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Abstract. In this article, we examine the notion of uniformly S-SFT and study its properties. Let R be a
commutative ring and S a multiplicative subset of R. A ring R is said to be uniformly S-SFT if there exists
an element s in S such that for every ideal I of R, there exist a finitely generated sub-ideal J of I and a
positive integer n with the property that san

∈ J for all a in I. Our investigation includes proving Cohen’s
Theorem for uniformly S-SFT rings and analyzing the behavior of uniformly S-SFT property under various
ring operations like Nagata’s idealization and amalgamation of algebras.

1. Introduction

Throughout this article, R is always a commutative ring with identity. Recall from [4] that R is called an
SFT ring if for any ideal I of R, there exist a finitely generated sub-ideal J of I and a positive integer n such
that an

∈ J for any a ∈ I. In [4], Arnold showed that if R is not an SFT-ring, then dim(R[[X]]) = ∞.
A subset S of ring R is a multiplicative subset if 1 ∈ S, 0 < S, and for any s, t ∈ S, the product st is also

in S. In the first part of this paper, we introduce the concept of uniformly S-SFT ring and study its basic
properties. Let R be a commutative ring. We say that R is a uniformly S-SFT ring if there exists an s ∈ S
such that for any ideal I of R, there exist a finitely generated sub-ideal J of I and a positive integer n such
that san

∈ J for all a ∈ I. It is clear that if R is a SFT ring, then R is an uniformly S-SFT ring. However,
this implication is not reversible. Some counterexamples are given in Example 2.2 and Example 2.25. An
increasing sequence (Ik)k∈N of ideals of R is called S-root if there exist two positive integers n,m and an s ∈ S
such that for each k ≥ n if x ∈ Ik, then sxm

∈ In. Now, let s ∈ S. We say that every increasing sequence
of ideals of R is S-root with respect to s if for every increasing sequence (Ik)k∈N of ideals of R there exist
two positive integers n,m such that for each k ≥ n and for every x ∈ Ik, sxm

∈ In. We show that, if S is a
multiplicative subset of R, then R satisfies the uniformly S-SFT property if and only if there exists an s ∈ S
such that every increasing sequence of ideals of R is S-root with respect to s. (Theorem 2.6). Cohen’s type
theorem is of importance in the analysis of Noetherian rings. In the 1950s, Cohen made a groundbreaking
discovery that states that a ring R is Noetherian if and only if each prime ideal of R can be generated
by a finite number of elements (see [6]). This result has since then been extensively used in the field.
More recently, in [4], J.T. Arnold expanded upon Cohen’s work by demonstrating that a similar statement
holds true for SFT rings. Specifically, a ring R is considered SFT if it satisfies the following condition: for

2020 Mathematics Subject Classification. Primary: 13E05, 13A15, 13E99
Keywords. SFT ideal, Uniformly S-SFT ring, SFT ring, Cohen’s Theorem, S-root.
Received: 07 December 2023; Revised: 07 June 2024; Accepted: 08 November 2024
Communicated by Dijana Mosić
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every prime ideal P of R, there exist a finitely generated sub-ideal Q of P and a positive integer n such
that for any element a ∈ P, an

∈ Q. In our research, we aim to build upon these findings by providing
a more comprehensive understanding of Cohen’s theorem and its applications to uniformly S-SFT rings.
First, recall that a multiplicative set S of a commutative ring R is called anti-Archimedean if for each s ∈ S,
S ∩ (∩n≥1snR) , ∅, (see [1]). Let R be a ring and S an anti-Archimedean multiplicative subset of R, then R is
a uniformly S-SFT ring, if and only if there exists an s ∈ S such that for every prime ideal P of R there exist
a finitely generated sub-ideal Q of P and a positive integer n such that san

∈ Q for all a ∈ P.We also give a
necessary and sufficient condition for a product of rings

∏
i∈Λ

Ri to be uniformly S-SFT, where S =
∏
i∈Λ

Si.We

demonstrate that the following assertions are equivalent:

1. R is a uniformly S-SFT ring.
2. Λ is finite and for each i ∈ Λ, Ri is a uniformly Si-SFT ring.

Finally, we consider the uniformly S-SFT property over some ring constructions, specifically, Nagata’s
idealization ring R(+)M and the amalgamated algebras along an ideal A ▷◁ f J (the concepts of the Nagata’s
idealization ring and amalgamated algebras along an ideal will be reviewed in Section 3). We prove that if
f : A −→ B is a ring homomorphism, J an ideal of B, S an anti-Archimedean multiplicative subset of A and
S′ = {(s, f (s)) | s ∈ S}, then A ▷◁ f J is a uniformly S′-SFT ring if and only if A is a uniformly S-SFT ring and
f (A)+ J is a uniformly f (S)-SFT ring (Theorem 3.3). Additionally, we show that if M is a unitary R-module,
N an R-submodule of M and S an anti-Archimedean multiplicative subset of R, then R is a uniformly S-SFT
ring if and only if R(+)M is a uniformly (S(+)N)-SFT ring (Theorem 3.7).

2. Uniformly S-SFT Rings

We start this section by introducing the following definition in order to generalize some known results
about rings satisfying the SFT property.

Definition 2.1. Let R be a commutative ring, S a multiplicative subset of R, and s an element of S. We say that an
ideal I of R is of strong finite type with respect to s if there exist a positive integer n and a finitely generated sub-ideal
J of I such that for any a ∈ I, san

∈ J.
We also define R to satisfies the uniformly S-SFT property if there exists an s ∈ S such that each ideal of R is of

strong finite type with respect to s.

Example 2.2. Let F be a field, R = F[X1,X2, ...]/(XiX j, i , j) and S = {X1
i
| i ∈N}. Assume that R is an SFT ring.

Let I = (X1,X2, ...) be an ideal of R. There exist a positive integer n and a finitely generated sub-ideal J of I such that
for any a ∈ I, an

∈ J. Assume that J = (X1,X2, ...,Xk) for some k ≥ 1. Since Xk+1 ∈ I, Xk+1
n
∈ J, a contradiction.

We show that R is uniformly S-SFT. Let P be an ideal of R. Then by [15, Example 3.1], X1P is a principal ideal.
Thus for any a ∈ P, X1a ∈ X1P ⊆ P, and hence R is a uniformly S-SFT ring.

Example 2.3. Let p be a prime integer, R =
∏
n∈N∗
Z/pnZ. Then R is not an SFT ring. Indeed, let I = ((ei), i ∈ N)

with ei = (0, ..., 1, 0, ...). Assume that I is an SFT ideal, there exist a positive integer n and a finitely generated
sub-ideal J of I such that xn

∈ J for all x ∈ I. Assume that J = (e1, ..., ek) for some k ≥ 1. Thus en
k+1 ∈ J which is a

contradiction. Now, let s = (1, p, p, 0, ...). Note that s2 = (1, 0, p2, 0, ...), s3 = (1, 0, 0, 0, ...) and sk = s3 for all k ≥ 3.
Let S = {1, s, s2, s3

}. Then S is a multiplicative subset of R. Let I be an ideal of R and a ∈ I. Then sa ∈ sI. An element
of sI is of the form (a1, a2, a3, 0, ...) with ai ∈ Z/piZ. Then sI is a finitely generated ideal of R. It is also contained in I
which implies that sa ∈ sI ⊆ I. Hence, R is uniformly S-SFT ring.

Let R be a commutative ring and S a multiplicative subset of R. We define R to be S-strongly finite type
ring (in short S-SFT ring ) if for each ideal I of R there exist an s ∈ S, a finitely generated sub-ideal J of I and
positive integer m such that sam

∈ J for any a ∈ I [10].
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Remark 2.4. Let R be a ring and S a finite multiplicative subset of R. Then R is a uniformly S-SFT ring if and only
if R is an S-SFT ring. Indeed, it is clear that if R is a uniformly S-SFT ring, then R is an S-SFT ring. Conversely, let
S = {s1, ..., sr} and put s := s1 · · · sr. Assume that for any ideal I of R there exist a finitely generated sub-ideal J of I and
an positive integer n such that sian

∈ J for some si ∈ S i ∈ {1, ..., r}. Then san = s1 · · · sran
∈ s1 · · · si−1si+1 · · · sr J ⊆ J.

This implies that R is a uniformly S-SFT ring.

A ring extension A ⊆ B is called a root extension if for each element b ∈ B, there exists a positive integer
n (depending on b) such that bn

∈ A. ([2]). Expanding on this notion, we introduce the following new
definition to ideals:

Definition 2.5. Let R be a commutative ring, S a multiplicative subset of R and (Ik)k∈N an increasing sequence of
ideals of R.

1. (Ik)k∈N is called S-root if there exist an s ∈ S (depending on (Ik)k∈N) and two positive integers n,m such that
for each k greater than or equal to n and for every x ∈ Ik, sxm belongs to In.

2. Let s ∈ S. It is said that every increasing sequence of ideals of R is S-root with respect to s if for every increasing
sequence (Ik)k∈N of ideals of R there exist two positive integers n,m such that for each k ≥ n and for every x ∈ Ik,
sxm
∈ In.

3. In the specific case where S = {1}, the sequence (Ik)k∈N is termed a ”root” sequence if there exist two positive
integers n and m, such that for all k ≥ n, and for all x ∈ Ik, xm is an element of In.

Theorem 2.6. Let R be a commutative ring and S a multiplicative subset of R. The following statements are
equivalent.

1. R satisfies the uniformly S-SFT property.
2. There exists an s ∈ S such that every increasing sequence of ideals of R is S-root with respect to s.

Proof. (1)”⇒”(2). Assume that R satisfies the uniformly S-SFT property. There exists an s ∈ S such that for
any ideal I of R there exist a finitely generated sub-ideal J of I and a positive integer m such that sxm

∈ J for
all x ∈ I. Let (In)n∈N be an increasing sequence of ideals of R. We prove that this increasing sequence is S-root
with respect to s. Put I =

⋃
n∈N In. Then I is an ideal of R. Moreover by hypothesis there exist a finitely

generated sub-ideal J of I and a positive integer m such that sxm
∈ J for all x ∈ I. Put J = a1R + · · · + anR for

some a1, ..., an ∈ I. Note that for 1 ≤ i ≤ n, there exists an ni ∈N such that ai ∈ Ini . Let n0 = max{ni, 1 ≤ i ≤ n}.
Then J ⊆ In0 . This implies that for all k ≥ n0, for any x ∈ Ik ⊆ I, sxm

∈ J ⊆ In0 . Hence the sequence (In)n∈N is
S-root with respect to s.

(2)”⇒”(1). Let s ∈ S in (2). Assume that R is not uniformly S-SFT with respect to s. There exists an
ideal I of R such that for each finitely generated sub-ideal J of I and every positive integer m, there exists
an a0 ∈ I such that sam

0 < J. Let a ∈ I and define I0 = aR. For n = 1, there exists an a1I0 ∈ I such that
sa1I0 < I0. Define I1 = aR + a1I0 R. For n = 2, there exists a2I1 ∈ I such that sa2

2I1
< I1. By induction, define

In−1 = aR + a1I0 R + · · · + an−1In−2 R. Since I is not of strong finite type ideal with respect to s, for any n = m
there exists an amIm−1 ∈ I such that sam

mIm−1
< Im−1. Thus, we construct an increasing sequence of ideals (In)

of R. Therefore, the sequence (In)n is S-root with respect to s. There exist n,m ∈ N such that for all k ≥ n,
sxm
∈ In for all x ∈ Ik. Choose k > max{n,m}. Then, sak

kIk−1
= sam

kIk−1
ak−m

kIk−1
∈ In ⊆ Ik−1, a contradiction.

In the particular case when S = {1}, we find the following corollary.

Corollary 2.7. Let R be a commutative ring. Then the following statements are equivalent.

1. R satisfies the SFT property.
2. Every increasing sequence of ideals of R is root.

Example 2.8. Let R = (Z/4Z)[X1,X2, · · · ] and S = {3
n
,n ∈ N}. Then R is not uniformly S-SFT ring. Indeed, let

I1 ⊆ I2 ⊆ · · · an ascending chain of ideals of R with Ik = ⟨2X1, 2X2, ..., 2Xk⟩. Assume that there exist an s ∈ S and two
positive integers m, k such that for every n ≥ k if x ∈ In, then sxm

∈ Ik. Thus s2Xm
k+1 ∈ Ik, which is a contradiction.
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Proposition 2.9. Let R be a commutative ring and S be an at most countable multiplicative subset of R. Then the
following statements are equivalent.

1. R satisfies the S-SFT property.
2. Every increasing sequence of ideals of R is S-root.

Proof. (1)”⇒”(2). Assume that for any ideal I of R there exist a finitely generated sub-ideal J of I and a
positive integer m such that for all x ∈ I, sxm

∈ J for some s ∈ S. Let (In)n∈N be an increasing sequence of
ideals of R. We prove that this increasing sequence (In)n∈N is S-root. Put I =

⋃
n∈N In. Then I is an ideal of

R. Moreover by hypotheses there exist an s ∈ S, a finitely generated sub-ideal J of I and an positive integer
m such that sxm

∈ J for all x ∈ I. Put J = a1R + · · · + anR. Note that for 1 ≤ i ≤ n, there exist an ni ∈ N such
that ai ∈ Ini . Let n0 = max{ni, 1 ≤ i ≤ n}. Then J ⊆ In0 . This implies that for all k ≥ n0, for any x ∈ Ik ⊆ I,
sxm
∈ J ⊆ In0 . Hence the sequence (In)n∈N is S-root.

(2)”⇒”(1). * Suppose that S = {s1, ..., sn} is finite and let s = s1 · · · sn. Then by Remark 2.4, R is uniformly
S-SFT if and only if R is an S-SFT ring.

*Assume that S = (sn)n≥0 is a countable multiplicative subset of R. Suppose that R is not an S-SFT ring.
Then there exists an ideal I of R such that for every s ∈ S, every positive integers m and every finitely
generated sub-ideal J of I, there exists an element a ∈ I such that sam < J. Let x ∈ I and define J0 = xR, which
is a finitely generated sub-ideal of I. For n = 1 and s = s1 ∈ S, there exists an element xs11J0 ∈ I such that
s1xs11J0 < J0. Define J1 = xR+xs11J0 R, which is again a finitely generated sub-ideal of I. For n = 2 and s = s1 ∈ S,
there exists xs12J1 ∈ I such that s1x2

s12J1
< J1. Similarly, for n = 2 and s = s2 ∈ S, there exists xs22J1 ∈ I such that

s2x2
s22J1
< J1. By induction, assume Jn−1 = xR+xs11J0 R+xs12J1 R+xs22J1 R+ · · ·+xs1n−1Jn−2 R+ · · ·+xsn−1n−1Jn−2 R. For

each s = si ∈ S and n = m, there exists xsinJn−1 ∈ I such that sixn
sinJn−1

< Jn−1. Thus, we construct an increasing
sequence of ideals (Jn) of R, where each Jn is finitely generated and Jn−1 ⊆ Jn. So Jn is S-root. There exist
sr ∈ S and positive integers n,m such that for all k ≥ n and x ∈ Jk, srxm

∈ Jn. Choose k > max{r,n,m}. Then,
xsrkJk−1 ∈ Ik and hence srxm

srkJk−1
∈ Jn. Therefore,

srxk
srkJk−1

= srxm
srkJk−1

xk−m
srkJk−1

∈ Jn ⊆ Jk−1,

which is a contradiction.

Let R be a commutative ring with identity and S a multiplicative subset of R. We say that S is saturated
if for every a, b ∈ R, if ab ∈ S, then both a and b are in S. Additionally, the set S′ = {x ∈ R | x divides s for
some s ∈ S} is a saturated multiplicative subset of R called the saturation of S which includes S.

Theorem 2.10. Let R be a ring and S a multiplicative subset of R.

1. Let T be a multiplicative subset of R such that S ⊆ T. If R is a uniformly S-SFT ring, then R is a
uniformly T-SFT ring.

2. Let S′ be the saturation of S in R. Then R is a uniformly S-SFT ring if and only if R is a uniformly
S′-SFT ring.

3. Let f : R → R′ be a surjective ring homomorphism and S a multiplicative subset of R such that f (S)
does not contain 0. If R is a uniformly S-SFT ring, then R′ is a uniformly f (S)-SFT ring.

Proof. (1). Obvious.
(2). If R is a uniformly S-SFT ring, then by (1), R is a uniformly S′-SFT ring. Conversely, assume that R is

a uniformly S′-SFT ring. There exists an s ∈ S′ such that for any ideal I of R there exist a finitely generated
sub-ideal J of I and a positive integer n such that for any a ∈ I, san

∈ J. Let t ∈ S such that t = sr where r ∈ R.
tan = sran

∈ rJ ⊆ J, and hence R is a uniformly S-SFT ring.
(3). Assume that R is a uniformly S-SFT ring. There exists an s ∈ S such that each ideal of R is of strong

finite type with respect to s. Let J be an ideal of R′. Since f is a surjective homomorphism, J = f (I) for some
ideal I of R. Thus I is of strong finite type with respect to s. Let b ∈ J, then b = f (a) for some a ∈ I. So san

∈ K
for some finitely generated sub-ideal K of I and some positive integer n. This implies that f (san) ∈ f (K), thus
f (s)bn = f (san) ∈ f (K). Note that f (K) is a finitely generated sub-ideal of f (I) = J. Hence R′ is a uniformly
f (S)-SFT ring.
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Remark 2.11. (1) Consider the multiplicative set S in Example 2.2, and let T = {1}. Then R is uniformly S-SFT.
Clearly T ⊆ S and R is not uniformly T-SFT.

(2) Note that the condition ”f is surjective” in Theorem 2.10 (3) is necessary. Indeed, let R = K[X1,X2, ...] be the
polynomial ring in countably infinite variables over a field K and S = U(K) = K − {0} (a multiplicative subset of K).
LetΨ : K → R defined byΨ(a) = a. ThenΨ(S) = S. It is clear thatΨ is not surjective and K is a uniformly S-SFT
ring. But R is not uniformly S-SFT.

Let R be a ring, S a multiplicative subset of R, and I an ideal of R disjoint with S. Let s ∈ S, we denote
by s the equivalence class of s in R/I. Let S = {s | s ∈ S}, then S is a multiplicative subset of R/I.

Corollary 2.12. Let R be a ring, S a multiplicative subset of R and I an ideal of R disjoint with S. If R satisfies the
uniformly S-SFT property, then R/I satisfies the uniformly S-SFT property.

Let R be a ring and S a multiplicative subset of R. For any non-nilpotent element s ∈ S, consider the
multiplicative subset ⟨s⟩ := {1, s, s2, ...} of S.We denote by Rs the localization of R at ⟨s⟩.

We next study the Cohen’s type theorem for uniformly S-SFT rings. To do this, we need the following
results.

Lemma 2.13. Let R be a ring, S a multiplicative subset of R and I an ideal of R. Let s a non-nilpotent element of S.
If I is of strong finite type with respect to s, then Is is an SFT ideal of Rs.

Proof. Suppose that I is of strong finite type with respect to s. There exist a finitely generated sub-ideal J
of I and positive integer n such that for any x ∈ I, sxn

∈ J. Let b ∈ Is. Then b =
a
sr for some a ∈ I and some

positive integer r. This implies that bn =
an

srn =
san

srn+1 ∈ Js. Note that Js is a finitely generated sub-ideal of Is.

Thus Is is an SFT ideal of Rs.

Let R be a ring and S a multiplicative subset of R. Recall that S is called anti-Archimedean if for each s ∈ S,
S
⋂

(
⋂
n≥1

snR) , ∅, see [1]. In [13], the authors showed that, a finite multiplicative set is an anti-Archimedean

set. For example, let R = Z/12Z and S = {1, 2, 4, 8} ⊈ U(R) is an anti-Archimedean multiplicative set of
R. It is clear that if R is a uniformly S-SFT ring, then for any ideal I of R, there exist an s ∈ S, a finitely
generated sub-ideal of I and a positive integer n such that san

∈ J for any a ∈ I. Our next example show that
the converse of this implication is not true in general. First, we need the following proposition.

Proposition 2.14. Let R be a ring and S a multiplicative subset of R disjoint from Nil(R).

1. If R is a uniformly S-SFT ring, then there exists an s ∈ S such that Rs is an SFT ring.
2. If S is an anti-Archimedean multiplicative subset of R and Rs an SFT ring for some s ∈ S, then R is a uniformly

S-SFT ring.

Proof. (1). Assume that R is a uniformly S-SFT ring. There exists an s ∈ S such that any ideal I of R is
strongly of finite type with respect to s. We will show that Rs is an SFT ring. Let F be an ideal of Rs, then
F = Is for some ideal I of R. Thus by Lemma 2.13, F = Is is an SFT ideal of Rs, hence Rs is an SFT ring.

(2). Suppose that Rs is an SFT ring for some s ∈ S. Take t ∈ S
⋂

(
⋂
n≥1

snR). We will show that R is uniformly

S-SFT with respect to t. Let I be an ideal of R. Then Is is an SFT ideal of Rs, so there exist an n ∈ N and a
finitely generated sub-ideal J of I such that xn

∈ Js for all x ∈ Is. We will show that for all a ∈ I, tan
∈ J. Let

a ∈ I. Then
an

1
∈ Js, thus

an

1
=
α
sr for some positive integer r and α ∈ J. There exists a positive integer r′ such

that sr′an
∈ J. As t ∈ S ∩n∈N snR, t = sr′ar′ for some ar′ ∈ R. This implies that tan = sr′anar′ ∈ J.
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Example 2.15. Let R = K[X1,X2, ...] be the polynomial ring in countably infinite variables over a field K. Set
S := R − {0}. It is clear that for any ideal I of R, there exist an s ∈ S, a finitely generated sub-ideal J of I and a
positive integer n such that san

∈ J for any a ∈ I. But R is not uniformly S-SFT. Indeed, let s ∈ S. Assume that Rs
is an SFT ring. Let n be the minimal integer such that Xm does not divide any monomial of s for any m ⩾ n. Then
s ∈ K[X1,X2, ...,Xn−1]. Let φ be the following mapping

φ : Rs −→ K[X1,X2, ...,Xn−1]s[Xn,Xn+1, ...]

P =
1
sk

∑
i

fi(X1, ...,Xn−1)hi(Xn,Xn+1, ...) −→

∑
i

fi(X1, ...,Xn−1)
sk

hi(Xn,Xn+1, ...)

is an isomorphism.
Assume that K[X1,X2, ...,Xn−1]s[Xn,Xn+1, ...] is an SFT ring. Then for any ideal I of K[X1,X2, ...,Xn−1]s[Xn,Xn+1, ...],

there exist a finitely generated sub-ideal J of I and positive integer r such that for any a ∈ I, ar
∈ J. Let I = (Xn,Xn+1, ...)

the ideal of K[X1,X2, ...,Xn−1]s[Xn,Xn+1, ...]. There exist a finitely generated sub-ideal J of I and positive integer n
such that for any a ∈ I, an

∈ J. Assume that J = (Xn,Xn+1, ...,Xk) for some k > n. Since Xk+1 ∈ I, then Xr
k+1 ∈ J,

which is a contradiction. This implies that Rs is not SFT. Thus by Proposition 2.14, R is not uniformly S-SFT.

We are now ready to give the Cohen type theorem for uniformly S-SFT rings.

Theorem 2.16. Let R be a commutative ring and S an anti-Archimedean multiplicative subset of R such that
S ∩Nil(R) = ∅. The following statements are equivalent.

1. R is a uniformly S-SFT ring.
2. There exists an s ∈ S such that every radical ideal of R is of strong finite type with respect to s.
3. There exists an s ∈ S such that every prime ideal of R is of strong finite type with respect to s.

Proof. (1)⇒(2). Obvious.
(2)⇒(3). Follows from the fact that every prime ideal of R is a radical ideal of R.
(3)⇒(1). Suppose that R is not a uniformly S-SFT ring. By Proposition 2.14, for all s ∈ S, Rs is not an SFT

ring. Let s be such that there exists an s ∈ S such that every prime ideal of R is of strong finite type with
respect to s. Since Rs is not an SFT ring, there exists an ideal Is of Rs which is not of strong finite type. Let
F = {Q ideal of R such that Qs is not an SFT ideal of Rs}. We have F , ∅, since I ∈ F . Let (Iλ)λ∈Λ be a chain
in F and L =

⋃
λ∈Λ

Iλ. Now, we will show that L ∈ F . Assume that L < F . There exist a finitely generated

sub-ideal J of L and a positive integer n such that for any a ∈ Ls, an
∈ Js. Since J is finitely generated, there

exists a λ0 ∈ Λ such that J ⊆ Iλ0 . Let a ∈ (Iλ0 )s ⊆ Ls. Then an
∈ Js ⊆ (Iλ0 )s, a contradiction. Hence, by Zorn’s

Lemma, there is a maximal element P of F . We prove that the maximal element P of F is a prime ideal of
R. Suppose that P is not prime. There exist a, b ∈ R \ P such that ab ∈ P. We put I := P + aR and J := P + bR.
Then IJ = P2 + (aR)P + (bR)P + (ab)R ⊆ P. Since P ⊊ I and P ⊊ J, by maximality of P there exist a finitely
generated sub-ideal I′ (respectively, J′) of I (respectively, of J ) and n,m ∈ N such that for any a ∈ Is, and
b ∈ Js, we get an

∈ I′s and bm
∈ J′s. Let x ∈ Ps. Then x ∈ Is and x ∈ Js, thus xn

∈ I′s and xm
∈ J′s. So xn+m

∈ I′s J′s
which implies that xn+m

∈ (I′ J′)s ⊆ Ps. Then Ps is an SFT ideal. Thus P < F , a contradiction. Hence P is a
prime ideal of R. Note that Ps is not an SFT ideal. Then by Lemma 2.13, P is not of strong finite type with
respect to s, a contradiction.

According to [17], a commutative ring R is called uniformly S-Noetherian if there exists an s ∈ S such that
for any ideal I of R, there exists a finitely generated sub-ideal J of I such that sI ⊆ J. In [18], the authors
demonstrated that if S is an anti-Archimedean multiplicative subset of the ring R and T is a ring extension
of R such that T is an S-finite R-module, then R is a uniformly S-Noetherian ring if and only if there exists
an s ∈ S such that for every prime ideal P of R, PT is an S-finite ideal of T with respect to s. By analogy,
in Proposition 2.14 and Lemma 2.13, it is easy to show that if S is regular anti-Archimedean, then Rs is a
Noetherian ring for some s ∈ S implies that R is a uniformly S-Noetherian ring and if there exists an s ∈ S
such that I is finitely generated with respect to s, then Is is a finitely generated ideal of Rs. Next remark,
provides another proof of Cohen’s theorem.
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Remark 2.17. Let R be a commutative ring and S be a regular anti-Archimedean multiplicative subset of R. Then
the following statements are equivalent.

1. R is a uniformly S-Noetherian ring.
2. There exists an s ∈ S such that every prime ideal of R is finitely generated with respect to s.

Proof. (2)⇒(1). Suppose that R is not uniformly S-Noetherian ring. Let s be such that every prime ideal of
R is finitely generated with respect to s. As Rs is not Noetherian, thus there exists an ideal Is of Rs which
is not finitely generated. Let F = {Q ideal of R such that Qs is not finitely generated in Rs}. We have
F , ∅, since I ∈ F . Let (Iλ)λ∈Λ be a chain in F and L =

⋃
λ∈Λ

Iλ. We show that L ∈ F . Assume that L < F .

There exists a finitely generated sub-ideal J of L such that Ls = Js. Since J is finitely generated, there exists
λ0 ∈ Λ such that J ⊆ Iλ0 . Then (Iλ0 )s ⊆ Ls = Js ⊆ (Iλ0 )s, a contradiction. Hence, by Zorn’s Lemma, there
is a maximal element P of F . We prove that the maximal element P of F is a prime ideal of R. Suppose
that P is not a prime ideal of R. There exist a, b ∈ R \ P such that ab ∈ P. Since P ⊆ P + aR, by maximality
of P, (P + aR)s is finitely generated in Rs, then there exist p1, ..., pn ∈ P, r1, ..., rn ∈ R and a positive integer
q such that (P + aR)s = ( p1+ar1

sq , ...,
pn+arn

sq ). Let x ∈ Ps ⊆ (P + aR)s. Then x = p1+ar1

sq
α1
sk + · · · +

pn+arn

sq
αn
sk for some

α1, ..., αn ∈ R and a positive integer k, thus a
1 ( r1

sq
α1
sk + · · · +

rn
sq
αn
sk ) = x − p1

sq
α1
sk − · · · −

pn

sq
αn
sk ∈ Ps. Since P ⊂ (P : a),

again by maximality of P, (P : a)s is a finitely generated ideal of Rs. So there exist γ1, ..., γl ∈ (P : a)s such
that (P : a)s = (γ1, ..., γl)Rs. Put y := r1

sq
α1
sk + · · · +

rn
sq
αn
sk . Then y ∈ (Ps : a

1 ) ⊆ (P : a)s. Then there exist a positive
integer t and β1, ..., βl ∈ R, such that y = γ1

β1

st + · · · + γl
βl

st . This implies that

x =
p1

sq
α1

sk
+ · · · +

pn

sq
αn

sk
+ γ1

aβ1

st + · · · + γl
aβl

st .

Thus x ∈ ( p1

sq , ...,
pn

sq , γ1
a
st , ..., γl

a
st ) ⊆ Ps. So Ps ⊆ ( p1

sq , ...,
pn

sq , γ1
a
st , ..., γl

a
st ) ⊆ Ps, a contradiction. Hence P is a prime

ideal of R such that Ps is not finitely generated ideal of Rs. So P is not a finitely generated with respect to s,
which is a contradiction.

Let R be a ring and S a multiplicative subset of R. Then R is called of uniformly S-Noetherian spectrum if
there exists an s ∈ S such that for any ideal I of R, sI ⊆

√
J for some finitely generated sub-ideal J of I (see

[12]).

Remark 2.18. Let R be a ring and S a multiplicative subset of R. If R is uniformly S-SFT, then R is of uniformly
S-Noetherian spectrum. Indeed, as R is uniformly S-SFT, there exists an s ∈ S such that for any ideal I of R there
exist a finitely generated sub-ideal J of I and a positive integer n such that for any a ∈ I, san

∈ J. We show that R is
of uniformly S-Noetherian spectrum with respect to s. Let K be an ideal of R and x an element of K, then sxn

∈ J for
some finitely generated sub-ideal J of K and some positive integer n. Thus snxn

∈ J; so sx ∈
√

J. Hence sI ⊆
√

J.

Example 2.19. Let F be a field, X = {X1,X2, ...} a countably set of indeterminates over F, J = ⟨Xn
n,n ≥ 1⟩F[X],

R = F[X]/J and S = F \ {0}. If P is a prime ideal of R, then there exists a prime ideal Q of F[X] such that J ⊆ Q; so for
all n ∈N∗, Xn

n ∈ Q which implies that Xn ∈ Q for all n ∈N∗. Thus ⟨Xn,n ≥ 1⟩ ⊆ Q. Since ⟨Xn,n ≥ 1⟩ is a maximal
ideal of F[X], ⟨Xn,n ≥ 1⟩ = Q, hence P = ⟨Xn,n ≥ 1⟩. So P = Nil(R). Then the only prime ideal of R is Nil(R) which
implies that R is of uniformly S-Noetherian spectrum. On the other hand, R is not uniformly S-SFT because for all
s ∈ S, I = (X1,X2, ...) is not a strongly finite type ideal with respect to s. Indeed, if not, there exist s ∈ S and two
positive integers n, k such that for any x ∈ I, sxn

∈ (X1,X2, ...,Xk). Thus sX
n
n+k+1 ∈ (X1,X2, ...,Xk) a contradiction.

Proposition 2.20. Let R1 ⊆ R2 be a ring extension such that for each finitely generated ideal I of R1, IR2 ∩ R1 = I
and S a multiplicative subset of R1. If R2 is uniformly S-SFT, then R1 is uniformly S-SFT.

Proof. Let I be a ideal of R1. Since the ring R2 is uniformly S-SFT, there exists an s ∈ S such that for any
ideal J of R2, there exist a finitely generated sub-ideal K of J and a positive integer n such that for any x ∈ J,
sxn
∈ K. Since IR2 an ideal of R2, there exist k ≥ 1 and a finitely generated ideal K ⊆ IR2 of R2 such that

sxk
∈ K for every x ∈ IR2. Let F ⊆ I be a finitely generated ideal of R1 such that K ⊆ FR2 and a ∈ I. Hence

sak
⊆ K ∩ R1 ⊆ FR2 ∩ R1 = F which implies that the ring R1 is uniformly S-SFT.
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Let R be a commutative ring and P a prime ideal of R. Then R \ P is a multiplicative subset of R. We say
that R is a uniformly P-SFT ring if R is a uniformly (R\P)-SFT ring.

Theorem 2.21. The following assertions are equivalent for a commutative ring R.

1. R is an SFT ring.
2. R is a uniformly P-SFT ring for any P ∈ Spec(R).
3. R is a uniformly M-SFT ring for any M ∈Max(R).

Proof. (1)⇒ (2)⇒ (3). These implications are trivial.
(3)⇒ (1). By hypothesis, for any M ∈ Max(R), there exists an sM ∈ R\M such that for any ideal I of R,

there exist a positive integer r and a finitely generated sub-ideal FM of I such that for any x ∈ I, sMxr
∈ FM.

Let J be the ideal of R generated by the set {sM | M ∈Max(R)}. If J , R, then J ⊆ M0 for some M0 ∈Max(R).
So sM ∈M0, a contradiction. Thus J = R. Hence 1 = sM1α1 + · · · + sMnαn for some α1, ..., αn ∈ R. Now, let I be
an ideal of R. For each 1 ⩽ i ⩽ n, there exists a finitely generated sub-ideal Fi of I and a positive integer ri

such that for every x ∈ I, sMi xri ∈ FMi . Put r :=
n∏

i=1

ri and F :=
n∑

i=1

FMi . Then F is a finitely generated sub-ideal

of I.Moreover, for any x ∈ I,

xr = 1 · xr = (sM1α1 + · · · + sMnαn)xr
⊆ sM1 xr + · · · + sMn xr

⊆

n∑
i=1

FMi = F.

Hence R is an SFT ring.

Proposition 2.22. Let R be a commutative ring with identity and T ⊆ R a multiplicative subset of R consisting of
non-zero-divisors. Let S be another multiplicative subset of R. If R satisfies the uniformly S-SFT property, then T−1R
satisfies the uniformly S′-SFT property where S′ = { s

1 , s ∈ S}.

Proof. Since R is a uniformly S-SFT ring, there exists an s ∈ S such that each ideal of R is of strong finite
type with respect to s. Let J = T−1I be an ideal of T−1R. There exist a finitely generated sub-ideal K of I and

a positive integer n such that for any x ∈ I, sxn
∈ K. Let y ∈ J, then y =

a
t

for some a ∈ I and t ∈ T, thus

san
∈ K. So

s
1

yn =
san

1tn ∈ T−1K. Since K ⊆ I, T−1K ⊆ T−1I = J. This shows that J is of strong finite type with

respect to s
1 . So T−1R is a uniformly S′-SFT ring.

The next Theorem give a necessary and sufficient condition for a product of rings
∏
i∈Λ

Ri to be uniformly

S-SFT, where S =
∏
i∈Λ

Si.

Theorem 2.23. Let Λ ⊆ N and (Ri)i∈Λ be a family of commutative rings. For each i ∈ Λ, let Si be a multiplicative
subset of Ri. Let R =

∏
i∈Λ

Ri and S =
∏
i∈Λ

Si. Then the following assertions are equivalent:

1. R is a uniformly S-SFT ring.
2. Λ is finite and for each i ∈ Λ, Ri is a uniformly Si-SFT ring.

Proof. (1)⇒(2). Suppose thatΛ is infinite. Since R is a uniformly S-SFT ring, there exists an s = (s1, s2, ...) ∈ S
such that for any ideal J of R, there exist a finitely generated sub-ideal F of J and a positive integer r such
that for any a ∈ J, sar

∈ F. Let J = (ei | i ∈ I), with ei = (1, 1, ..., 1︸︷︷︸
i−place

, 0, ...). So there exists a finitely generated

sub-ideal F of J and a positive integer r such that for any a ∈ J, sar
∈ F. Put F := (ei | 1 ≤ i ≤ n). Since en+1 ∈ J,

then ser
n+1 ∈ F. Hence sn+1 = 0, a contradiction.
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Now, let φk be the kth projection mapping, that is, φk : R→ Rk; φ(x1, ..., xk, ...) = xk. Then φk is a surjective
homomorphism of rings. Since φk(S) = Sk, by Theorem 2.10 (3), Rk is a uniformly Sk-SFT ring.

(2) ⇒ (1). To prove this implication, it is sufficient to show it in the case n = 2 and conclude by
induction on n. Let R = R1 ×R2, and S = S1 × S2 be such that R1 (respectively, R2) is a uniformly S1-SFT ring
(respectively, uniformly S2-SFT). Let s1 ∈ S1 (respectively, s2 ∈ S2) such that each ideal of R1 (respectively,
R2), is of strong finite type with respect to s1 (respectively, s2). Now, let I = I1 × I2 be an ideal of R. For
each 1 ≤ i ≤ 2, there exists a finitely generated sub-ideal Ji of Ii and positive integers r1, r2 such that for any
a1 ∈ I1, a2 ∈ I2, siari

i ∈ Ji. Let y ∈ I, then y = (a1, a2) for some a1 ∈ I1 and a2 ∈ I2. We have

(s1, s2)(a1, a2)r1r2 = (s1ar1r2
1 , s2ar1r2

2 ) ∈ J1 × J2.

Hence R is a uniformly S-SFT ring.

In the particular case when S = {1}, we find this result.

Corollary 2.24. Let Λ ⊆ N and (Ri)i∈Λ be a family of commutative rings. Let R =
∏
i∈Λ

Ri. Then the following

assertions are equivalent:

1. R is a SFT ring.
2. Λ is finite and for each i ∈ Λ, Ri is a SFT ring.

Example 2.25. Let R1 be a non SFT ring and R2 be a uniformly S2-SFT ring, where S2 is a multiplicative subset
of R2. We consider R = R1 × R2 and S := (S1 ∪ {0} × S2), where S1 is a multiplicative subset of R1. Then S is a
multiplicative subset of R. Since R2 is a uniformly S2-SFT ring, there exists s2 ∈ S2 such that for any ideal K of R2
there exists a finitely generated sub-ideal J of K and a positive integer n such that sxn

∈ J for any x ∈ K. Let I := I1× I2
be an ideal of R, where I1 is an ideal of R1 and I2 is an ideal of R2. Take s := (0, s2) ∈ S. Then for any a = (a1, a2) ∈ I,
san = (0, s2)(a1, a2)n = (0, s2an

2) ∈ {0} × J for some sub-ideal J of I2 and some positive integer n. Note that {0} × J
is a finitely generated sub-ideal of I. This implies that R is uniformly S-SFT. However, as R1 is not an SFT ring by
Corollary 2.24, R is not an SFT ring.

3. Uniformly S-SFT properties on amalgamated algebras

In this section, we give a necessary and sufficient condition for the amalgamated algebra along an ideal
to be uniformly S-SFT. To do this, we first recall the definition of the amalgamated algebra introduced in
[7].

Definition 3.1. Let A and B be commutative rings with identity, f : A→ B a ring homomorphism and J an ideal of
B. Then the sub-ring A ▷◁ f J of A × B is defined as follows:

A ▷◁ f J = {(a, f (a) + j) | a ∈ A and j ∈ J}.

The ring A ▷◁ f J is called the amalgamation of A with B along J with respect to f .

Let A and B be commutative rings with identity, f : A → B a ring homomorphism and J an ideal of B.
Then f (A) + J is a sub-ring of B. For a multiplicative subset S of A, let S′ = {(s, f (s)) | s ∈ S}. Then it is easy
to see that S′ is a multiplicative subset of A ▷◁ f J and f (S) is a multiplicative subset of f (A) + J. For prime
ideals P and Q of A and B, respectively, we put

P ▷◁ f J := {(p, f (p) + j) | p ∈ P and j ∈ J}; and

Q
f

:= {(a, f (a) + j) | a ∈ A, j ∈ J and f (a) + j ∈ Q}.

Then the prime ideals of A ▷◁ f J are exactly of the type P ▷◁ f J or Q
f

for some prime ideals P of A and Q of B
which do not contain J. (See [8, Proposition 2.6(3)] or [11, Theorem 1.4]). Our next result give a necessary
and sufficient condition for the amalgamated algebra A ▷◁ f J to be uniformly S′-SFT. First, we need the
following Remark.
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Remark 3.2. Let A and B be commutative rings, f : A −→ B a ring homomorphism, J an ideal of B and S an
anti-Archimedean multiplicative subset of A. Then S′ = {(s, f (s)) | s ∈ S} is an anti-Archimedean multiplicative
subset of A ▷◁ f J. Indeed, let s ∈ S and t ∈ S

⋂
(
⋂

n∈N snA). Then for all n ∈N, t = snan for some an ∈ A. Thus

(t, f (t)) = (snan, f (snan)) = (snan, f (sn) f (an)) = (s, f (s))n(an, f (an)))

for all positive integers n. So (t, f (t)) ∈ S′
⋂

(
⋂

n∈N(s, f (s))nA ▷◁ f J).
It is clear that S ∩Nil(R) = ∅ if and only if S′ ∩Nil(A ▷◁ f J) = ∅.

Theorem 3.3. Let A and B be commutative rings, f : A −→ B a ring homomorphism, J an ideal of B and S an
anti-Archimedean multiplicative subset of A such that S∩Nil(R) = ∅ and f (S)∩ J = ∅. Then the following statements
are equivalent.

1. A ▷◁ f J is a uniformly S′-SFT ring.
2. A is a uniformly S-SFT ring and f (A) + J is a uniformly f (S)-SFT ring.

Proof. (1)⇒ (2). Let PA : A ▷◁ f J→ A and PB : A ▷◁ f J→ f (A) + J be the canonical epimorphisms.
Suppose that A ▷◁ f J is a uniformly S′-SFT ring. Note that PA(A ▷◁ f J) = A, PA(S′) = S, PB(A ▷◁ f J) =

f (A)+ J and PB(S′) = f (S). Thus by Theorem 2.10 (3), A is a uniformly S-SFT ring and f (A)+ J is a uniformly
f (S)-SFT ring.

(2)⇒ (1) Suppose that A is a uniformly S-SFT ring and f (A)+ J is a uniformly f (S)-SFT ring. There exist
s1, s2 ∈ S such that for any ideal I of A and for any ideal F of f (A)+ J, there exist a1, ..., an ∈ I and b1, ..., br ∈ F
such that for any a ∈ I, b ∈ F, s1ak1 ∈ (a1, ..., an) and f (s2)bk2 ∈ (b1, ..., br) for some positive integers k1, k2.

Since f (A) + J is an uniformly f (S)-SFT ring, ( f (A) + J)/J is a uniformly f (S)-SFT ring by Corollary 2.12;
so there exists an s3 ∈ S such that for any ideal P of ( f (A) + J)/J, there exist a finitely generated sub-ideal P′

of P and a positive integer k0 such that for any p ∈ P, f (s3)pk0 ∈ P′.
Now, let s = s1s2s3 ∈ S. Since S is anti-Archimedean, S

⋂
(
⋂
n≥1

snA) , ∅. Let t ∈ S
⋂

(
⋂
n≥1

snA). According

to Theorem 2.16, it suffices to show that for each prime ideal P of A ▷◁ f J, there exist a finitely generated
sub-ideal L of P and a positive integer m such that (t, f (t))(a, f (a) + b)n0 ∈ L for any (a, f (a) + b) ∈ P.

Case 1: P = Q
f
= ⟨(a, f (a) + j), a ∈ A, j ∈ J and f (a) + j ∈ Q⟩ where Q is a prime ideal of B. Let

Q0 = (Q + J) ∩ f (A) + J. Then Q0 is an ideal of ( f (A) + J)/J; so there exist a finitely generated sub-ideal
Q′0 := { f (ai) + bi | i = 1, ...,n} of Q0 and a positive integer k0 such that for any p ∈ Q0, f (s3)pk0 ∈ Q′0. Let L0 be
the ideal of A ▷◁ f J generated by the set {(ai, f (ai) + bi) | i = 1, ...,n}.

Note that I := f−1(J) ∩ PA(Q
f
) is an ideal of A. There exist a finitely generated sub-ideal I0 := (α1, ..., αm)

of I and a positive integer k1 such that for any a ∈ I, s1ak1 ∈ I0. For each i ∈ {1, ...,m}, take any element βi ∈ J
such that f (αi) + βi ∈ Q. Let L1 be the ideal of A ▷◁ f J generated by the set {(αi, f (αi) + βi) | i = 1, ...,m}.

Note that Q1 := Q∩ J is an ideal of f (A) + J. There exist a finitely generated sub-ideal Q′1 := (γ1, ..., γp) of
Q1 and a positive integer k2 such that for any b ∈ Q1, f (s2)bk2 ∈ Q′1. Let L2 be the ideal of A ▷◁ f J generated
by the set {(0, γi) | i = 1, ..., p}.

Now, Let (a, f (a) + b) be an element of Q
f
. Then f (a) + b ∈ (Q + J) ∩ ( f (A) + J) which implies that

f (a) + b ∈ (Q + J) ∩ ( f (A) + J) = Q0. Then

f (s3)( f (a) + b)k0 =

n∑
i=1

( f (ai) + bi)( f (ci) + di)

for some c1, ..., cn ∈ A and d1, ..., dn ∈ J. Let

X = f (s3)( f (a) + b)k0 −

n∑
i=1

( f (ai) + bi)( f (ci) + di).
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Then X ∈ J. We have

X = f (s3)( f (a) + b)k0 −

n∑
i=1

( f (ai) + bi)( f (ci) + di)

= f ((s3ak0 ) −
n∑

i=1

aici) +
k0−1∑
i=0

Ci
k0

f (s3ai)bk0−i
−

n∑
i=1

bi f (ci) + di f (ai) + bidi.

This implies that f ((s3ak0 ) −
n∑

i=1

aici) ∈ J. Let

Y = s3ak0 −

n∑
i=1

aici.

Then Y ∈ f−1(J), hence we obtain

(s3, f (s3))(a, f (a) + b)k0 = (s3ak0 , f (s3)( f (a) + b)k0 )

= (Y +
n∑

i=1

aici,X +
n∑

i=1

( f (ai) + bi)( f (ci) + di))

= (Y,X) +
n∑

i=1

(ai, f (ai) + bi)(ci, f (ci) + di).

Since for all i ∈ {1, ...,n}, f (ai) + bi ∈ Q,

Z1 =

n∑
i=1

(ci, f (ci) + di)(ai, f (ai) + bi) ∈ Q
f
.

Thus (Y,X) ∈ Q
f
. Let e = f (s3)

k0∑
i=1

Ci
k0

f (a)k0−ibi
−

n∑
i=1

( f (ai)di + bi f (ci) + bidi); so (Y,X) = (Y, f (Y) + e). Since

Y ∈ f−1(J) and (Y,X) ∈ Q
f
, Y ∈ PA(Q

f
), and so Y ∈ I = f−1(J) ∩ PA(Q

f
). Therefore s1Yk1 =

m∑
i=1

αiri for some

r1, ..., rm ∈ A. Hence we obtain

(s1, f (s1))(Y,X)k1 = (s1, f (s1))(Y, f (Y) + e)k1

= (s1Yk1 , f (s1)( f (Y) + e)k1 )

= (s1Yk1 , f (s1) f (Y)k1 + j1)

= (
m∑

i=1

αiri,
m∑

i=1

( f (αi) + βi) f (ri) + j2)

=

m∑
i=1

(αi, f (αi) + βi)(ri, f (ri)) + (0, j2),

where j1 = f (s1)
k1∑

i=1

Ci
k1

f (Y)k1−iei and j2 = j1 −
m∑

i=1

βi f (ri).

Let

Z2 =

m∑
i=1

(ri, f (ri))(αi, f (αi) + βi) ∈ L1.
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Since (αi, f (αi)+ βi) ∈ Q
f

for all i ∈ {1, ...,m}, Z2 ∈ Q
f
, so (0, j2) ∈ Q

f
. Therefore we can find a positive integer

k2 such that f (s2) jk2
2 =

p∑
i=1

γi( f (xi) + yi) for some x1, ..., xp ∈ A and y1, ..., yp ∈ J. Then

(s2, f (s2))(0, j2)k2 =

p∑
i=1

(xi, f (xi) + yi)(0, γi) ∈ L2.

Put k := k0k1k2 and t := skζk = (s1s2s3)kζk.

(t, f (t))(a, f (a) + b)k = ((s1s2s3)kζk, f ((s1s2s3)kζk))
[
(a, f (a) + b)k0 )

]k1k2

= ((s1s2)ksk−k1k2
3 ζk, f ((s1s2)ksk−k1k2

3 ζk))
[
(s3, f (s3))(a, f (a) + b)k0

]k1k2

= ((s1s2)ksk−k1k2
3 ζk, f ((s1s2)ksk−k1k2

3 ζk)) [(Y,X) + Z1]k1k2

= ((s1s2)ksk−k1k2
3 ζk, f ((s1s2)ksk−k1k2

3 ζk))
[
((Y,X) + Z1)k1

]k2

= (sk−k2
1 sk

2sk−k1k2
3 ζk, f (sk−k2

1 sk
2sk−k1k2

3 ζk))

(s1, f (s1))
k1∑

i=0

Ci
k1

Zi
1(Y,X)k1−i


k2

= (sk−k2
1 sk

2sk−k1k2
3 ζk, f (sk−k2

1 sk
2sk−k1k2

3 ζk))
[
(s1, f (s1))(Y,X)k1 + Z3

]k2

= (sk−k2
1 sk

2sk−k1k2
3 ζk, f (sk−k2

1 sk
2sk−k1k2

3 ζk))
[
Z2 + (0, j2) + Z3

]k2

= (sk−k2
1 sk

2sk−k1k2
3 ζk, f (sk−k2

1 sk
2sk−k1k2

3 ζk))
k2∑

i=1

Ci
k2

(Z2 + Z3)i(0, j2)k2−i

+(sk−k2
1 sk−k1k2

3 ζk, f (sk−k2
1 sk−k1k2

3 ζk))(s2, f (s2))k(0, j2)k2 .

with Z3 = (s1, f (s1))
k1∑

i=1

Ci
k1

Zi
1(Y,X)k1−i

∈ L0. Note that Z2 ∈ L1 and Z3 ∈ L0; so
k2∑

i=1

Ci
k2

(Z2 + Z3)i(0, j2)k2−i
∈

L0 + L1. As (s2, f (s2))(0, j2)k2 ∈ L2, (s2, f (s2))k(0, j2)k2 ∈ L2. Therefore

(t, f (t))(a, f (a) + b)k
∈ (L0 + L1 + L2).

Note that L0 + L1 + L2 is a finitely generated sub-ideal of Q
f
.

Case 2: P = P ▷◁ f J for some prime ideal P of A.
There exist p1, ..., pn ∈ P, b1, ..., br ∈ J such that for any a ∈ P, b ∈ J, s1am

∈ (p1, ..., pn) and f (s2)bq
∈ (b1, ..., br) for

some positive integers m, q. Put t = skζk in ( Case 1). Let a ∈ P and j ∈ J.

(t, f (t))(a, f (a) + j)m+q = (t, f (t))((a, f (a)) + (0, j))m+q

= (t, f (t))
m+q∑
i=0

Ci
m+q(a, f (a))i(0, j)m+q−i

= (t, f (t))(
m∑

i=0

Ci
m+q(a, f (a))i(0, j)m+q−i +

m+q∑
i=m+1

Ci
m+q(a, f (a))i(0, j)m+q−i)

=

m∑
i=0

Ci
m+q(t, f (t))(a, f (a))i(0, j)q(0, j)m−i +

m+q∑
i=m+1

Ci
m+q(t, f (t))(a, f (a))m(a, f (a))i−m(0, j)m+q−i

=

m∑
i=0

Ci
m+q(a, f (a))i(0, j)m−i

r∑
α=1

(0, bα( f (xα) + yα))
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+

m+q∑
i=m+1

Ci
m+q(a, f (a))i−m(0, j)m+q−i

n∑
β=1

(pβrβ, f (pβrβ))

∈ ((0, bα), (pβ, f (pβ)), 1 ≤ α ≤ r, 1 ≤ β ≤ n).

So (t, f (t))(a, f (a) + j)m+q
∈ ((0, bα), (pβ, f (pβ)), 1 ≤ α ≤ r, 1 ≤ β ≤ n). Since aβ ∈ P for all 1 ≤ β ≤ n and bα ∈ J for

all 1 ≤ α ≤ r, then ((0, bα), (pβ, f (pβ)), 1 ≤ α ≤ r, 1 ≤ β ≤ n) ⊆ P.

The amalgamated duplication of a ring R along an ideal I is a ring that is defined as the following sub-ring
of R × R (as a particular case of the amalgamation) [9]:

R ▷◁ I = {(r, r + i)|r ∈ R, i ∈ I}.

Let S′ = {(s, s) | s ∈ S}, where S is an anti-Archimedean multiplicative subset of R. Then S′ is an anti-
Archimedean multiplicative subset of R ▷◁ I. Combining Theorem 3.3 and Theorem 2.23, we obtain the
following Corollaries.

Corollary 3.4. The following statements are equivalent for a commutative ring R.

1. R is a uniformly S-SFT ring.
2. R ▷◁ I is a uniformly S′-SFT ring.
3. R × R is a uniformly S × S-SFT ring.

Corollary 3.5. Let R be a ring, I an ideal of R, s : R 7→ R/I be the canonical homomorphism, and J an ideal of R/I.
Then R ▷◁s J is a uniformly S-SFT-ring if and only if R is a uniformly S-SFT-ring.

Proof. We have s(R) + J = R/I + J = R/I. By Theorem 2.10(3), if R is an uniformly S-SFT-ring, so is R/I.

Let R be a commutative ring with identity and M a unitary R-module. Then the Nagata’s idealization of
M in R (or trivial extension of R by M) is the commutative ring

R(+)M := {(r,m) | r ∈ R and m ∈M}

Endowed with the usual addition and the multiplication defined by (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for
all (r1,m1), (r2,m2) ∈ R(+)M. It is clear that (1, 0) is the identity of R(+)M. It was shown that if Q is a prime
ideal of R(+)M, then Q = P(+)M for some prime ideal P of R. Conversely if P is a prime ideal of R, then
P(+)M is a prime ideal of R(+)M [14, Theorem 25.1(3)] (or [3, Theorem 3.2(2)]).

It is clear that if S is a multiplicative subset of R and N a submodule of M, then S(+)N is a multiplicative
subset of R(+)M. Our next result give a necessary and sufficient condition for the Nagata’s idealization
R(+)M to be uniformly (S(+)N)-SFT ring. First, we need the following Remark.

Remark 3.6. Let R be a commutative ring with identity and M a unitary R-module. If S is an anti-Archimedean
multiplicative subset of R, then (S(+){0}) is an anti-Archimedean multiplicative subset of R(+)M. Indeed, let s ∈ S
and t ∈ S

⋂
(
⋂

n∈N snR). Then for all n ∈N, t = snan for some an ∈ R. Thus for all n ∈N,

(t, 0) = (snan, 0) = (s, 0)n(an, 0).

So (t, 0) ∈ S(+){0}
⋂

(
⋂

(s, 0)nR(+)M).
It is clear that S ∩Nil(R) = ∅ if and only if (S(+){0}) ∩Nil(R(+)M) = ∅.

Theorem 3.7. Let R be a commutative ring with identity, S an anti-Archimedean multiplicative subset of R disjoint
from Nil(R) and M a unitary R-module. Then the following statements are equivalent.

1. R is a uniformly S-SFT ring.
2. R(+)M is an (S(+){0})-SFT ring.
3. R(+)M is an (S(+)N)-SFT ring.
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Proof. (1)⇒ (2). Suppose that R is a uniformly S-SFT ring. There exists an s ∈ S such that any ideal I of R is
strong finite type with respect to s. Let P = P(+)M be a prime ideal of R(+)M,where P is a prime ideal of R.
Then P is of strong finite type with respect to s. There exist a finitely generated sub-ideal J of P and positive
integer r such that for any a ∈ P, sar

∈ J.
Let (a,m) ∈ P. We show that (s, 0)(a,m)r+1

∈ J(+)JM. Since a ∈ P, (sa)r
∈ J. Then

(s, 0)(a,m)r+1 = (s, 0)(ar+1, (r + 1)arm) = ( sar+1︸︷︷︸
∈J

, (r + 1)sarm︸       ︷︷       ︸
∈JM

) ∈ J(+)JM.

Note that J(+)JM = (J× {0})R(+)M. As J is a finitely generated sub-ideal of I, there exist j1, ..., jt ∈ I such that
J = ( j1, ..., jt)R. So J(+)JM = (J × {0})R(+)M = (( j1, 0), ..., ( jt, 0))R(+)M. This implies that J(+)JM is a finitely
generated sub-ideal of P and (s, 0) ∈ S(+){0}. Thus P is of strong finite type ideal of R(+)M, with respect to
(s, 0), and hence R(+)M is a uniformly (S(+){0})-SFT ring.

(2)⇒(3). As S(+){0} ⊆ S(+)N, by Theorem 2.10(1), R(+)M is a uniformly (S(+)N)-SFT ring.
(3)⇒(1). Follows from Theorem 2.10 (3) and the fact that the naturel mapping Φ : R(+)M → R defined

by Φ(r,m) = r is a surjective ring homomorphism with Φ(S(+)N) = S.

Let R be a commutative ring and S a multiplicative subset of R. If R is uniformly S-Noetherian, then R
is uniformly S-SFT. This implication follows from the fact that if R is uniformly S-Noetherian, then there
exists an s ∈ S such that for every ideal I there exists a finitely generated sub-ideal of I such that sI ⊆ J ⊆ I.
So for every x ∈ I, sx ∈ sI ⊆ J ⊆ I which implies that I is of strong finite type ideal with respect to s.
The converse is not necessarily true, which means that there exist rings that are uniformly S-SFT but not
uniformly S-Noetherian.

Example 3.8. Let R = Z(+)Z[X] and S = {1} is an anti-archimedean multiplicative set. Then S(+)Z[X] is a
multiplicative subset of Z(+)Z[X]. Since Z is a uniformly S-SFT ring, by Theorem 3.7, Z(+)Z[X] is a uniformly
(S(+)Z[X])-SFT ring. Now, by [17, Proposition 3.1], ifZ(+)Z[X] is a uniformly (S(+)Z[X])-Noetherian ring, then
Z is a uniformly S-Noetherian ring and Z[X] is a uniformly S-Noetherian Z-module. This implies that Z[X] is
an S-finite Z-module a contradiction. So Z(+)Z[X] is a uniformly (S(+)Z[X])-SFT ring which is not uniformly
(S(+)Z[X])-Noetherian.

Example 3.9. Let R = Z/6Z, M = Z/6Z[X] and S = {1, 3}. By [13], S is an anti-archimedean multiplicative subset
of R. Then S(+)M is a multiplicative subset of R(+)M. Since R is a uniformly S-SFT ring, by Theorem 3.7, R(+)M
is a uniformly (S(+)M)-SFT ring. Now, by [17, Proposition 3.1], if R(+)M is a uniformly (S(+)M)-Noetherian ring,
then M is an S-finite R-module a contradiction.
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