Filomat 39:1 (2025), 97–111 https://doi.org/10.2298/FIL2501097G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Rings with uniformly S-SFT

Samir Guesmi^a, Ahmed Hamed^b

^aDepartment of Mathematics, Higher School of Sciences and Technologies, Hammam sousse, Tunisia ^bDepartment of Mathematics, Faculty of Sciences, Monastir, Tunisia

Abstract. In this article, we examine the notion of uniformly *S*-SFT and study its properties. Let *R* be a commutative ring and *S* a multiplicative subset of *R*. A ring *R* is said to be uniformly *S*-SFT if there exists an element *s* in *S* such that for every ideal *I* of *R*, there exist a finitely generated sub-ideal *J* of *I* and a positive integer *n* with the property that $sa^n \in J$ for all *a* in *I*. Our investigation includes proving Cohen's Theorem for uniformly *S*-SFT rings and analyzing the behavior of uniformly *S*-SFT property under various ring operations like Nagata's idealization and amalgamation of algebras.

1. Introduction

Throughout this article, *R* is always a commutative ring with identity. Recall from [4] that *R* is called an *SFT ring* if for any ideal *I* of *R*, there exist a finitely generated sub-ideal *J* of *I* and a positive integer *n* such that $a^n \in J$ for any $a \in I$. In [4], Arnold showed that if *R* is not an SFT-ring, then $dim(R[[X]]) = \infty$.

A subset S of ring R is a multiplicative subset if $1 \in S$, $0 \notin S$, and for any $s, t \in S$, the product st is also in S. In the first part of this paper, we introduce the concept of uniformly S-SFT ring and study its basic properties. Let *R* be a commutative ring. We say that *R* is a *uniformly S*-*SFT* ring if there exists an $s \in S$ such that for any ideal I of R, there exist a finitely generated sub-ideal J of I and a positive integer n such that $sa^n \in J$ for all $a \in I$. It is clear that if R is a SFT ring, then R is an uniformly S-SFT ring. However, this implication is not reversible. Some counterexamples are given in Example 2.2 and Example 2.25. An increasing sequence $(I_k)_{k \in \mathbb{N}}$ of ideals of *R* is called *S*-root if there exist two positive integers *n*, *m* and an $s \in S$ such that for each $k \ge n$ if $x \in I_k$, then $sx^m \in I_n$. Now, let $s \in S$. We say that every increasing sequence of ideals of R is S-root with respect to s if for every increasing sequence $(I_k)_{k \in \mathbb{N}}$ of ideals of R there exist two positive integers n, m such that for each $k \ge n$ and for every $x \in I_k$, $sx^m \in I_n$. We show that, if S is a multiplicative subset of *R*, then *R* satisfies the uniformly *S*-SFT property if and only if there exists an $s \in S$ such that every increasing sequence of ideals of R is S-root with respect to s. (Theorem 2.6). Cohen's type theorem is of importance in the analysis of Noetherian rings. In the 1950s, Cohen made a groundbreaking discovery that states that a ring R is Noetherian if and only if each prime ideal of R can be generated by a finite number of elements (see [6]). This result has since then been extensively used in the field. More recently, in [4], J.T. Arnold expanded upon Cohen's work by demonstrating that a similar statement holds true for SFT rings. Specifically, a ring R is considered SFT if it satisfies the following condition: for

Keywords. SFT ideal, Uniformly S-SFT ring, SFT ring, Cohen's Theorem, S-root.

Received: 07 December 2023; Revised: 07 June 2024; Accepted: 08 November 2024

Communicated by Dijana Mosić

²⁰²⁰ Mathematics Subject Classification. Primary: 13E05, 13A15, 13E99

Email addresses: samirguesmi10@gmail.com (Samir Guesmi), hamed.ahmed@hotmail.fr (Ahmed Hamed) ORCID iDs: https://orcid.org/0009-0007-5380-0385 (Samir Guesmi)

every prime ideal *P* of *R*, there exist a finitely generated sub-ideal *Q* of *P* and a positive integer *n* such that for any element $a \in P$, $a^n \in Q$. In our research, we aim to build upon these findings by providing a more comprehensive understanding of Cohen's theorem and its applications to uniformly *S*-SFT rings. First, recall that a multiplicative set *S* of a commutative ring *R* is called *anti-Archimedean* if for each $s \in S$, $S \cap (\bigcap_{n\geq 1}s^n R) \neq \emptyset$, (see [1]). Let *R* be a ring and *S* an anti-Archimedean multiplicative subset of *R*, then *R* is a uniformly *S*-SFT ring, if and only if there exists an $s \in S$ such that for every prime ideal *P* of *R* there exist a finitely generated sub-ideal *Q* of *P* and a positive integer *n* such that $sa^n \in Q$ for all $a \in P$. We also give a necessary and sufficient condition for a product of rings $\prod_{i\in A} R_i$ to be uniformly *S*-SFT, where $S = \prod_{i\in A} S_i$. We

demonstrate that the following assertions are equivalent:

- 1. *R* is a uniformly *S*-SFT ring.
- 2. Λ is finite and for each $i \in \Lambda$, R_i is a uniformly S_i -SFT ring.

Finally, we consider the uniformly *S*-SFT property over some ring constructions, specifically, Nagata's idealization ring R(+)M and the amalgamated algebras along an ideal $A \bowtie^f J$ (the concepts of the Nagata's idealization ring and amalgamated algebras along an ideal will be reviewed in Section 3). We prove that if $f : A \longrightarrow B$ is a ring homomorphism, J an ideal of B, S an anti-Archimedean multiplicative subset of A and $S' = \{(s, f(s)) \mid s \in S\}$, then $A \bowtie^f J$ is a uniformly S'-SFT ring if and only if A is a uniformly S-SFT ring (Theorem 3.3). Additionally, we show that if M is a uniformly S-SFT ring if and only if R is a uniformly S-SFT ring if and only if R is a uniformly S-SFT ring if and only if R(+)M is a uniformly (S(+)N)-SFT ring (Theorem 3.7).

2. Uniformly S-SFT Rings

We start this section by introducing the following definition in order to generalize some known results about rings satisfying the SFT property.

Definition 2.1. Let *R* be a commutative ring, *S* a multiplicative subset of *R*, and *s* an element of *S*. We say that an ideal I of *R* is of strong finite type with respect to *s* if there exist a positive integer *n* and a finitely generated sub-ideal J of I such that for any $a \in I$, $sa^n \in J$.

We also define R to satisfies the uniformly S-SFT property if there exists an $s \in S$ such that each ideal of R is of strong finite type with respect to s.

Example 2.2. Let *F* be a field, $R = F[X_1, X_2, ...]/(X_iX_j, i \neq j)$ and $S = \{\overline{X_1}^i \mid i \in \mathbb{N}\}$. Assume that *R* is an SFT ring. Let $I = (\overline{X_1}, \overline{X_2}, ...)$ be an ideal of *R*. There exist a positive integer *n* and a finitely generated sub-ideal *J* of *I* such that for any $a \in I$, $a^n \in J$. Assume that $J = (\overline{X_1}, \overline{X_2}, ..., \overline{X_k})$ for some $k \ge 1$. Since $\overline{X_{k+1}} \in I$, $\overline{X_{k+1}}^n \in J$, a contradiction.

We show that R is uniformly S-SFT. Let P be an ideal of R. Then by [15, *Example 3.1*], $\overline{X_1}P$ *is a principal ideal. Thus for any* $a \in P$, $\overline{X_1}a \in \overline{X_1}P \subseteq P$, *and hence R is a uniformly S-SFT ring.*

Example 2.3. Let *p* be a prime integer, $R = \prod_{n \in \mathbb{N}^*} \mathbb{Z}/p^n \mathbb{Z}$. Then *R* is not an SFT ring. Indeed, let $I = ((e_i), i \in \mathbb{N})$

with $e_i = (0, ..., 1, 0, ...)$. Assume that I is an SFT ideal, there exist a positive integer n and a finitely generated sub-ideal J of I such that $x^n \in J$ for all $x \in I$. Assume that $J = (e_1, ..., e_k)$ for some $k \ge 1$. Thus $e_{k+1}^n \in J$ which is a contradiction. Now, let $s = (\overline{1}, \overline{p}, \overline{p}, \overline{0}, ...)$. Note that $s^2 = (\overline{1}, \overline{0}, \overline{p}^2, \overline{0}, ...)$, $s^3 = (\overline{1}, \overline{0}, \overline{0}, \overline{0}, ...)$ and $s^k = s^3$ for all $k \ge 3$. Let $S = \{1, s, s^2, s^3\}$. Then S is a multiplicative subset of R. Let I be an ideal of R and $a \in I$. Then $sa \in sI$. An element of sI is of the form $(\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{0}, ...)$ with $\overline{a_i} \in \mathbb{Z}/p^i\mathbb{Z}$. Then sI is a finitely generated ideal of R. It is also contained in I which implies that $sa \in sI \subseteq I$. Hence, R is uniformly S-SFT ring.

Let *R* be a commutative ring and *S* a multiplicative subset of *R*. We define *R* to be *S*-strongly finite type ring (in short *S*-SFT ring) if for each ideal *I* of *R* there exist an $s \in S$, a finitely generated sub-ideal *J* of *I* and positive integer *m* such that $sa^m \in J$ for any $a \in I$ [10].

Remark 2.4. Let *R* be a ring and *S* a finite multiplicative subset of *R*. Then *R* is a uniformly *S*-SFT ring if and only if *R* is an *S*-SFT ring. Indeed, it is clear that if *R* is a uniformly *S*-SFT ring, then *R* is an *S*-SFT ring. Conversely, let $S = \{s_1, ..., s_r\}$ and put $s := s_1 \cdots s_r$. Assume that for any ideal I of *R* there exist a finitely generated sub-ideal J of I and an positive integer *n* such that $s_ia^n \in J$ for some $s_i \in S$ $i \in \{1, ..., r\}$. Then $sa^n = s_1 \cdots s_r a^n \in s_1 \cdots s_{i-1} s_{i+1} \cdots s_r J \subseteq J$. This implies that *R* is a uniformly *S*-SFT ring.

A ring extension $A \subseteq B$ is called a *root extension* if for each element $b \in B$, there exists a positive integer n (depending on b) such that $b^n \in A$. ([2]). Expanding on this notion, we introduce the following new definition to ideals:

Definition 2.5. *Let* R *be a commutative ring,* S *a multiplicative subset of* R *and* $(I_k)_{k \in \mathbb{N}}$ *an increasing sequence of ideals of* R.

- 1. $(I_k)_{k \in \mathbb{N}}$ is called S-root if there exist an $s \in S$ (depending on $(I_k)_{k \in \mathbb{N}}$) and two positive integers n, m such that for each k greater than or equal to n and for every $x \in I_k$, sx^m belongs to I_n .
- 2. Let $s \in S$. It is said that every increasing sequence of ideals of R is S-root with respect to s if for every increasing sequence $(I_k)_{k \in \mathbb{N}}$ of ideals of R there exist two positive integers n, m such that for each $k \ge n$ and for every $x \in I_k$, $sx^m \in I_n$.
- 3. In the specific case where $S = \{1\}$, the sequence $(I_k)_{k \in \mathbb{N}}$ is termed a "root" sequence if there exist two positive integers *n* and *m*, such that for all $k \ge n$, and for all $x \in I_k$, x^m is an element of I_n .

Theorem 2.6. Let R be a commutative ring and S a multiplicative subset of R. The following statements are equivalent.

- 1. *R* satisfies the uniformly *S*-SFT property.
- 2. There exists an $s \in S$ such that every increasing sequence of ideals of *R* is *S*-root with respect to *s*.

Proof. $(1)'' \Rightarrow''(2)$. Assume that *R* satisfies the uniformly *S*-SFT property. There exists an $s \in S$ such that for any ideal *I* of *R* there exist a finitely generated sub-ideal *J* of *I* and a positive integer *m* such that $sx^m \in J$ for all $x \in I$. Let $(I_n)_{n \in \mathbb{N}}$ be an increasing sequence of ideals of *R*. We prove that this increasing sequence is *S*-root with respect to *s*. Put $I = \bigcup_{n \in \mathbb{N}} I_n$. Then *I* is an ideal of *R*. Moreover by hypothesis there exist a finitely generated sub-ideal *J* of *I* and a positive integer *m* such that $sx^m \in J$ for all $x \in I$. Put $J = a_1R + \cdots + a_nR$ for some $a_1, \ldots, a_n \in I$. Note that for $1 \le i \le n$, there exists an $n_i \in \mathbb{N}$ such that $a_i \in I_{n_i}$. Let $n_0 = max\{n_i, 1 \le i \le n\}$. Then $J \subseteq I_{n_0}$. This implies that for all $k \ge n_0$, for any $x \in I_k \subseteq I$, $sx^m \in J \subseteq I_{n_0}$. Hence the sequence $(I_n)_{n \in \mathbb{N}}$ is *S*-root with respect to *s*.

 $(2)'' \Rightarrow ''(1)$. Let $s \in S$ in (2). Assume that R is not uniformly *S*-SFT with respect to s. There exists an ideal I of R such that for each finitely generated sub-ideal J of I and every positive integer m, there exists an $a_0 \in I$ such that $sa_0^m \notin J$. Let $a \in I$ and define $I_0 = aR$. For n = 1, there exists an $a_{1I_0} \in I$ such that $sa_{01}^m \notin I_0$. Define $I_1 = aR + a_{1I_0}R$. For n = 2, there exists $a_{2I_1} \in I$ such that $sa_{2I_1}^2 \notin I_1$. By induction, define $I_{n-1} = aR + a_{1I_0}R + \cdots + a_{n-1I_{n-2}}R$. Since I is not of strong finite type ideal with respect to s, for any n = m there exists an $a_{mI_{m-1}} \in I$ such that $sa_{mI_{m-1}}^m \notin I_{m-1}$. Thus, we construct an increasing sequence of ideals (I_n) of R. Therefore, the sequence $(I_n)_n$ is S-root with respect to s. There exist $n, m \in \mathbb{N}$ such that for all $k \ge n$, $sx^m \in I_n$ for all $x \in I_k$. Choose $k > \max\{n, m\}$. Then, $sa_{kI_{k-1}}^k = sa_{kI_{k-1}}^m a_{kI_{k-1}}^{k-m} \in I_n \subseteq I_{k-1}$, a contradiction. \Box

In the particular case when $S = \{1\}$, we find the following corollary.

Corollary 2.7. Let R be a commutative ring. Then the following statements are equivalent.

- 1. *R* satisfies the SFT property.
- 2. Every increasing sequence of ideals of R is root.

Example 2.8. Let $R = (\mathbb{Z}/4\mathbb{Z})[X_1, X_2, \cdots]$ and $S = \{\overline{3}^n, n \in \mathbb{N}\}$. Then R is not uniformly S-SFT ring. Indeed, let $I_1 \subseteq I_2 \subseteq \cdots$ an ascending chain of ideals of R with $I_k = \langle 2X_1, 2X_2, ..., 2X_k \rangle$. Assume that there exist an $s \in S$ and two positive integers m, k such that for every $n \ge k$ if $x \in I_n$, then $sx^m \in I_k$. Thus $s2X_{k+1}^m \in I_k$, which is a contradiction.

Proposition 2.9. Let *R* be a commutative ring and *S* be an at most countable multiplicative subset of *R*. Then the following statements are equivalent.

- 1. R satisfies the S-SFT property.
- 2. Every increasing sequence of ideals of R is S-root.

Proof. $(1)'' \Rightarrow ''(2)$. Assume that for any ideal *I* of *R* there exist a finitely generated sub-ideal *J* of *I* and a positive integer *m* such that for all $x \in I$, $sx^m \in J$ for some $s \in S$. Let $(I_n)_{n \in \mathbb{N}}$ be an increasing sequence of ideals of *R*. We prove that this increasing sequence $(I_n)_{n \in \mathbb{N}}$ is *S*-root. Put $I = \bigcup_{n \in \mathbb{N}} I_n$. Then *I* is an ideal of *R*. Moreover by hypotheses there exist an $s \in S$, a finitely generated sub-ideal *J* of *I* and an positive integer *m* such that $sx^m \in J$ for all $x \in I$. Put $J = a_1R + \cdots + a_nR$. Note that for $1 \le i \le n$, there exist an $n_i \in \mathbb{N}$ such that $a_i \in I_{n_i}$. Let $n_0 = max\{n_i, 1 \le i \le n\}$. Then $J \subseteq I_{n_0}$. This implies that for all $k \ge n_0$, for any $x \in I_k \subseteq I$, $sx^m \in J \subseteq I_{n_0}$. Hence the sequence $(I_n)_{n \in \mathbb{N}}$ is *S*-root.

(2)" \Rightarrow "(1). * Suppose that $S = \{s_1, ..., s_n\}$ is finite and let $s = s_1 \cdots s_n$. Then by Remark 2.4, *R* is uniformly *S*-SFT if and only if *R* is an *S*-SFT ring.

*Assume that $S = (s_n)_{n\geq 0}$ is a countable multiplicative subset of R. Suppose that R is not an S-SFT ring. Then there exists an ideal I of R such that for every $s \in S$, every positive integers m and every finitely generated sub-ideal J of I, there exists an element $a \in I$ such that $sa^m \notin J$. Let $x \in I$ and define $J_0 = xR$, which is a finitely generated sub-ideal of I. For n = 1 and $s = s_1 \in S$, there exists an element $x_{s_11J_0} \in I$ such that $s_1x_{s_11J_0} \notin J_0$. Define $J_1 = xR + x_{s_11J_0}R$, which is again a finitely generated sub-ideal of I. For n = 2 and $s = s_1 \in S$, there exists an element $x_{s_12J_1} \notin I$ such that $s_1x_{s_12J_1} \notin J_1$. Similarly, for n = 2 and $s = s_2 \in S$, there exists $x_{s_22J_1} \in I$ such that $s_1x_{s_{12}J_1}^2 \notin J_1$. Similarly, for n = 2 and $s = s_2 \in S$, there exists $x_{s_{2}2J_{1}} \in I$ such that $s_{2}x_{s_{2}2J_{1}}^2 \notin J_1$. By induction, assume $J_{n-1} = xR + x_{s_{1}J_0}R + x_{s_{1}2J_1}R + x_{s_{2}2J_1}R + \cdots + x_{s_{1}n-1J_{n-2}}R + \cdots + x_{s_{n-1}n-1J_{n-2}}R$. For each $s = s_i \in S$ and n = m, there exists $x_{s_i nJ_{n-1}} \in I$ such that $s_i x_{s_i nJ_{n-1}}^n \notin J_{n-1}$. Thus, we construct an increasing sequence of ideals (J_n) of R, where each J_n is finitely generated and $J_{n-1} \subseteq J_n$. So J_n is S-root. There exist $s_r \in S$ and positive integers n, m such that for all $k \ge n$ and $x \in J_k, s_r x^m \in J_n$. Choose $k > \max\{r, n, m\}$. Then, $x_{s_k kJ_{k-1}} \in I_k$ and hence $s_r x_{s_k kJ_{k-1}}^m \in J_n$. Therefore,

$$s_r x_{s_r k J_{k-1}}^k = s_r x_{s_r k J_{k-1}}^m x_{s_r k J_{k-1}}^{k-m} \in J_n \subseteq J_{k-1},$$

which is a contradiction. \Box

Let *R* be a commutative ring with identity and *S* a multiplicative subset of *R*. We say that *S* is saturated if for every $a, b \in R$, if $ab \in S$, then both *a* and *b* are in *S*. Additionally, the set $S' = \{x \in R \mid x \text{ divides } s \text{ for some } s \in S\}$ is a saturated multiplicative subset of *R* called the saturation of *S* which includes *S*.

Theorem 2.10. *Let R be a ring and S a multiplicative subset of R.*

- 1. Let *T* be a multiplicative subset of *R* such that $S \subseteq T$. If *R* is a uniformly *S*-SFT ring, then *R* is a uniformly *T*-SFT ring.
- 2. Let *S'* be the saturation of *S* in *R*. Then *R* is a uniformly *S*-SFT ring if and only if *R* is a uniformly *S'*-SFT ring.
- 3. Let $f : R \to R'$ be a surjective ring homomorphism and *S* a multiplicative subset of *R* such that f(S) does not contain 0. If *R* is a uniformly *S*-SFT ring, then *R'* is a uniformly f(S)-SFT ring.

Proof. (1). Obvious.

(2). If *R* is a uniformly *S*-SFT ring, then by (1), *R* is a uniformly *S'*-SFT ring. Conversely, assume that *R* is a uniformly *S'*-SFT ring. There exists an $s \in S'$ such that for any ideal *I* of *R* there exist a finitely generated sub-ideal *J* of *I* and a positive integer *n* such that for any $a \in I$, $sa^n \in J$. Let $t \in S$ such that t = sr where $r \in R$. $ta^n = sra^n \in rJ \subseteq J$, and hence *R* is a uniformly *S*-SFT ring.

(3). Assume that *R* is a uniformly *S*-SFT ring. There exists an $s \in S$ such that each ideal of *R* is of strong finite type with respect to *s*. Let *J* be an ideal of *R'*. Since *f* is a surjective homomorphism, J = f(I) for some ideal *I* of *R*. Thus *I* is of strong finite type with respect to *s*. Let $b \in J$, then b = f(a) for some $a \in I$. So $sa^n \in K$ for some finitely generated sub-ideal *K* of *I* and some positive integer *n*. This implies that $f(sa^n) \in f(K)$, thus $f(s)b^n = f(sa^n) \in f(K)$. Note that f(K) is a finitely generated sub-ideal of f(I) = J. Hence *R'* is a uniformly f(S)-SFT ring. \Box

Remark 2.11. (1) Consider the multiplicative set S in Example 2.2, and let $T = \{1\}$. Then R is uniformly S-SFT. *Clearly* $T \subseteq S$ *and* R *is not uniformly* T*-SFT.*

(2) Note that the condition "f is surjective" in Theorem 2.10 (3) is necessary. Indeed, let $R = K[X_1, X_2, ...]$ be the polynomial ring in countably infinite variables over a field K and $S = U(K) = K - \{0\}$ (a multiplicative subset of K). Let $\Psi: K \to R$ defined by $\Psi(a) = a$. Then $\Psi(S) = S$. It is clear that Ψ is not surjective and K is a uniformly S-SFT ring. But R is not uniformly S-SFT.

Let *R* be a ring, *S* a multiplicative subset of *R*, and *I* an ideal of *R* disjoint with *S*. Let $s \in S$, we denote by \overline{s} the equivalence class of s in R/I. Let $\overline{S} = \{\overline{s} \mid s \in S\}$, then \overline{S} is a multiplicative subset of R/I.

Corollary 2.12. Let R be a ring, S a multiplicative subset of R and I an ideal of R disjoint with S. If R satisfies the uniformly S-SFT property, then R/I satisfies the uniformly \overline{S} -SFT property.

Let *R* be a ring and *S* a multiplicative subset of *R*. For any non-nilpotent element $s \in S$, consider the multiplicative subset $\langle s \rangle := \{1, s, s^2, ...\}$ of *S*. We denote by R_s the localization of *R* at $\langle s \rangle$.

We next study the Cohen's type theorem for uniformly S-SFT rings. To do this, we need the following results.

Lemma 2.13. Let R be a ring, S a multiplicative subset of R and I an ideal of R. Let s a non-nilpotent element of S. If I is of strong finite type with respect to s, then I_s is an SFT ideal of R_s .

Proof. Suppose that I is of strong finite type with respect to s. There exist a finitely generated sub-ideal Jof *I* and positive integer *n* such that for any $x \in I$, $sx^n \in J$. Let $b \in I_s$. Then $b = \frac{a}{s^r}$ for some $a \in I$ and some positive integer *r*. This implies that $b^n = \frac{a^n}{s^{rn}} = \frac{sa^n}{s^{rn+1}} \in J_s$. Note that J_s is a finitely generated sub-ideal of I_s .

Thus I_s is an SFT ideal of R_s .

Let *R* be a ring and *S* a multiplicative subset of *R*. Recall that *S* is called *anti-Archimedean* if for each $s \in S$, $S \cap (\bigcap s^n R) \neq \emptyset$, see [1]. In [13], the authors showed that, a finite multiplicative set is an anti-Archimedean

set. For example, let $R = \mathbb{Z}/12\mathbb{Z}$ and $S = \{\overline{1}, \overline{2}, \overline{4}, \overline{8}\} \not\subseteq U(R)$ is an anti-Archimedean multiplicative set of *R*. It is clear that if *R* is a uniformly *S*-SFT ring, then for any ideal *I* of *R*, there exist an $s \in S$, a finitely generated sub-ideal of I and a positive integer n such that $sa^n \in J$ for any $a \in I$. Our next example show that the converse of this implication is not true in general. First, we need the following proposition.

Proposition 2.14. *Let R be a ring and S a multiplicative subset of R disjoint from Nil*(*R*)*.*

- 1. If R is a uniformly S-SFT ring, then there exists an $s \in S$ such that R_s is an SFT ring.
- 2. If S is an anti-Archimedean multiplicative subset of R and R_s an SFT ring for some $s \in S$, then R is a uniformly S-SFT ring.

Proof. (1). Assume that R is a uniformly S-SFT ring. There exists an $s \in S$ such that any ideal I of R is strongly of finite type with respect to s. We will show that R_s is an SFT ring. Let F be an ideal of R_s , then $F = I_s$ for some ideal I of R. Thus by Lemma 2.13, $F = I_s$ is an SFT ideal of R_s , hence R_s is an SFT ring.

(2). Suppose that R_s is an SFT ring for some $s \in S$. Take $t \in S \cap (\bigcap s^n R)$. We will show that R is uniformly

S-SFT with respect to *t*. Let *I* be an ideal of *R*. Then I_s is an SFT ideal of R_s , so there exist an $n \in \mathbb{N}$ and a finitely generated sub-ideal *J* of *I* such that $x^n \in J_s$ for all $x \in I_s$. We will show that for all $a \in I$, $ta^n \in J$. Let $a \in I$. Then $\frac{a^n}{1} \in J_s$, thus $\frac{a^n}{1} = \frac{\alpha}{s^r}$ for some positive integer r and $\alpha \in J$. There exists a positive integer r' such that $s^{r'}a^n \in J$. As $t \in S \cap_{n \in \mathbb{N}} s^n R$, $t = s^{r'}a_{r'}$ for some $a_{r'} \in R$. This implies that $ta^n = s^{r'}a^n a_{r'} \in J$. \Box **Example 2.15.** Let $R = K[X_1, X_2, ...]$ be the polynomial ring in countably infinite variables over a field K. Set $S := R - \{0\}$. It is clear that for any ideal I of R, there exist an $s \in S$, a finitely generated sub-ideal J of I and a positive integer n such that $sa^n \in J$ for any $a \in I$. But R is not uniformly S-SFT. Indeed, let $s \in S$. Assume that R_s is an SFT ring. Let n be the minimal integer such that X_m does not divide any monomial of s for any $m \ge n$. Then $s \in K[X_1, X_2, ..., X_{n-1}]$. Let φ be the following mapping

$$\varphi: \qquad R_s \qquad \longrightarrow \qquad K[X_1, X_2, ..., X_{n-1}]_s[X_n, X_{n+1}, ...]$$
$$P = \frac{1}{s^k} \sum_i f_i(X_1, ..., X_{n-1}) h_i(X_n, X_{n+1}, ...) \qquad \longrightarrow \qquad \sum_i \frac{f_i(X_1, ..., X_{n-1})}{s^k} h_i(X_n, X_{n+1}, ...)$$

is an isomorphism.

Assume that $K[X_1, X_2, ..., X_{n-1}]_s[X_n, X_{n+1}, ...]$ is an SFT ring. Then for any ideal I of $K[X_1, X_2, ..., X_{n-1}]_s[X_n, X_{n+1}, ...]$, there exist a finitely generated sub-ideal J of I and positive integer r such that for any $a \in I$, $a^r \in J$. Let $I = (X_n, X_{n+1}, ...)$ the ideal of $K[X_1, X_2, ..., X_{n-1}]_s[X_n, X_{n+1}, ...]$. There exist a finitely generated sub-ideal J of I and positive integer n such that for any $a \in I$, $a^n \in J$. Assume that $J = (X_n, X_{n+1}, ..., X_k)$ for some k > n. Since $X_{k+1} \in I$, then $X_{k+1}^r \in J$, which is a contradiction. This implies that R_s is not SFT. Thus by Proposition 2.14, R is not uniformly S-SFT.

We are now ready to give the Cohen type theorem for uniformly S-SFT rings.

Theorem 2.16. Let *R* be a commutative ring and *S* an anti-Archimedean multiplicative subset of *R* such that $S \cap Nil(R) = \emptyset$. The following statements are equivalent.

1. *R* is a uniformly S-SFT ring.

2. There exists an $s \in S$ such that every radical ideal of R is of strong finite type with respect to s.

3. There exists an $s \in S$ such that every prime ideal of R is of strong finite type with respect to s.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Follows from the fact that every prime ideal of *R* is a radical ideal of *R*.

(3) \Rightarrow (1). Suppose that *R* is not a uniformly *S*-SFT ring. By Proposition 2.14, for all $s \in S$, R_s is not an SFT ring. Let *s* be such that there exists an $s \in S$ such that every prime ideal of *R* is of strong finite type with respect to *s*. Since R_s is not an SFT ring, there exists an ideal I_s of R_s which is not of strong finite type. Let $\mathcal{F} = \{Q \text{ ideal of } R \text{ such that } Q_s \text{ is not an SFT rideal of } R_s\}$. We have $\mathcal{F} \neq \emptyset$, since $I \in \mathcal{F}$. Let $(I_\lambda)_{\lambda \in \Lambda}$ be a chain in \mathcal{F} and $L = \bigcup_{\lambda \in \Lambda} I_\lambda$. Now, we will show that $L \in \mathcal{F}$. Assume that $L \notin \mathcal{F}$. There exist a finitely generated

sub-ideal *J* of *L* and a positive integer *n* such that for any $a \in L_s$, $a^n \in J_s$. Since *J* is finitely generated, there exists a $\lambda_0 \in \Lambda$ such that $J \subseteq I_{\lambda_0}$. Let $a \in (I_{\lambda_0})_s \subseteq L_s$. Then $a^n \in J_s \subseteq (I_{\lambda_0})_s$, a contradiction. Hence, by Zorn's Lemma, there is a maximal element *P* of \mathcal{F} . We prove that the maximal element *P* of \mathcal{F} is a prime ideal of *R*. Suppose that *P* is not prime. There exist $a, b \in R \setminus P$ such that $ab \in P$. We put I := P + aR and J := P + bR. Then $IJ = P^2 + (aR)P + (bR)P + (ab)R \subseteq P$. Since $P \subsetneq I$ and $P \subsetneq J$, by maximality of *P* there exist a finitely generated sub-ideal *I'* (respectively, *J'*) of *I* (respectively, of *J*) and $n, m \in \mathbb{N}$ such that for any $a \in I_s$, and $b \in J_s$, we get $a^n \in I'_s$ and $b^m \in J'_s$. Let $x \in P_s$. Then $x \in I_s$ and $x \in J_s$, thus $x^n \in I'_s$ and $x^m \in J'_s$. So $x^{n+m} \in I'_s J'_s$ which implies that $x^{n+m} \in (I'J')_s \subseteq P_s$. Then P_s is an SFT ideal. Thus $P \notin \mathcal{F}$, a contradiction. Hence *P* is a prime ideal of *R*. Note that P_s is not an SFT ideal. Then by Lemma 2.13, *P* is not of strong finite type with respect to *s*, a contradiction.

According to [17], a commutative ring R is called *uniformly S*-Noetherian if there exists an $s \in S$ such that for any ideal I of R, there exists a finitely generated sub-ideal J of I such that $sI \subseteq J$. In [18], the authors demonstrated that if S is an anti-Archimedean multiplicative subset of the ring R and T is a ring extension of R such that T is an *S*-finite R-module, then R is a uniformly *S*-Noetherian ring if and only if there exists an $s \in S$ such that for every prime ideal P of R, PT is an *S*-finite ideal of T with respect to s. By analogy, in Proposition 2.14 and Lemma 2.13, it is easy to show that if S is regular anti-Archimedean, then R_s is a Noetherian ring for some $s \in S$ implies that R is a uniformly *S*-Noetherian ring and if there exists an $s \in S$ such that I is finitely generated with respect to s, then I_s is a finitely generated ideal of R_s . Next remark, provides another proof of Cohen's theorem. **Remark 2.17.** *Let R be a commutative ring and S be a regular anti-Archimedean multiplicative subset of R. Then the following statements are equivalent.*

- 1. *R* is a uniformly S-Noetherian ring.
- 2. There exists an $s \in S$ such that every prime ideal of R is finitely generated with respect to s.

Proof. (2) \Rightarrow (1). Suppose that *R* is not uniformly *S*-Noetherian ring. Let *s* be such that every prime ideal of *R* is finitely generated with respect to *s*. As *R_s* is not Noetherian, thus there exists an ideal *I_s* of *R_s* which is not finitely generated. Let $\mathcal{F} = \{Q \text{ ideal of } R \text{ such that } Q_s \text{ is not finitely generated in } R_s\}$. We have $\mathcal{F} \neq \emptyset$, since $I \in \mathcal{F}$. Let $(I_\lambda)_{\lambda \in \Lambda}$ be a chain in \mathcal{F} and $L = \bigcup I_\lambda$. We show that $L \in \mathcal{F}$. Assume that $L \notin \mathcal{F}$.

There exists a finitely generated sub-ideal *J* of *L* such that $L_s = J_s$. Since *J* is finitely generated, there exists $\lambda_0 \in \Lambda$ such that $J \subseteq I_{\lambda_0}$. Then $(I_{\lambda_0})_s \subseteq L_s = J_s \subseteq (I_{\lambda_0})_s$, a contradiction. Hence, by Zorn's Lemma, there is a maximal element *P* of \mathcal{F} . We prove that the maximal element *P* of \mathcal{F} is a prime ideal of *R*. Suppose that *P* is not a prime ideal of *R*. There exists $a, b \in R \setminus P$ such that $ab \in P$. Since $P \subseteq P + aR$, by maximality of *P*, $(P + aR)_s$ is finitely generated in R_s , then there exist $p_1, ..., p_n \in P$, $r_1, ..., r_n \in R$ and a positive integer *q* such that $(P + aR)_s = (\frac{p_1+ar_1}{s^q}, ..., \frac{p_n+ar_n}{s^q})$. Let $x \in P_s \subseteq (P + aR)_s$. Then $x = \frac{p_1+ar_1}{s^q} \frac{\alpha_1}{s^k} + \cdots + \frac{p_n+ar_n}{s^q} \frac{\alpha_n}{s^k}$ for some $\alpha_1, ..., \alpha_n \in R$ and a positive integer *k*, thus $\frac{a}{1}(\frac{r_1}{s^q}\frac{\alpha_1}{s^k} + \cdots + \frac{r_n}{s^q}\frac{\alpha_n}{s^k}) = x - \frac{p_1}{s^q}\frac{\alpha_1}{s^k} - \cdots - \frac{p_n}{s^q}\frac{\alpha_n}{s^k} \in P_s$. Since $P \subset (P : a)$, again by maximality of *P*, $(P : a)_s$ is a finitely generated ideal of *R*. So there exist $\gamma_1, ..., \gamma_l \in (P : a)_s$ such that $(P : a)_s = (\gamma_1, ..., \gamma_l)R_s$. Put $y := \frac{r_1}{s^q}\frac{\alpha_1}{s^k} + \cdots + \frac{r_n}{s^q}\frac{\alpha_n}{s^k}$. Then $y \in (P_s : \frac{a}{1}) \subseteq (P : a)_s$. Then there exist a positive integer *t* and $\beta_1, ..., \beta_l \in R$, such that $y = \gamma_1 \frac{\beta_1}{s^l} + \cdots + \gamma_l \frac{\beta_l}{s^l}$. This implies that

$$x = \frac{p_1}{s^q} \frac{\alpha_1}{s^k} + \dots + \frac{p_n}{s^q} \frac{\alpha_n}{s^k} + \gamma_1 \frac{a\beta_1}{s^t} + \dots + \gamma_l \frac{a\beta_l}{s^t}.$$

Thus $x \in (\frac{p_1}{s^q}, ..., \frac{p_n}{s^q}, \gamma_1 \frac{a}{s^t}, ..., \gamma_l \frac{a}{s^t}) \subseteq P_s$. So $P_s \subseteq (\frac{p_1}{s^q}, ..., \frac{p_n}{s^q}, \gamma_1 \frac{a}{s^t}, ..., \gamma_l \frac{a}{s^t}) \subseteq P_s$, a contradiction. Hence *P* is a prime ideal of *R* such that P_s is not finitely generated ideal of R_s . So *P* is not a finitely generated with respect to *s*, which is a contradiction. \Box

Let *R* be a ring and *S* a multiplicative subset of *R*. Then *R* is called *of uniformly S-Noetherian spectrum* if there exists an $s \in S$ such that for any ideal *I* of *R*, $sI \subseteq \sqrt{J}$ for some finitely generated sub-ideal *J* of *I* (see [12]).

Remark 2.18. Let *R* be a ring and *S* a multiplicative subset of *R*. If *R* is uniformly *S*-SFT, then *R* is of uniformly *S*-Noetherian spectrum. Indeed, as *R* is uniformly *S*-SFT, there exists an $s \in S$ such that for any ideal I of *R* there exist a finitely generated sub-ideal J of I and a positive integer n such that for any $a \in I$, $sa^n \in J$. We show that *R* is of uniformly *S*-Noetherian spectrum with respect to *s*. Let *K* be an ideal of *R* and *x* an element of *K*, then $sx^n \in J$ for some finitely generated sub-ideal J of *K* and some positive integer *n*. Thus $s^n x^n \in J$; so $sx \in \sqrt{J}$. Hence $sI \subseteq \sqrt{J}$.

Example 2.19. Let *F* be a field, $X = \{X_1, X_2, ...\}$ a countably set of indeterminates over *F*, $J = \langle X_n^n, n \ge 1 \rangle F[X]$, R = F[X]/J and $S = F \setminus \{0\}$. If *P* is a prime ideal of *R*, then there exists a prime ideal *Q* of *F*[*X*] such that $J \subseteq Q$; so for all $n \in \mathbb{N}^*$, $X_n^n \in Q$ which implies that $X_n \in Q$ for all $n \in \mathbb{N}^*$. Thus $\langle X_n, n \ge 1 \rangle \subseteq Q$. Since $\langle X_n, n \ge 1 \rangle$ is a maximal ideal of *F*[*X*], $\langle X_n, n \ge 1 \rangle = Q$, hence $P = \langle \overline{X_n}, n \ge 1 \rangle$. So P = Nil(R). Then the only prime ideal of *R* is Nil(*R*) which implies that *R* is of uniformly *S*-Noetherian spectrum. On the other hand, *R* is not uniformly *S*-SFT because for all $s \in S$, $I = (\overline{X_1}, \overline{X_2}, ...)$ is not a strongly finite type ideal with respect to *s*. Indeed, if not, there exist $s \in S$ and two positive integers *n*, *k* such that for any $x \in I$, $sx^n \in (\overline{X_1}, \overline{X_2}, ..., \overline{X_k})$. Thus $s\overline{X_{n+k+1}^n} \in (\overline{X_1}, \overline{X_2}, ..., \overline{X_k})$ a contradiction.

Proposition 2.20. Let $R_1 \subseteq R_2$ be a ring extension such that for each finitely generated ideal I of R_1 , $IR_2 \cap R_1 = I$ and S a multiplicative subset of R_1 . If R_2 is uniformly S-SFT, then R_1 is uniformly S-SFT.

Proof. Let *I* be a ideal of R_1 . Since the ring R_2 is uniformly *S*-SFT, there exists an $s \in S$ such that for any ideal *J* of R_2 , there exist a finitely generated sub-ideal *K* of *J* and a positive integer *n* such that for any $x \in J$, $sx^n \in K$. Since IR_2 an ideal of R_2 , there exist $k \ge 1$ and a finitely generated ideal $K \subseteq IR_2$ of R_2 such that $sx^k \in K$ for every $x \in IR_2$. Let $F \subseteq I$ be a finitely generated ideal of R_1 such that $K \subseteq FR_2$ and $a \in I$. Hence $sa^k \subseteq K \cap R_1 \subseteq FR_2 \cap R_1 = F$ which implies that the ring R_1 is uniformly *S*-SFT. \Box

Let *R* be a commutative ring and *P* a prime ideal of *R*. Then $R \setminus P$ is a multiplicative subset of *R*. We say that *R* is a uniformly *P*-SFT ring if *R* is a uniformly ($R \setminus P$)-SFT ring.

Theorem 2.21. *The following assertions are equivalent for a commutative ring R.*

- 1. R is an SFT ring.
- 2. *R* is a uniformly *P*-SFT ring for any $P \in Spec(R)$.
- 3. *R* is a uniformly *M*-SFT ring for any $M \in Max(R)$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. These implications are trivial.

(3) \Rightarrow (1). By hypothesis, for any $M \in Max(R)$, there exists an $s_M \in R \setminus M$ such that for any ideal I of R, there exist a positive integer r and a finitely generated sub-ideal F_M of I such that for any $x \in I$, $s_M x^r \in F_M$. Let J be the ideal of R generated by the set $\{s_M \mid M \in Max(R)\}$. If $J \neq R$, then $J \subseteq M_0$ for some $M_0 \in Max(R)$. So $s_M \in M_0$, a contradiction. Thus J = R. Hence $1 = s_{M_1}\alpha_1 + \cdots + s_{M_n}\alpha_n$ for some $\alpha_1, ..., \alpha_n \in R$. Now, let I be an ideal of R. For each $1 \leq i \leq n$, there exists a finitely generated sub-ideal F_i of I and a positive integer r_i

such that for every $x \in I$, $s_{M_i}x^{r_i} \in F_{M_i}$. Put $r := \prod_{i=1}^n r_i$ and $F := \sum_{i=1}^n F_{M_i}$. Then F is a finitely generated sub-ideal of I. Moreover, for any $x \in I$,

$$x^{r} = 1 \cdot x^{r} = (s_{M_{1}}\alpha_{1} + \dots + s_{M_{n}}\alpha_{n})x^{r} \subseteq s_{M_{1}}x^{r} + \dots + s_{M_{n}}x^{r} \subseteq \sum_{i=1}^{n} F_{M_{i}} = F.$$

Hence *R* is an SFT ring. \Box

Proposition 2.22. Let *R* be a commutative ring with identity and $T \subseteq R$ a multiplicative subset of *R* consisting of non-zero-divisors. Let *S* be another multiplicative subset of *R*. If *R* satisfies the uniformly *S*-SFT property, then $T^{-1}R$ satisfies the uniformly *S'*-SFT property where $S' = \{\frac{s}{1}, s \in S\}$.

Proof. Since *R* is a uniformly *S*-SFT ring, there exists an $s \in S$ such that each ideal of *R* is of strong finite type with respect to *s*. Let $J = T^{-1}I$ be an ideal of $T^{-1}R$. There exist a finitely generated sub-ideal *K* of *I* and a positive integer *n* such that for any $x \in I$, $sx^n \in K$. Let $y \in J$, then $y = \frac{a}{t}$ for some $a \in I$ and $t \in T$, thus $sa^n \in K$. So $\frac{s}{1}y^n = \frac{sa^n}{1t^n} \in T^{-1}K$. Since $K \subseteq I$, $T^{-1}K \subseteq T^{-1}I = J$. This shows that *J* is of strong finite type with respect to $\frac{s}{1}$. So $T^{-1}R$ is a uniformly *S'*-SFT ring. \Box

The next Theorem give a necessary and sufficient condition for a product of rings $\prod_{i \in \Lambda} R_i$ to be uniformly

S-SFT, where
$$S = \prod_{i \in \Lambda} S_i$$
.

Theorem 2.23. Let $\Lambda \subseteq \mathbb{N}$ and $(R_i)_{i \in \Lambda}$ be a family of commutative rings. For each $i \in \Lambda$, let S_i be a multiplicative subset of R_i . Let $R = \prod_{i \in \Lambda} R_i$ and $S = \prod_{i \in \Lambda} S_i$. Then the following assertions are equivalent:

- 1. *R* is a uniformly S-SFT ring.
- 2. Λ is finite and for each $i \in \Lambda$, R_i is a uniformly S_i -SFT ring.

Proof. (1) \Rightarrow (2). Suppose that Λ is infinite. Since *R* is a uniformly *S*-SFT ring, there exists an $s = (s_1, s_2, ...) \in S$ such that for any ideal *J* of *R*, there exist a finitely generated sub-ideal *F* of *J* and a positive integer *r* such that for any $a \in J$, $sa^r \in F$. Let $J = (e_i \mid i \in I)$, with $e_i = (1, 1, ..., \underbrace{1}_{i-place}, 0, ...)$. So there exists a finitely generated

sub-ideal *F* of *J* and a positive integer *r* such that for any $a \in J$, $sa^r \in F$. Put $F := (e_i | 1 \le i \le n)$. Since $e_{n+1} \in J$, then $se_{n+1}^r \in F$. Hence $s_{n+1} = 0$, a contradiction.

Now, let φ_k be the k^{th} projection mapping, that is, $\varphi_k : R \to R_k$; $\varphi(x_1, ..., x_k, ...) = x_k$. Then φ_k is a surjective homomorphism of rings. Since $\varphi_k(S) = S_k$, by Theorem 2.10 (3), R_k is a uniformly S_k -SFT ring.

(2) \Rightarrow (1). To prove this implication, it is sufficient to show it in the case n = 2 and conclude by induction on n. Let $R = R_1 \times R_2$, and $S = S_1 \times S_2$ be such that R_1 (respectively, R_2) is a uniformly S_1 -SFT ring (respectively, uniformly S_2 -SFT). Let $s_1 \in S_1$ (respectively, $s_2 \in S_2$) such that each ideal of R_1 (respectively, R_2), is of strong finite type with respect to s_1 (respectively, s_2). Now, let $I = I_1 \times I_2$ be an ideal of R. For each $1 \le i \le 2$, there exists a finitely generated sub-ideal J_i of I_i and positive integers r_1, r_2 such that for any $a_1 \in I_1, a_2 \in I_2, s_i a_i^{r_i} \in J_i$. Let $y \in I$, then $y = (a_1, a_2)$ for some $a_1 \in I_1$ and $a_2 \in I_2$. We have

$$(s_1, s_2)(a_1, a_2)^{r_1r_2} = (s_1a_1^{r_1r_2}, s_2a_2^{r_1r_2}) \in J_1 \times J_2.$$

Hence *R* is a uniformly *S*-SFT ring. \Box

In the particular case when $S = \{1\}$, we find this result.

Corollary 2.24. Let $\Lambda \subseteq \mathbb{N}$ and $(R_i)_{i \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{i \in \Lambda} R_i$. Then the following

assertions are equivalent:

- 1. *R* is a SFT ring.
- 2. Λ is finite and for each $i \in \Lambda$, R_i is a SFT ring.

Example 2.25. Let R_1 be a non SFT ring and R_2 be a uniformly S_2 -SFT ring, where S_2 is a multiplicative subset of R_2 . We consider $R = R_1 \times R_2$ and $S := (S_1 \cup \{0\} \times S_2)$, where S_1 is a multiplicative subset of R_1 . Then S is a multiplicative subset of R. Since R_2 is a uniformly S_2 -SFT ring, there exists $s_2 \in S_2$ such that for any ideal K of R_2 there exists a finitely generated sub-ideal J of K and a positive integer n such that $sx^n \in J$ for any $x \in K$. Let $I := I_1 \times I_2$ be an ideal of R, where I_1 is an ideal of R_1 and I_2 is an ideal of R_2 . Take $s := (0, s_2) \in S$. Then for any $a = (a_1, a_2) \in I$, $sa^n = (0, s_2)(a_1, a_2)^n = (0, s_2a_2^n) \in \{0\} \times J$ for some sub-ideal J of I_2 and some positive integer n. Note that $\{0\} \times J$ is a finitely generated sub-ideal of I. This implies that R is uniformly S-SFT. However, as R_1 is not an SFT ring by Corollary 2.24, R is not an SFT ring.

3. Uniformly S-SFT properties on amalgamated algebras

In this section, we give a necessary and sufficient condition for the amalgamated algebra along an ideal to be uniformly *S*-SFT. To do this, we first recall the definition of the amalgamated algebra introduced in [7].

Definition 3.1. Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. Then the sub-ring $A \bowtie^f J$ of $A \times B$ is defined as follows:

$$A \bowtie^{f} I = \{(a, f(a) + j) \mid a \in A \text{ and } j \in I\}.$$

The ring $A \bowtie^{f} J$ *is called the* amalgamation of A with B along J with respect to f.

Let *A* and *B* be commutative rings with identity, $f : A \to B$ a ring homomorphism and *J* an ideal of *B*. Then f(A) + J is a sub-ring of *B*. For a multiplicative subset *S* of *A*, let $S' = \{(s, f(s)) | s \in S\}$. Then it is easy to see that *S'* is a multiplicative subset of $A \bowtie^f J$ and f(S) is a multiplicative subset of f(A) + J. For prime ideals *P* and *Q* of *A* and *B*, respectively, we put

$$P \bowtie^{f} J := \{(p, f(p) + j) | p \in P \text{ and } j \in J\}; \text{ and}$$

 $\overline{Q}^{f} := \{(a, f(a) + j) | a \in A, j \in J \text{ and } f(a) + j \in Q\}$

Then the prime ideals of $A \bowtie^f J$ are exactly of the type $P \bowtie^f J$ or \overline{Q}^f for some prime ideals P of A and Q of B which do not contain J. (See [8, Proposition 2.6(3)] or [11, Theorem 1.4]). Our next result give a necessary and sufficient condition for the amalgamated algebra $A \bowtie^f J$ to be uniformly S'-SFT. First, we need the following Remark.

Remark 3.2. Let A and B be commutative rings, $f : A \longrightarrow B$ a ring homomorphism, J an ideal of B and S an anti-Archimedean multiplicative subset of A. Then $S' = \{(s, f(s)) | s \in S\}$ is an anti-Archimedean multiplicative subset of $A \bowtie^f J$. Indeed, let $s \in S$ and $t \in S \cap (\bigcap_{n \in \mathbb{N}} s^n A)$. Then for all $n \in \mathbb{N}$, $t = s^n a_n$ for some $a_n \in A$. Thus

$$(t, f(t)) = (s^n a_n, f(s^n a_n)) = (s^n a_n, f(s^n) f(a_n)) = (s, f(s))^n (a_n, f(a_n)))$$

for all positive integers n. So $(t, f(t)) \in S' \cap (\bigcap_{n \in \mathbb{N}} (s, f(s))^n A \bowtie^f J)$. It is clear that $S \cap Nil(R) = \emptyset$ if and only if $S' \cap Nil(A \bowtie^f J) = \emptyset$.

Theorem 3.3. Let A and B be commutative rings, $f : A \longrightarrow B$ a ring homomorphism, J an ideal of B and S an anti-Archimedean multiplicative subset of A such that $S \cap Nil(R) = \emptyset$ and $f(S) \cap J = \emptyset$. Then the following statements are equivalent.

1. $A \bowtie^{f} J$ is a uniformly S'-SFT ring.

2. A is a uniformly S-SFT ring and f(A) + J is a uniformly f(S)-SFT ring.

Proof. (1) \Rightarrow (2). Let $P_A : A \bowtie^f J \to A$ and $P_B : A \bowtie^f J \to f(A) + J$ be the canonical epimorphisms.

Suppose that $A \bowtie^f J$ is a uniformly *S'*-SFT ring. Note that $P_A(A \bowtie^f J) = A$, $P_A(S') = S$, $P_B(A \bowtie^f J) = f(A) + J$ and $P_B(S') = f(S)$. Thus by Theorem 2.10 (3), *A* is a uniformly *S*-SFT ring and f(A) + J is a uniformly *f*(*S*)-SFT ring.

 $(2) \Rightarrow (1)$ Suppose that *A* is a uniformly *S*-SFT ring and f(A) + J is a uniformly f(S)-SFT ring. There exist $s_1, s_2 \in S$ such that for any ideal *I* of *A* and for any ideal *F* of f(A) + J, there exist $a_1, ..., a_n \in I$ and $b_1, ..., b_r \in F$ such that for any $a \in I, b \in F, s_1a^{k_1} \in (a_1, ..., a_n)$ and $f(s_2)b^{k_2} \in (b_1, ..., b_r)$ for some positive integers k_1, k_2 .

Since f(A) + J is an uniformly f(S)-SFT ring, (f(A) + J)/J is a uniformly f(S)-SFT ring by Corollary 2.12; so there exists an $s_3 \in S$ such that for any ideal P of (f(A) + J)/J, there exist a finitely generated sub-ideal P' of P and a positive integer k_0 such that for any $p \in P$, $\overline{f(s_3)}p^{k_0} \in P'$.

Now, let $s = s_1 s_2 s_3 \in S$. Since S is anti-Archimedean, $S \cap (\bigcap_{n \ge 1} s^n A) \neq \emptyset$. Let $t \in S \cap (\bigcap_{n \ge 1} s^n A)$. According

to Theorem 2.16, it suffices to show that for each prime ideal \mathcal{P} of $A \bowtie^f J$, there exist a finitely generated sub-ideal *L* of \mathcal{P} and a positive integer *m* such that $(t, f(t))(a, f(a) + b)^{n_0} \in L$ for any $(a, f(a) + b) \in \mathcal{P}$.

Case 1: $\mathcal{P} = \overline{Q}^{f} = \langle (a, f(a) + j), a \in A, j \in J \text{ and } f(a) + j \in Q \rangle$ where Q is a prime ideal of B. Let $Q_0 = (\overline{Q+J}) \cap f(A) + J$. Then Q_0 is an ideal of (f(A) + J)/J; so there exist a finitely generated sub-ideal $Q'_0 := \{\overline{f(a_i) + b_i} \mid i = 1, ..., n\}$ of Q_0 and a positive integer k_0 such that for any $p \in Q_0, \overline{f(s_3)}p^{k_0} \in Q'_0$. Let L_0 be the ideal of $A \bowtie^f J$ generated by the set $\{(a_i, f(a_i) + b_i) \mid i = 1, ..., n\}$.

Note that $I := f^{-1}(J) \cap P_A(\overline{Q}^I)$ is an ideal of A. There exist a finitely generated sub-ideal $I_0 := (\alpha_1, ..., \alpha_m)$ of I and a positive integer k_1 such that for any $a \in I$, $s_1 a^{k_1} \in I_0$. For each $i \in \{1, ..., m\}$, take any element $\beta_i \in J$ such that $f(\alpha_i) + \beta_i \in Q$. Let L_1 be the ideal of $A \bowtie^f J$ generated by the set $\{(\alpha_i, f(\alpha_i) + \beta_i) \mid i = 1, ..., m\}$.

Note that $Q_1 := Q \cap J$ is an ideal of f(A) + J. There exist a finitely generated sub-ideal $Q'_1 := (\gamma_1, ..., \gamma_p)$ of Q_1 and a positive integer k_2 such that for any $b \in Q_1$, $f(s_2)b^{k_2} \in Q'_1$. Let L_2 be the ideal of $A \bowtie^f J$ generated by the set $\{(0, \gamma_i) \mid i = 1, ..., p\}$.

Now, Let (a, f(a) + b) be an element of \overline{Q}^f . Then $f(a) + b \in (Q + J) \cap (f(A) + J)$ which implies that $\overline{f(a) + b} \in \overline{(Q + J) \cap (f(A) + J)} = Q_0$. Then

$$\overline{f(s_3)}(\overline{f(a)+b})^{k_0} = \sum_{i=1}^n \overline{(f(a_i)+b_i)(f(c_i)+d_i)}$$

for some $c_1, ..., c_n \in A$ and $d_1, ..., d_n \in J$. Let

$$X = f(s_3)(f(a) + b)^{k_0} - \sum_{i=1}^n (f(a_i) + b_i)(f(c_i) + d_i).$$

Then $X \in J$. We have

$$X = f(s_3)(f(a) + b)^{k_0} - \sum_{i=1}^n (f(a_i) + b_i)(f(c_i) + d_i)$$

= $f((s_3 a^{k_0}) - \sum_{i=1}^n a_i c_i) + \sum_{i=0}^{k_0 - 1} C_{k_0}^i f(s_3 a^i) b^{k_0 - i} - \sum_{i=1}^n b_i f(c_i) + d_i f(a_i) + b_i d_i.$

This implies that $f((s_3a^{k_0}) - \sum_{i=1}^n a_ic_i) \in J$. Let

$$Y = s_3 a^{k_0} - \sum_{i=1}^n a_i c_i.$$

Then $Y \in f^{-1}(J)$, hence we obtain

$$(s_3, f(s_3))(a, f(a) + b)^{k_0} = (s_3 a^{k_0}, f(s_3)(f(a) + b)^{k_0})$$

= $(Y + \sum_{i=1}^n a_i c_i, X + \sum_{i=1}^n (f(a_i) + b_i)(f(c_i) + d_i))$
= $(Y, X) + \sum_{i=1}^n (a_i, f(a_i) + b_i)(c_i, f(c_i) + d_i).$

Since for all $i \in \{1, ..., n\}$, $f(a_i) + b_i \in Q$,

$$Z_1 = \sum_{i=1}^n (c_i, f(c_i) + d_i)(a_i, f(a_i) + b_i) \in \overline{\mathbb{Q}}^f.$$

Thus $(Y, X) \in \overline{Q}^f$. Let $e = f(s_3) \sum_{i=1}^{k_0} C_{k_0}^i f(a)^{k_0-i} b^i - \sum_{i=1}^n (f(a_i)d_i + b_i f(c_i) + b_i d_i)$; so (Y, X) = (Y, f(Y) + e). Since $Y \in f^{-1}(J)$ and $(Y, X) \in \overline{Q}^f$, $Y \in P_A(\overline{Q}^f)$, and so $Y \in I = f^{-1}(J) \cap P_A(\overline{Q}^f)$. Therefore $s_1 Y^{k_1} = \sum_{i=1}^m \alpha_i r_i$ for some $r_1, ..., r_m \in A$. Hence we obtain

$$(s_{1}, f(s_{1}))(Y, X)^{k_{1}} = (s_{1}, f(s_{1}))(Y, f(Y) + e)^{k_{1}}$$

$$= (s_{1}Y^{k_{1}}, f(s_{1})(f(Y) + e)^{k_{1}})$$

$$= (s_{1}Y^{k_{1}}, f(s_{1})f(Y)^{k_{1}} + j_{1})$$

$$= (\sum_{i=1}^{m} \alpha_{i}r_{i}, \sum_{i=1}^{m} (f(\alpha_{i}) + \beta_{i})f(r_{i}) + j_{2})$$

$$= \sum_{i=1}^{m} (\alpha_{i}, f(\alpha_{i}) + \beta_{i})(r_{i}, f(r_{i})) + (0, j_{2}),$$

where $j_1 = f(s_1) \sum_{i=1}^{k_1} C_{k_1}^i f(Y)^{k_1 - i} e^i$ and $j_2 = j_1 - \sum_{i=1}^m \beta_i f(r_i)$. Let $Z_2 = \sum_{i=1}^m (r_i, f(r_i))(\alpha_i, f(\alpha_i) + \beta_i) \in L_1.$ Since $(\alpha_i, f(\alpha_i) + \beta_i) \in \overline{Q}^f$ for all $i \in \{1, ..., m\}$, $Z_2 \in \overline{Q}^f$, so $(0, j_2) \in \overline{Q}^f$. Therefore we can find a positive integer k_2 such that $f(s_2)j_2^{k_2} = \sum_{i=1}^p \gamma_i(f(x_i) + y_i)$ for some $x_1, ..., x_p \in A$ and $y_1, ..., y_p \in J$. Then

$$(s_2, f(s_2))(0, j_2)^{k_2} = \sum_{i=1}^p (x_i, f(x_i) + y_i)(0, \gamma_i) \in L_2.$$

Put $k := k_0 k_1 k_2$ and $t := s^k \zeta_k = (s_1 s_2 s_3)^k \zeta_k$.

$$\begin{aligned} (t,f(t))(a,f(a)+b)^k &= \left((s_1s_2s_3)^k \zeta_k, f((s_1s_2s_3)^k \zeta_k)\right) \left[(a,f(a)+b)^{k_0}\right]^{k_1k_2} \\ &= \left((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k, f((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k)\right) \left[(S_3,f(s_3))(a,f(a)+b)^{k_0}\right]^{k_1k_2} \\ &= \left((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k, f((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k)\right) \left[(Y,X)+Z_1\right]^{k_1k_2} \\ &= \left((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k, f((s_1s_2)^k s_3^{k-k_1k_2} \zeta_k)\right) \left[((Y,X)+Z_1\right]^{k_1} \right]^{k_2} \\ &= \left(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k, f(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k)\right) \left[(s_1,f(s_1)) \sum_{i=0}^{k_1} C_{k_1}^i Z_1^i (Y,X)^{k_1-i}\right]^{k_2} \\ &= \left(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k, f(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k)\right) \left[(s_1,f(s_1))(Y,X)^{k_1}+Z_3\right]^{k_2} \\ &= \left(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k, f(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k)\right) \left[Z_2 + (0,j_2) + Z_3\right]^{k_2} \\ &= \left(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k, f(s_1^{k-k_2} s_2^k s_3^{k-k_1k_2} \zeta_k)\right) \sum_{i=1}^{k_2} C_{k_2}^i (Z_2 + Z_3)^i (0,j_2)^{k_2-i} \\ &+ \left(s_1^{k-k_2} s_3^{k-k_1k_2} \zeta_k, f(s_1^{k-k_2} s_3^k s_3^{k-k_1k_2} \zeta_k)\right) \left(s_2, f(s_2)\right)^k (0,j_2)^{k_2}. \end{aligned}$$
with $Z_3 = (s_1, f(s_1)) \sum_{i=1}^{k_1} C_{k_1}^i Z_1^i (Y, X)^{k_1-i} \in L_0. Note that $Z_2 \in L_1$ and $Z_3 \in L_0$; so $\sum_{i=1}^{k_2} C_{k_2}^i (Z_2 + Z_3)^i (0,j_2)^{k_2-i} \in L_0.$$

 $\overline{L_0} + L_1$. As $(s_2, f(s_2))(0, j_2)^{k_2} \in L_2$, $(s_2, f(s_2))^k (0, j_2)^{k_2} \in L_2$. Therefore

$$(t, f(t))(a, f(a) + b)^k \in (L_0 + L_1 + L_2).$$

Note that $L_0 + L_1 + L_2$ is a finitely generated sub-ideal of \overline{Q}^f .

Case 2: $\mathcal{P} = P \bowtie^{f} J$ for some prime ideal P of A. There exist $p_1, ..., p_n \in P, b_1, ..., b_r \in J$ such that for any $a \in P, b \in J, s_1 a^m \in (p_1, ..., p_n)$ and $f(s_2)b^q \in (b_1, ..., b_r)$ for some positive integers m, q. Put $t = s^k \zeta_k$ in (Case 1). Let $a \in P$ and $j \in J$.

$$\begin{aligned} (t,f(t))(a,f(a)+j)^{m+q} &= (t,f(t))((a,f(a))+(0,j))^{m+q} \\ &= (t,f(t))\sum_{i=0}^{m+q}C_{m+q}^{i}(a,f(a))^{i}(0,j)^{m+q-i} \\ &= (t,f(t))(\sum_{i=0}^{m}C_{m+q}^{i}(a,f(a))^{i}(0,j)^{m+q-i} + \sum_{i=m+1}^{m+q}C_{m+q}^{i}(a,f(a))^{i}(0,j)^{m+q-i}) \\ &= \sum_{i=0}^{m}C_{m+q}^{i}(t,f(t))(a,f(a))^{i}(0,j)^{q}(0,j)^{m-i} + \sum_{i=m+1}^{m+q}C_{m+q}^{i}(t,f(t))(a,f(a))^{m}(a,f(a))^{i-m}(0,j)^{m+q-i} \\ &= \sum_{i=0}^{m}C_{m+q}^{i}(a,f(a))^{i}(0,j)^{m-i}\sum_{\alpha=1}^{r}(0,b_{\alpha}(f(x_{\alpha})+y_{\alpha})) \end{aligned}$$

108

S. Guesmi, A. Hamed / Filomat 39:1 (2025), 97-111

$$+\sum_{i=m+1}^{m+q} C_{m+q}^{i}(a, f(a))^{i-m}(0, j)^{m+q-i} \sum_{\beta=1}^{n} (p_{\beta}r_{\beta}, f(p_{\beta}r_{\beta}))$$
$$((0, b_{\alpha}), (p_{\beta}, f(p_{\beta})), 1 \le \alpha \le r, 1 \le \beta \le n).$$

So $(t, f(t))(a, f(a) + j)^{m+q} \in ((0, b_{\alpha}), (p_{\beta}, f(p_{\beta})), 1 \le \alpha \le r, 1 \le \beta \le n)$. Since $a_{\beta} \in P$ for all $1 \le \beta \le n$ and $b_{\alpha} \in J$ for all $1 \le \alpha \le r$, then $((0, b_{\alpha}), (p_{\beta}, f(p_{\beta})), 1 \le \alpha \le r, 1 \le \beta \le n) \subseteq \mathcal{P}$. \Box

The *amalgamated duplication of a ring R along an ideal I* is a ring that is defined as the following sub-ring of $R \times R$ (as a particular case of the amalgamation) [9]:

$$R \bowtie I = \{(r, r+i) | r \in R, i \in I\}.$$

Let $S' = \{(s, s) \mid s \in S\}$, where *S* is an anti-Archimedean multiplicative subset of *R*. Then *S'* is an anti-Archimedean multiplicative subset of $R \bowtie I$. Combining Theorem 3.3 and Theorem 2.23, we obtain the following Corollaries.

Corollary 3.4. The following statements are equivalent for a commutative ring R.

- 1. *R* is a uniformly S-SFT ring.
- 2. $R \bowtie I$ is a uniformly S'-SFT ring.
- 3. $R \times R$ is a uniformly $S \times S$ -SFT ring.

 \in

Corollary 3.5. Let *R* be a ring, *I* an ideal of *R*, $s : R \mapsto R/I$ be the canonical homomorphism, and *J* an ideal of *R/I*. Then $R \bowtie^s J$ is a uniformly S-SFT-ring if and only if *R* is a uniformly S-SFT-ring.

Proof. We have s(R) + J = R/I + J = R/I. By Theorem 2.10(3), if *R* is an uniformly *S*-SFT-ring, so is *R*/*I*.

Let *R* be a commutative ring with identity and *M* a unitary *R*-module. Then the *Nagata's idealization* of *M* in *R* (or *trivial extension* of *R* by *M*) is the commutative ring

$$R(+)M := \{(r, m) | r \in R \text{ and } m \in M\}$$

Endowed with the usual addition and the multiplication defined by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ for all $(r_1, m_1), (r_2, m_2) \in R(+)M$. It is clear that (1, 0) is the identity of R(+)M. It was shown that if Q is a prime ideal of R(+)M, then Q = P(+)M for some prime ideal P of R. Conversely if P is a prime ideal of R, then P(+)M is a prime ideal of R(+)M [14, Theorem 25.1(3)] (or [3, Theorem 3.2(2)]).

It is clear that if *S* is a multiplicative subset of *R* and *N* a submodule of *M*, then S(+)N is a multiplicative subset of R(+)M. Our next result give a necessary and sufficient condition for the Nagata's idealization R(+)M to be uniformly (S(+)N)-SFT ring. First, we need the following Remark.

Remark 3.6. Let *R* be a commutative ring with identity and *M* a unitary *R*-module. If *S* is an anti-Archimedean multiplicative subset of *R*, then $(S(+)\{0\})$ is an anti-Archimedean multiplicative subset of R(+)M. Indeed, let $s \in S$ and $t \in S \cap (\bigcap_{n \in \mathbb{N}} s^n R)$. Then for all $n \in \mathbb{N}$, $t = s^n a_n$ for some $a_n \in R$. Thus for all $n \in \mathbb{N}$,

$$(t,0) = (s^n a_n, 0) = (s,0)^n (a_n, 0).$$

So $(t, 0) \in S(+)\{0\} \cap (\cap (s, 0)^n R(+)M)$.

It is clear that $S \cap Nil(R) = \emptyset$ if and only if $(S(+)\{0\}) \cap Nil(R(+)M) = \emptyset$.

Theorem 3.7. Let *R* be a commutative ring with identity, *S* an anti-Archimedean multiplicative subset of *R* disjoint from Nil(*R*) and *M* a unitary *R*-module. Then the following statements are equivalent.

- 1. *R* is a uniformly S-SFT ring.
- 2. R(+)M is an $(S(+)\{0\})$ -SFT ring.
- 3. R(+)M is an (S(+)N)-SFT ring.

109

Proof. (1) \Rightarrow (2). Suppose that *R* is a uniformly *S*-SFT ring. There exists an $s \in S$ such that any ideal *I* of *R* is strong finite type with respect to *s*. Let $\mathcal{P} = P(+)M$ be a prime ideal of R(+)M, where *P* is a prime ideal of *R*. Then *P* is of strong finite type with respect to *s*. There exist a finitely generated sub-ideal *J* of *P* and positive integer *r* such that for any $a \in P$, $sa^r \in J$.

Let $(a, m) \in \mathcal{P}$. We show that $(s, 0)(a, m)^{r+1} \in J(+)JM$. Since $a \in P$, $(sa)^r \in J$. Then

$$(s,0)(a,m)^{r+1} = (s,0)(a^{r+1},(r+1)a^rm) = (\underbrace{sa^{r+1}}_{\in J},\underbrace{(r+1)sa^rm}_{\in IM}) \in J(+)JM.$$

Note that $J(+)JM = (J \times \{0\})R(+)M$. As *J* is a finitely generated sub-ideal of *I*, there exist $j_1, ..., j_t \in I$ such that $J = (j_1, ..., j_t)R$. So $J(+)JM = (J \times \{0\})R(+)M = ((j_1, 0), ..., (j_t, 0))R(+)M$. This implies that J(+)JM is a finitely generated sub-ideal of \mathcal{P} and $(s, 0) \in S(+)\{0\}$. Thus \mathcal{P} is of strong finite type ideal of R(+)M, with respect to (s, 0), and hence R(+)M is a uniformly $(S(+)\{0\})$ -SFT ring.

 $(2) \Rightarrow (3)$. As $S(+)\{0\} \subseteq S(+)N$, by Theorem 2.10(1), R(+)M is a uniformly (S(+)N)-SFT ring.

(3)⇒(1). Follows from Theorem 2.10 (3) and the fact that the naturel mapping Φ : $R(+)M \rightarrow R$ defined by $\Phi(r, m) = r$ is a surjective ring homomorphism with $\Phi(S(+)N) = S$. □

Let *R* be a commutative ring and *S* a multiplicative subset of *R*. If *R* is uniformly *S*-Noetherian, then *R* is uniformly *S*-SFT. This implication follows from the fact that if *R* is uniformly *S*-Noetherian, then there exists an $s \in S$ such that for every ideal *I* there exists a finitely generated sub-ideal of *I* such that $sI \subseteq J \subseteq I$. So for every $x \in I$, $sx \in sI \subseteq J \subseteq I$ which implies that *I* is of strong finite type ideal with respect to *s*. The converse is not necessarily true, which means that there exist rings that are uniformly *S*-SFT but not uniformly *S*-Noetherian.

Example 3.8. Let $R = \mathbb{Z}(+)\mathbb{Z}[X]$ and $S = \{1\}$ is an anti-archimedean multiplicative set. Then $S(+)\mathbb{Z}[X]$ is a multiplicative subset of $\mathbb{Z}(+)\mathbb{Z}[X]$. Since \mathbb{Z} is a uniformly S-SFT ring, by Theorem 3.7, $\mathbb{Z}(+)\mathbb{Z}[X]$ is a uniformly $(S(+)\mathbb{Z}[X])$ -SFT ring. Now, by [17, Proposition 3.1], if $\mathbb{Z}(+)\mathbb{Z}[X]$ is a uniformly $(S(+)\mathbb{Z}[X])$ -Noetherian ring, then \mathbb{Z} is a uniformly S-Noetherian ring and $\mathbb{Z}[X]$ is a uniformly S-Noetherian \mathbb{Z} -module. This implies that $\mathbb{Z}[X]$ is an S-finite \mathbb{Z} -module a contradiction. So $\mathbb{Z}(+)\mathbb{Z}[X]$ is a uniformly $(S(+)\mathbb{Z}[X])$ -SFT ring which is not uniformly $(S(+)\mathbb{Z}[X])$ -Noetherian.

Example 3.9. Let $R = \mathbb{Z}/6\mathbb{Z}$, $M = \mathbb{Z}/6\mathbb{Z}[X]$ and $S = \{\overline{1}, \overline{3}\}$. By [13], S is an anti-archimedean multiplicative subset of R. Then S(+)M is a multiplicative subset of R(+)M. Since R is a uniformly S-SFT ring, by Theorem 3.7, R(+)M is a uniformly (S(+)M)-SFT ring. Now, by [17, Proposition 3.1], if R(+)M is a uniformly (S(+)M)-Noetherian ring, then M is an S-finite R-module a contradiction.

Acknowledgments

The authors would like to thank the referees for their thorough reviews and useful comments, which have helped improve the clarity and relevance of this paper.

References

- [1] D.D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
- [2] D.D. Anderson, K.R. Knopp and R. L. Lewin, Almost Bezout domains, II, J. Algebra, 167 (1994), 547-556.
- [3] D.D. Anderson and M. Winders, Idealization of a module, Comm. Algebra, 1 (2009), 3-56.
- [4] J.T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc., 177 (1973), 299-304.
- [5] C. Bakkari, Armendariz and SFT Properties in Subring Retracts, Mediterranean J. math., 6(2009), 339-345.
- [6] I.S. Cohen, Commutative rings with restricted minimum condition, Duke J. Math., 17 (1950), 27-42.
- [7] M. D'Anna, C.A. Finocchiaro, and M. Fontana, *Amalgamated algebras along an ideal*, in: M. Fontana, et al.(Eds.), Commutative Algebra and Its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Its Applications, Fez, Morocco, W. de Gruyter Publisher, Berlin, (2008), 155-172.
- [8] M. D'Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.

- [9] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6 (2007), 443-459.
- [10] M. Eljeri, S-Strongly Finite Type Rings, Asian research J. math; 9(4) (2018) 1-9.
- [11] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123 (1980), 331-355.
- [12] S. Guesmi and A. Hamed, Noetherian spectrum condition and the ring A[X], J. Algebra Appl., (to appear).
- [13] A. Hamed and S. Hizem, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra, 44 (2016), 1941-1951.
- [14] J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York and Basel, (1988).
- [15] A. Moussavi, F. Padashnik, Some Examples of S-Noetherian Rings, 47th Annual Iranian Mathematics Conference 28-31 August 2016.
- [16] K. Louartiti and N. Mahdou, Amalgamated algebra extensions defined by von neumann regular and SFT conditions, Gulf J. math., 1(2013), 105-113.
- [17] W. Qi, H. Kim, F. Wang, M. Chen and W. Zhao, Uniformly S-Noetherian rings, Quaestiones Mathematicae, (to appear).
- [18] X. Zhang, A note on the cohen type theorem and the eakin-nagata type theorem for uniformly s-noetherian rings, (2023). https://doi.org/10.48550/arxiv.2302.09296