℓ1) = 1(ℓ1, η).
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In addition to this, ∇∗ becomes semi-symmetric metric connection provided

∇
∗1 = 0, (11)

and a semi-symmetric non-metric connection when

∇
∗1 , 0. (12)

In [27], ∇∗ semi-symmetric metric connection on Swas defined with

∇
∗

ℓ1
ℓ2 = γ(ℓ2)ℓ1 − 1(ℓ1, ℓ2)η + ∇ℓ1ℓ2,

in above case, ∇ represents the Levi-Civita connection of S.
Fix curvature tensors of mathematical operators ∇ and ∇∗ of Swith R and R∗. One can write [18]

R∗(ℓ1, ℓ2)ℓ3 = R(ℓ1, ℓ2)ℓ3 + 1(ℓ1, ℓ3)Kℓ2 − β(ℓ2, ℓ3)ℓ1

−1(ℓ2, ℓ3)Kℓ1 + β(ℓ1, ℓ3)ℓ2, ∀ℓi ∈ TS, (13)

in above situation β represents a (0, 2)-tensor field given as

β(ℓ1, ℓ2) =
1
2
γ(η)1(ℓ1, ℓ2) + (∇ℓ1γ)ℓ2 − γ(ℓ1)γ(ℓ2)

and
1(Kℓ1, ℓ2) = β(ℓ1, ℓ2).

Consider thatS be m-dimensional Riemannian manifold equipped with semi-symmetric metric connec-
tion and Sn be submanifold of S. Let us fix mathematical operators ∇ and ∇ for covariant differentiation in
connection with Levi-Civita connection in S and S, respectively. Represent with SN the shape operator of
Swith respect to N ∈ Γ(T⊥S). One gets

∇ℓ1ℓ2 = ∇ℓ1ℓ2 + h(ℓ1, ℓ2)

and

∇ℓ1 N = −SNℓ1 + ∇
⊥

ℓ1
N,

in this case ∇⊥ denotes connection in T⊥S. One also has

1(SNℓ1, ℓ2) = 1(h(ℓ1, ℓ2),N).

Let us suppose that R⊥ stands for the Riemannian curvature tensor on T⊥S. Hence, equation of Gauss is [4]

R(ℓ1, ℓ2, ℓ3, ℓ4) = R(ℓ1, ℓ2, ℓ3, ℓ4) − 1(h(ℓ1, ℓ4), h(ℓ2, ℓ3)) (14)
+1(h(ℓ1, ℓ3), h(ℓ2, ℓ4)),

in above situation ℓ1, ℓ2, ℓ3, ℓ4 ∈ Γ(TS), R and R indicate curvature tensors of S and S. For any normal
vector fields ξ1 and ξ2, we write [26]

1(R(ℓ1, ℓ2)ξ1, ξ2) = 1(R⊥(ℓ1, ℓ2)ξ1, ξ2) + 1([Sξ1 , Sξ2 ]ℓ1, ℓ2), (15)

in this case [Sξ1 , Sξ2 ] = Sξ1Sξ2 − Sξ2Sξ1 .
In view of (2.1), R∗ of Riemannian manifold S equipped with a semi-symmetric metric connection ∇∗ is

represented as

R∗(ℓ1, ℓ2)ℓ3 = R(ℓ1, ℓ2)ℓ3 − β(ℓ2, ℓ3)ℓ1 + β(ℓ1, ℓ3)ℓ2
−1(ℓ2, ℓ3)Kℓ1 + 1(ℓ1, ℓ3)Kℓ2. (16)
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Consider local orthonormal frame {u1, . . . ,un} and {un+1, . . . ,um} of S in S. Then one has

H =

n∑
i=1

1
n

h(ui,ui), (17)

and

||h||2 =
∑

1≤i, j≤n

1
(
h(ui,u j), h(ui,u j)

)
. (18)

Let π ⊂ TpS, p ∈ S be the plane section and K (π) be sectional curvature of S connected with π. Then one
can write

τ(p) =
∑

1≤i< j≤n

K (ui ∧ u j) (19)

and

ρ(p) =
2

n(n − 1)

∑
1≤i< j≤n

K (ui ∧ u j). (20)

Let S
m

be Riemannian manifold endowed with semi-symmetric metric connection and S represents
n-dimensional submanifold in S. Also assume some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um} of
TpS and T⊥p S, respectively. Then one writes [21]

ρ⊥ =
2τ⊥

n(n − 1)
. (21)

In the similar way [28],

KS =
1
4

m∑
r,s=n+1

(Trace[Sr, Ss])2, (22)

where St stands for shape operator of S in the direction of ξt,
t = n + 1, ...,m.

Next, we represent [22]

ρS =
2

n(n − 1)

√
KS. (23)

Hence, we write

KS =
1
2

∑
n+1≤r<s≤m

(Trace[Sr, Ss])2

=
∑

n+1≤r<s≤m

∑
1≤i< j≤n

1([Sr, Ss]ui,u j)2.

Now, one representsKS as [22]

KS =
∑

n+1≤r<s≤m

∑
1≤i< j≤n

[ n∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)
]2
. (24)
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2.2. Semi-Symmetric Non-Metric Connection

Assume (S
m
, 1) represents any Riemannian manifold and ∇∗ stands for linear connection on S and T be

torsion tensor of ∇∗. We have already seen that ∇∗ is semi-symmetric connection provided it satisfies (10)
and non-metric connection if

∇
∗1 , 0.

In [1], ∇∗ semi-symmetric non-metric connection was described as

∇
∗
ℓ1ℓ2 = ϕ(ℓ2)ℓ1 + ∇ℓ1ℓ2, ∀ℓ1, ℓ2 ∈ Γ(TS),

in above equation, ϕ stands for a 1-form.
Assume any Riemannian manifold S

m
with semi-symmetric non-metric connection ∇∗. Also suppose

that R∗ and R be curvature tensors of Swith respect to mathematical operators ∇∗ and ∇, respectively. Thus
[1]

R∗(ℓ1, ℓ2, ℓ3, ℓ4) = R(ℓ1, ℓ2, ℓ3, ℓ4) − β(ℓ2, ℓ3)1(ℓ1, ℓ4) + β(ℓ1, ℓ3)1(ℓ2, ℓ4), (25)

in this situation, β is (0, 2)-tensor field written as

β(ℓ1, ℓ2) = (∇ℓ1ϕ)ℓ2 − ϕ(ℓ1)ϕ(ℓ2). (26)

Let us also denote the trace of β by λ.
Now, let Sn be submanifold of S

m
and mathematical operators ∇ and ∇

′

be induced semi-symmetric
non-metric connection and Levi-Civita connection, respectively. Fix R and R′ for the curvature tensors on
Swith respect to ∇ and ∇

′

. The Gauss formulas are expressed as

∇
∗
ℓ1ℓ2 = ∇ℓ1ℓ2 + h(ℓ1, ℓ2),

∇ℓ1ℓ2 = ∇
′

ℓ1
ℓ2 + h

′

(ℓ1, ℓ2),

in this case, h represents (0, 2)-tensor on S, h′ means the second fundamental form of S in S. One can also
note that [2]

h = h
′

. (27)

For a semi-symmetric non-metric connection, one has [2]

R∗(t1, t2, t3, t4) = R(t1, t2, t3, t4) − 1(h(t1, t4), h(t2, t3)) (28)
+1(h(t1, t3), h(t2, t4)) + 1(E, h(t2, t3))1(t1, t4)
−1(E, h(t1, t3))1(t2, t4), ∀t1, t2, t3, t4 ∈ Γ(TS),

E represents vector field satisfying
1(E, t1) = ϕ(t1).

One also writes

H =

n∑
i=1

1
n

h(ui,ui) (29)

and

τ =
∑

1≤i< j≤n

R(ui,u j,u j,ui). (30)

We also define

ρ =
2

n(n − 1)

∑
1≤i< j≤n

K (ui ∧ u j), (31)

in above case,K means the sectional curvature function on S. Similarly, we can write other formulas with
respect to semi-symmetric non-metric connection
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2.3. Golden Riemannian manifolds

Consider the Riemannian manifold (S
m
, 1) and assume (1, 1)-tensor field L on S. When [3, 11, 14]

O(ℓ1) = a1I + a2ℓ1 + ... + anℓ
m−1
1 + ℓn1

= 0,

I being identity transformation and (for ℓ1 = L) I,L(p), , ...,Ln−2(p),Ln−1(p) are linearly independent at
p ∈ S. Then O(ℓ1) is said to be structure polynomial. In addition to this, O(ℓ1) = ℓ21 + I produces an almost
complex structure and O(ℓ1) = ℓ21 − I results an almost product structure.

Additionally, φ ((1, 1)-tensor field) satisfying the equality [3, 14]

φ2 = φ + I,

is known as golden structure on S.Moreover, 1 becomes φ-compatible if

1(φℓ1, ℓ2) = 1(ℓ1, φℓ2) ∀ℓ1, ℓ2 ∈ Γ(TS). (32)

A golden Riemannian manifold (S, 1, φ) endows golden structure φ with φ-compatible Riemannian
metric 1 [3, 11]. Setting φℓ1 in place of ℓ1 in (32), one obtains

1(φℓ1, φℓ2) = 1(φ2ℓ1, ℓ2)

= 1(φℓ1, ℓ2) + 1(ℓ1, ℓ2) ∀ℓ1, ℓ2 ∈ Γ(TS).

Let φ stands for golden structure and L be almost product structure. Then L produces

φ =
1
2

(
√

5L + I)

and φ induces L [3, 11]

L =
1
√

5
(2φ − I).

Further, (S, 1, φ) is known as locally golden if with respect to Levi-Civita connection,φ becomes parallel.
Assume that (S, 1) is a submanifold of (S, 1, φ). Then, we express

φℓ2 = Pℓ2 +Qℓ2,∀(Y) ∈ Γ(TS)

in this case Pℓ2 stands for tangential component and Qℓ2 represents normal components of φℓ2.
A submanifold (S, 1) immersed in (S, 1, φ) is known as slant when any nonzero vector ℓ1 ∈ TpS, p ∈ S,

the angle θ(ℓ1) between TpS and φℓ1 is independent of p ∈ S and ℓ1 ∈ TpS. We have these cases for S:

• θ = 0 (φ-invariant)

• θ = π2 (φ-anti-invariant)

• proper slant when it is neither invariant nor anti-invariant.

Lemma 2.1 [3] For any submanifold (Sn, 1) of Riemannian manifold with golden structure (S
m
, 1, φ). We

have:

1. S is slant ⇐⇒ ∃ µ ∈ [0, 1] satisfying P2 = µ(I + φ). Additionally, µ = cos2θ, for slant angle θ.
2. S is slant ⇐⇒ ∃ µ ∈ [0, 1] satisfying φ2 = 1

µP2. In this case, µ = cos2θ.

3. 1(Pℓ1,Pℓ2) = cos2θ(1(ℓ1,Pℓ2) + 1(ℓ1, ℓ2)).
4. 1(Qℓ1,Qℓ2) = sin2θ(1(Pℓ1, ℓ2) + 1(ℓ1, ℓ2)), ∀ℓ1, ℓ2 ∈ Γ(TS).
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Now, consider real-space forms Sp and Sq. For locally golden product space form (S = Sp(cp) ×
Sq(cq), 1, φ), one has the Riemannian curvature tensor R [9]:

R(ℓ1, ℓ2)ℓ3 =
(±
√

5 − 1)cp + (∓
√

5 − 1)cq

10
[1(φℓ2, ℓ3)ℓ1 − 1(φℓ1, ℓ3)ℓ2

+ 1(ℓ2, ℓ3)φℓ1 − 1(ℓ1, ℓ3)φℓ2]

+
(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10
[1(ℓ2, ℓ3)ℓ1 − 1(ℓ1, ℓ3)ℓ2] (33)

+
cp + cq

5
[1(φℓ2, ℓ3)φℓ1 − 1(φℓ1, ℓ3)φℓ2].

Further, if S is equipped with semi-symmetric metric connection. Then curvature tensor of S is

R∗(ℓ1, ℓ2)ℓ3 =
(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10
[1(ℓ2, ℓ3)ℓ1 − 1(ℓ1, ℓ3)ℓ2]

+
(±
√

5 − 1)cp + (∓
√

5 − 1)cq

10
[1(φℓ2, ℓ3)ℓ1 − 1(φℓ1, ℓ3)ℓ2

+ 1(ℓ2, ℓ3)φℓ1 − 1(ℓ1, ℓ3)φℓ2] (34)
− β(ℓ2, ℓ3)ℓ1 − 1(ℓ2, ℓ3)Kℓ1

+
cp + cq

5
[1(φℓ2, ℓ3)φℓ1 − 1(φℓ1, ℓ3)φℓ2]

+ β(ℓ1, ℓ3)ℓ2 + 1(ℓ1, ℓ3)Kℓ2

where (16) and (33) have been used.
If S

m
is equipped with semi-symmetric non-metric connection. Then taking into use (25) and (33), one

expresses

R∗(ℓ1, ℓ2)ℓ3 =
(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10
[1(ℓ2, ℓ3)ℓ1 − 1(ℓ1, ℓ3)ℓ2]

+
(±
√

5 − 1)cp + (∓
√

5 − 1)cq

10
[1(φℓ2, ℓ3)ℓ1 − 1(φℓ1, ℓ3)ℓ2

+ 1(ℓ2, ℓ3)φℓ1 − 1(ℓ1, ℓ3)φℓ2] + β(ℓ1, ℓ3)1(ℓ2, ℓ4) (35)

+
cp + cq

5
[1(φℓ2, ℓ3)φℓ1 − 1(φℓ1, ℓ3)φℓ2]

− β(ℓ2, ℓ3)1(ℓ1, ℓ4).
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3. Main Proofs

Theorem 1:
Proof: In the light of (34), one obtains∑

1≤i< j≤n

R(ui,u j,u j,ui) =
(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10
[1(u j,u j)1(ui,ui)

− 1(ui,u j)1(u j,ui)]

+
(±
√

5 − 1)cp + (∓
√

5 − 1)cq

10
[1(φu j,u j)1(ui,ui)

− 1(φui,u j)1(u j,ui) + 1(u j,u j)1(φui,ui)
− 1(ui,u j)1(φu j,ui)]

+
cp + cq

5
[1(φu j,u j)1(φui,ui) − 1(φui,u j)1(φu j,ui)]

− β(u j,u j)1(ui,ui) + β(ui,u j)1(u j,ui)
− 1(u j,u j)1(Kui,ui) + 1(h(ui,u j), h(u j,ui))
− 1(h(ui,ui), h(u j,u j)) + 1(ui,u j)1(Ku j,ui) (36)

where Gauss equation has been used. With the help of Lemma 2.3, one obtains∑
1≤i< j≤n

R(ui,u j,u j,ui) =
1
4

(cp + cq)
n(n − 1)

5

{
6 −

4
n

trφ

+
4

n(n − 1)
[tr2φ − (trT + n) cos2 θ]

}
+ B1 (37)

+
1
4

(n − 1)
√

5
(cp − cq)

(
4trφ − 2n

)
− 2(n − 1)trβ,

here B1 =
∑m
α=n+1

∑
1≤i< j≤n

[
hαiih

α
j j − (hαi j)

2
]
.

We also know that

2τ =
∑

1≤i< j≤n

R(ui,u j,u j,ui), (38)

that produces

2τ =
1
4

(cp + cq)
n(n − 1)

5

{
6 +

4
n(n − 1)

[tr2φ − (trT + n) cos2 θ] −
4
n

trφ
}

+
1
4

(n − 1)
√

5
(cp − cq)

(
4trφ − 2n

)
− 2(n − 1)trβ + B1. (39)

Let A1 =
∑m
α=n+1

∑
1≤i< j≤n(hαii − hαj j)

2 and A2 =
∑m
α=n+1

∑
1≤i< j≤n hαiih

α
j j, then

n2
||H||

2 =

m∑
α=n+1

( n∑
i=1

hαii
)

2 (40)

=
1

n − 1
A1 +

2n
n − 1

A2.

One can also note [20]

B2 ≤ A3 +
1

2n
A1, (41)
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inwhere B2 =
{∑

n+1≤α<β≤m−n
∑

1≤i< j≤n[
∑n

k=1(hαjkhβik − hαikhβjk)]2
}

1
2 and A3 =

∑m
α=n+1

∑
1≤i< j≤n(hαi j)

2.
Taking into consideration (40), (41) and (24), it results

B1 ≤
n − 1

2n

{
n2
||H||

2
− n2ρN

}
. (42)

Finally, taking help of (23) and (39), we reach to

ρN − ||H||
2
≤

1
10

(cp + cq)
{
6 +

4
n(n − 1)

[tr2φ − (trT + n) cos2 θ] −
4
n

trφ
}

−
4
n

trβ +
1

2
√

5n
(cp − cq)

(
4trφ − 2n

)
− 2ρ,

in this equation (42) has been used and thereby establishing the required result.
Proof of Theorem 1:
Proof: Using (25),(28) and (35), one writes∑

1≤i< j≤n

R(ui,u j,u j,ui) = n(1 − n)ϕ(H) +
1
4

(cp + cq)
n(n − 1)

5

{
6 −

4
n

trφ

+
4

n(n − 1)
[tr2φ − (trT + n) cos2 θ]

}
+ B1 (43)

+
1
4

(n − 1)
√

5
(cp − cq)

(
4trφ − 2n

)
− (n − 1)trβ,

wherein Lemma 2.3 has also been considered.
It is also known that

2τ =
∑

1≤i< j≤n

R(ui,u j,u j,ui), (44)

that produces

2τ = n(1 − n)ϕ(H) +
1
4

(n − 1)
√

5
(cp − cq)

(
4trφ − 2n

)
+

1
4

(cp + cq)
n(n − 1)

5

{
6 +

4
n(n − 1)

[tr2φ − (trT + n) cos2 θ] −
4
n

trφ
}

+ (1 − n)trβ + B1. (45)

One can write

n2
||H||

2 =
1

n − 1
A1 +

2n
n − 1

A2.

One can also note [20]

B2 ≤
1

2n
A1 + A3. (46)

Taking into consideration (46), (46) and (22), it results

B1 ≤
n − 1

2n

[
n2
||H||

2
− n2ρS

]
. (47)

Let W1 =
4
n trβ and W2 = 4ϕ(H). Then, taking help of (20) and (45), we reach to

ρS − ||H||
2
≤

1
10

(cp + cq)
{
6 +

4
n(n − 1)

[tr2φ − (trT + n) cos2 θ] −
4
n

trφ
}

+
1

2
√

5n
(cp − cq)

(
4trφ − 2n

)
−W1 −W2 − 2ρ,

where (47) has been used and thereby establishing the required result.
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4. Some Applications of main theorems

As an application of Theorem 1, one obtains these generalized Wintgen inequalities.
Corollary 4.1 For any invariant submanifold Sn isometrically immersed in S

m
. We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(c1 + c2)
{
3 −

2
n

trφ +
2

n(n − 1)
[tr2φ − (trT + n)]

}
+

1
√

5n
(cp − cq)

(
2trφ − n

)
−

4
n

trβ. (48)

Moreover, for some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um} and some real functions ð1, ð2, ð3 and
⅁ on S, the equality in (48) holds iff S looks like (3), (4) and (5).

Corollary 4.2 For any anti-invariant submanifold Sn isometrically immersed in S
m

. We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(c1 + c2)
{
3 −

2
n

trφ +
2

n(n − 1)
tr2φ
}

+
1
√

5n
(cp − cq)

(
2trφ − n

)
−

4
n

trβ. (49)

In addition to this, for some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um} and some real functions
ð1, ð2, ð3 and ⅁ on S, the equality in (49) holds iff S appears to be like (3), (4) and (5).

As an application of Theorem 1, one obtains these generalized Wintgen inequalities.
Corollary 4.3 For any invariant submanifold Sn immersed in S

m
. We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(cp + cq)
{
3 +

2
n(n − 1)

[tr2φ − (trT + n)] −
2
n

trφ
}

+
1
√

5n
(cp − cq)

(
4trφ − 2n

)
−W1 −W2. (50)

Moreover, (50) satisfies equality iff for some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um} and some
real functions ð1, ð2, ð3 and ⅁ on S, S takes the form of (7), (8) and (9).

Corollary 4.4 For any anti-invariant submanifold Sn isometrically immersed in S
m

. We have

ρS ≤ ||H||
2
− 2ρ +

1
5

(cp + cq)
{
3 +

2
n(n − 1)

tr2φ −
2
n

trφ
}

+
1
√

5n
(cp − cq)

(
4trφ − 2n

)
−W1 −W2. (51)

Moreover, (51) satisfies equality iff for some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um} and some
real functions ð1, ð2, ð3 and ⅁ on S, S takes the form of (7), (8) and (9).

Some More Applications:

• Theorems 1 and 1 generalize main result of [7].

• Putting θ = 0 and θ = π2 in Theorems 1 and 1, we can write other results of this article.

• We can also discuss these results for other structures defined on Riemannian manifold S [17].

1. for p = 2, q = 1, the silver ratio σ2,1 = 1 +
√

2 ,

2. the bronze ratio σ3,1 =
3+
√

13
2 (p = 3, q = 1),

3. for p = 4, q = 1, the subtle mean σ4,1 = 2 +
√

5,
4. the copper ratio σ1,2 = 2 (p = 1, q = 2) etc.
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