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Abstract. In this paper we introduce and investigate multiplicative co-derivative operators and additive
derivative operators on commutative bounded integral residuated lattices. Moreover, we represent con-
nections between multiplicative co-derivative operators and additive derivative operators on commutative
bounded integral residuated lattices. Also, we indicate that multiplicative co-derivative operators are
generalizations of multiplicative interior operators on this lattices. Then we describe connections between
multiplicative co-derivative operators (additive derivative operators) on commutative bounded integral
residuated lattice with Glivenko property and on the residuated lattices of their reguler elements. Finally,
we study some properties of the commutative bounded integral residuated lattices with multiplicative
co-derivative operator.

1. Introduction

The commutative residuated lattices as generalization of ideal lattices of rings were studied by M. Ward
and R.P. Dilworth in [29]. The class of commutative bounded integral residuated lattices contains some
class of algebras such as MV-algebras [8, 22], BL-algebras [17] and commutative Rℓ-monoids [13] as the the
algebraic counterparts of many-valued and fuzzy logics. Also, Heyting algebras, which were introduced
as algebric counterpart of the intuitionistic propositional logic in [3], can be considered as commutative
bounded integral lattices.

Closure (interior) operators are very useful tools in both pure and applied mathematics. Many re-
searchers have studied closure (interior) operators on different structures such as (fuzzy) topological spaces,
lattices [12], Hoop-algebras [5, 28], MV-algebras [26], commutative Rℓ-monoids [27] and commutative
bounded integral residuated lattices [24].

Mckinsey and Tarski in [21] said that some topological operations apart from closure operation can
be treated in an algebraic way and in this way, interesting results can be obtained. Thus, the derivative
algebras were introduced by Mckinsey and Tarski in [21]. Then the derivative algebras were redefined in a
more general way by Esakia in [14]. In [16] derivative MV-algebras as generalizations of derivative algebras
were introduced and investigated by favour of additive derivative operators.
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Modal operators were introduced and investigated on various algebras such as Heyting algebras [20]
and bounded residuated ℓ-monoids [25]. Also, monotone modal operators were studied on Hoop-Algebras
[28], bounded residuated lattices [23] and commutative bounded residuated lattices [19].

In the paper we introduce and study multiplicative co-derivative operators (mcd-operators) and additive
derivative operators (ad-operators) on commutative bounded integral residuated lattices. We indicate that
any multiplicative interior operator on commutative bounded integral residuated lattice serves as mcd-
operator. However, an mcd-operator on commutative bounded integral residuated lattices may not be
multiplicative interior operator. Also, any monotone modal operator on commutative bounded integral
residuated lattice is an mcd-operator. Howewer, an mcd-operator on commutative bounded integral
residuated lattices may not be (monotone) modal operator. So, it is worth considiring mcd-operators
on commutative bounded integral residuated lattices. After that, we investigate connections between
mcd-operators and ad-operators. In section 4 we describe connections between mcd-and ad-operators
on residuated lattice with Glivenko property and on the residuated lattices of their reguler elements. In
section 5 we show that Boolean algebra B(A) which is the set of complemented elements of A may not be
co-derivative subalgebra with respect to the mcd-operator on A. In section 6 we introduce θ-filters and
study on them. Moreover, we study mcd-operators on quotient commutative bounded integral residuated
lattice.

2. Preliminaries

We remember that an algebraA = (A,∧,∨,⊙,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a commutative bounded
integral residuated lattice (see, [1, 11, 18, 19, 24]) if it satisfies the following conditions:

(i) A = (A,⊙, 1) is a commutative monoid, i.e., ⊙ is a commutative, associative and x⊙1 = x for all x ∈ A,

(ii) A = (A,∧,∨, 0, 1) is a bounded lattice,

(iii) x ⊙ y ≤ z iff x ≤ y→ z for all x, y, z ∈ A.

We will write residuated lattice for short instead of commutative bounded integral residuated lattice. We
define a unary operator − such that x− := x→ 0 and a binary operator ⊕ such that x⊕ y = (x− ⊙ y−)− on any
residuated latticeA.

A residuated latticeA is said to be involutive if it satisfies the following property

(iv) x−− = x for all x ∈ A.

A residuated latticeA is said to be an Rℓ-monoid if it satisfies the following property

(v) (x→ y) ⊙ x = x ∧ y for all x, y ∈ A.

We have the following results.

Proposition 2.1. ([11, 18, 24])A be a residuated lattice. We have:

(1) x ≤ y implies y− ≤ x−,

(2) x ⊙ y ≤ x ∧ y,

(3) (x→ y) ⊙ x ≤ y,

(4) x ≤ x−−,

(5) x−−− = x−,

(6) If x ≤ y, then z→ x ≤ z→ y, y→ z ≤ x→ z and x ⊙ z ≤ y ⊙ z,

(7) x−− → y−− = x→ y−−,
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(8) (x→ y−−)−− = x→ y−−,

(9) (x ⊙ y)− = y→ x− = x→ y− = x−− → y− = y−− → x−,

(10) (x ⊙ y)−− ≥ x−− ⊙ y−−,

for any x, y, z ∈ A.

Lemma 2.2. ([11, 19, 24]) Suppose thatA is a residuated lattice. For any x, y ∈ A, we have:

(1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(2) x ⊕ y ≥ x−− ∨ y−− ≥ x ∨ y,

(3) x ⊕ 0 = x−−,

(4) (x ⊕ y)−− = x−− ⊕ y−− = x−− ⊕ y = x ⊕ y,

(5) x ⊙ x− = 0, x ⊕ x− = 1.

A residuated latticeA is said to be normal if it satisfies

(x ⊙ y)−− = x−− ⊙ y−−.

Lemma 2.3. ([24]) Suppose that residuated latticeA is normal . Then we have:

(1) (x ⊕ y)− = x− ⊙ y−,

(2) (x ⊙ y)− = x− ⊕ y−.

for any x, y ∈ A.

3. Co-derivative and derivative operators on residuated lattices

Definition 3.1. LetA be a residuated lattice. A mappingθ : A −→ A is said to be a multiplicative co-derivative
operator (mcd-operator) on residuated latticeA if it satisfies the following conditions for each x, y ∈ A:

(T1) θ(x ⊙ y) = θ(x) ⊙ θ(y),

(T2) x ⊙ θ(x) ≤ θθ(x),

(T3) θ(1) = 1,

(T4) x ≤ y =⇒ θ(x) ≤ θ(y).

θ is said to be a strong mcd-operator onA if it has the below property

(T5) θ(x) ≤ θθ(x)

for any x ∈ A.

Theorem 3.2. The axioms of an mcd-operator on residuated latticeA are independent.

Proof. We have to find a model for each axiom in which the others are true while the axiom is false.
(T1) Let A = {0, a, b, c, e, f , 1}. Define ⊙ and→ as follows:
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•

•

•

•

•

•

•

0

a

b

c

e

f

1

⊙ 0 a b c e f 1
0 0 0 0 0 0 0 0
a 0 a a 0 0 a a
b 0 a a 0 0 a b
c 0 0 0 c c c c
e 0 0 0 c c c e
f 0 a a c c f f
1 0 a b c e f 1

→ 0 a b c e f 1
0 1 1 1 1 1 1 1
a e 1 1 e e 1 1
b e f 1 e e 1 1
c b b b 1 1 1 1
e b b b f 1 1 1
f 0 b b e e 1 1
1 0 a b c e f 1

ThenA is a residuated lattice (see, [4]). We define θ : A −→ A operator as follows:

x 0 a b c e f 1
θ(x) 0 b b c e f 1

Then it is apparent that θ satisfies (T2), (T3) and (T4) axioms. We able to demonstrate that θ doesn’t
satisfy (T1). Really, we get x = a and y = a. Then,

θ(a ⊙ a) = θ(a) = b,

θ(a) ⊙ θ(a) = b ⊙ b = a,

θ(a ⊙ a) , θ(a) ⊙ θ(a).

(T2) Let A = {0, a, b, v, 1}. Define ⊙ and→ as follows:

•

•

• •

•

0

v

a b

1
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⊙ 0 v a b 1
0 0 0 0 0 0
v 0 v v v v
a 0 v a v a
b 0 v v b b
1 0 v a b 1

→ 0 v a b 1
0 1 1 1 1 1
v 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 v a b 1

ThenA is a residuated lattice (see, [4]). We define θ : A −→ A operator as follows:

x 0 v a b 1
θ(x) 0 0 v 0 1

Then θ satisfies (T1), (T3) and (T4) properties. we take x = a. Then

a ⊙ θ(a) = a ⊙ v = v

θθ(a) = θ(θ(a)) = θ(v) = 0. So, we have a ⊙ θ(a) ≰ θθ(a).

(T3) Suppose thatA is a residuated lattice. We describe the function θ : A −→ A by θ(x) = 0 for all x ∈ A.
Then it is easy to see that θ provides (T1), (T2) and (T4) axioms. However, the axiom (T3) is not satisfied.

(T4) Let A = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, x∧ y = min{x, y} and x∨ y = max{x, y} for any x, y ∈ A.
ThenA = (A,∧,∨, 0, 1) is a bounded lattice. We define ⊙ and→ as follows:

x ⊙ y =


y, x = 1
x, y = 1
0, otherwise

and

x→ y =


1, x ≤ y
y, x = 1
0.9, otherwise

ThenA is a residuated lattice (see, [23]). Let θ : A −→ A be the mapping as follows:

θ(x) =


1, x = 1
0, x = 0
1 − x, otherwise

Then it is clear that θ satisfies (T1), (T2) and (T3) axioms. Nevertheless, the mapping θ doesn’t satisfy the
axiom (T4). Because, we have 0.5 ≤ 0.8 but θ(0.5) = 0.5 ≰ θ(0.8) = 0.2.

Lemma 3.3. Suppose thatA is an Rℓ-monoid and θ : A −→ A is a mapping. If θ satisfies (T1)-(T3) axioms, then θ
is an mcd-operator onA.

Proof. We have to show that θ satisfies the axiom (T4). Let x, y ∈ A such that x ≤ y. Then θ(x) = θ(y ∧ x) =
θ((y→ x) ⊙ y) = θ(y→ x) ⊙ θ(y) ≤ θ(y→ x) ∧ θ(y) ≤ θ(y).

Definition 3.4. ([24]) Suppose thatA is a residuated lattice and f : A −→ A is a mapping. If f satisfies the
below conditions for any x, y ∈ A:
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(I1) f (x ⊙ y) = f (x) ⊙ f (y),

(I2) f (x) ≤ x,

(I3) f f (x) = f (x),

(I4) f (1) = 1,

(I5) x ≤ y =⇒ f (x) ≤ f (y),

then f is said to be a multiplicative interior operator (mi-operator) onA.

Remark 3.5. Suppose that f is a mi-operator on residuated latticeA. It is clear that f satisfies (T1), (T3), (T4)
and (T5) axioms. Then f is a strong mcd-operator. However, an mcd-operator may not be a mi-operator.

Example 3.6. Let A = {0, a, b, 1}. Define ⊙ and→ as follows:

•

• •

•

0

a b

1

⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

ThenA is a residuated lattice. We define θ : A −→ A operator as follows:

x 0 a b 1
θ(x) 0 b a 1

Then it is clear that θ is an mcd-operator. However, θ isn’t mi-operator. Because, θ doesn’t satisfy
(I2) and (I3) axioms. Indeed, we take x = a. Then θ(a) = b ≰ a, θ(θ(a)) = θ(b) = a ⩽̸ θ(a) = b and
θ(a) = b ≰ θ(θ(a)) = θ(b) = a.

Definition 3.7. ([19, 28]) f : A −→ A is called a modal operator on a residuated latticeA if for all x, y ∈ A,
it satisfies the following conditions:

(M1) f (x ⊙ y) = f (x) ⊙ f (y),

(M2) x ≤ f (x),

(M3) f f (x) = f (x).

A modal operator f is called monotone, if for any x, y ∈ A,
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(M4) x ≤ y =⇒ f (x) ≤ f (y).

Remark 3.8. Suppose that f is a monotone modal operator on residuated latticeA. It is clear that f satisfies
(T1), (T3), (T4) and (T5) axioms. Then f is a strong mcd-operator. However, an mcd-operator may not be a
(monotone) modal operator.

Example 3.9. We consider the residuated lattice A = ({0, a, b, 1},∧,∨,⊙,→, 0, 1) and the mcd-operator θ
from Example 3.6. θ isn’t a (monotone) modal operator. Because, θ doesn’t satisfy (M2) and (M3) axioms.

Proposition 3.10. Let θ be an mcd-operator on a residuated latticeA. Then for any x, y ∈ A

(1) θ(x→ y) ≤ θ(x)→ θ(y),

(2) x ≤ θ(x)→ θθ(x), θ(x) ≤ x→ θθ(x)

(3) θ(θ(x) ∧ θ(y)) ≤ θθ(x) ∧ θθ(y).

Proof. (1) Let x, y ∈ A. Then (x→ y)⊙x ≤ y by Proposition 2.1 (3). We have θ((x→ y)⊙x) = θ(x→ y)⊙θ(x).
Since θ is monotone, we must have θ(x→ y) ⊙ θ(x) ≤ θ(y) and θ(x→ y) ≤ θ(x)→ θ(y).

(2) it is clear that x ≤ θ(x)→ θθ(x) and θ(x) ≤ x→ θθ(x) by (T2).

(3) We have θ(x)∧θ(y) ≤ θ(x) and θ(x)∧θ(y) ≤ θ(y). Then θ(θ(x)∧θ(y)) ≤ θθ(x) and θ(θ(x)∧θ(y)) ≤ θθ(y)
by (T4). So, we have θ(θ(x) ∧ θ(y)) ≤ θθ(x) ∧ θθ(y).

LetA be a residuated lattice and h : A→ A be a mapping onA . We define a mapping h− : A→ A by

h−(x) = (h(x−))−.

Proposition 3.11. ([24]) Suppose that A is a residuated lattice and h is a mapping on residuated lattice A. If h is
monotone, then the mapping h− is monotone.

Proposition 3.12. Let θ : A −→ A be an mcd-operator on a normal residuated latticeA. Then for any x, y ∈ A we
have

(1) θ−(x ⊕ y) = θ−(x) ⊕ θ−(y),

(2) θ−θ−(x) ≤ x ⊕ θ−(x),

(3) θ−(0) = 0,

(4) x ≤ y =⇒ θ−(x) ≤ θ−(y).

If θ is a strong mcd-operator, then for any x ∈ A we have

(5) θ−θ−(x) ≤ θ−(x).

Proof. (1) θ−(x ⊕ y) = (θ((x ⊕ y)−))− = (θ(x− ⊙ y−))− = (θ(x−) ⊙ θ(y−))− = (θ(x−))− ⊕ (θ(y−))− = θ−(x) ⊕ θ−(y).

(2) θ−(θ−(x)) = θ−((θ(x−))−) = (θ((θ(x−))−−))−. We have θ(x−) ≤ (θ(x−))−− by Proposition 2.1 (4) and
θ(θ(x−)) ≤ θ((θ(x−))−−) by (T4) axiom. Moreover, we have x− ⊙ θ(x−) ≤ θ(θ(x−)) ≤ θ((θ(x−))−−) and also,
(θ((θ(x−))−−))− ≤ (x−⊙θ(x−))− = x−−⊕(θ(x−))− = x⊕(θ(x−))− by Lemma 2.2 (4). Hence, θ−(θ−(x)) ≤ x⊕θ−(x).

(3) θ−(0) = (θ(0−))− = (θ(1))− = (1)− = 0.

(4) It is the result of Proposition 3.11.

(5) If θ is a strong mcd-operator, then θ−(θ−(x)) = (θ((θ(x−))−−))− ≤ (θ(x−))− = θ−(x).
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Definition 3.13. LetA be a residuated lattice. A mappingω : A −→ A is called an additive derivative operator
(ad-operator) on residuated latticeA if it satisfies the following conditions for each x, y ∈ A:

(D1) ω(x ⊕ y) = ω(x) ⊕ ω(y),

(D2) ωω(x) ≤ x ⊕ ω(x),

(D3) ω(0) = 0,

(D4) x ≤ y =⇒ ω(x) ≤ ω(y).

ω is said to be a strong ad-operator onA if it has the below property

(D5) ωω(x) ≤ ω(x)

for any x ∈ A.

Theorem 3.14. Let θ : A −→ A be an mcd-operator on a normal residuated latticeA. Then the mapping θ− : A −→
A is an ad-operator onA. Moreover, if θ is a strong mcd-operator onA, then θ− is a strong ad-operator onA.

Proof. It follows from Proposition 3.12.

Example 3.15. Let A = {0, a, b, 1}. Define ⊙ and→ as follows:

•

•

•

•

0

a

b

1

⊙ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

ThenA is a normal residuated lattice. We define θ : A −→ A operator as follows:

x 0 a b 1
θ(x) 0 0 b 1

Then it is clear that θ is a strong mcd-operator. We have x ⊕ y = (x− ⊙ y−)− and θ−(x) = (θ(x−))− for all
x, y ∈ A as follows:
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⊕ 0 a b 1
0 0 a 1 1
a a 1 1 1
b 1 1 1 1
1 1 1 1 1

x 0 a b 1
θ−(x) 0 1 1 1

Easily we can check that θ− is a strong ad-operator.

Lemma 3.16. Assume that A is a residuated lattice . If ω is an ad-operator on A, then ω satisfies the following
property

ω(x−−) = (ω(x))−−.

Proof. We have x−− = x⊕ 0 for all x ∈ A by Lemma 2.2 (3). Then ω(x−−) = ω(x⊕ 0) = ω(x)⊕ω(0) = ω(x)⊕ 0 =
(ω(x))−−.

Proposition 3.17. Suppose thatA is a normal residuated lattice and ω : A −→ A is an ad-operator onA. Then we
get

(1) ω−(x ⊙ y) = ω−(x) ⊙ ω−(y),

(2) x ⊙ ω−(x) ≤ ω−ω−(x),

(3) ω−(1) = 1,

(4) x ≤ y =⇒ ω−(x) ≤ ω−(y),

for any x, y ∈ A. If ω is a strong ad-operator, then we get

(5) ω−(x) ≤ ω−ω−(x)

for any x ∈ A.

Proof. (1) Let x, y ∈ A. Then we have
ω−(x ⊙ y) = (ω((x ⊙ y)−))− = (ω(x− ⊕ y−))− = (ω(x−) ⊕ ω(y−))− = (ω(x−))− ⊙ (ω(y−))− = ω−(x) ⊙ ω−(y).

(2) We have x ≤ x−− for all x ∈ A by Proposition 2.1 (4) and x ⊙ ω−(x) ≤ x−− ⊙ ω−(x) by Proposition 2.1 (6).
Then x−− ⊙ ω−(x) = x−− ⊙ (ω(x−))− = (x− ⊕ ω(x−))−.Moreover, we have ω(ω(x−)) ≤ x− ⊕ ω(x−) for any x ∈ A
by (D2) and (x− ⊕ ω(x−))− ≤ (ω(ω(x−)))−.
(ω(ω(x−)))− = (ω(ω(x−)))−−− by Proposition 2.1 (5).

= (ω((ω(x−))−−))− by Lemma 3.16
= (ω((ω−(x))−))− = ω−(ω−(x)) = ω−ω−(x).

(3) ω−(1) = (ω(1−))− = (ω(0))− = 0− = 1.

(4) It follows from Proposition 3.11.

(5) We assume that ω is a strong ad-operator. Then,
ω−(x) = (ω(x−))− ≤ (ω(ω(x−)))− = (ω(ω(x−)))−−− = (ω((ω(x−))−−))− = (ω((ω−(x))−))− = ω−(ω−(x)).

Theorem 3.18. Let A be a normal residuated lattice and ω : A −→ A be an ad-operator on A. Then the mapping
ω− : A −→ A is an mcd-operator on A. Moreover, if ω is an strong ad-operator on A, then ω− is a strong
mcd-operator onA.

Proof. It follows from Proposition 3.17.
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Example 3.19. LetA be any normal residuated lattice. We define ω(x) = 0 for all x ∈ A. Then it is obvious
that ω is an strong ad-operator on A. We get ω−(x) = 1 for all x ∈ A. Then we can see that ω− is a strong
mcd-operator onA.

Corollary 3.20. LetA be a normal residuated lattice. If θ is an mcd-operator onA, then θ− is an ad-operator onA
by Theorem 3.14. Moreover, if ω is an ad-operator onA, then ω− is an mcd-operator onA by Theorem 3.18.

LetA be a normal residuated lattice. We shall denote by mcd(A) the set of mcd-operators onA and by
ad(A) the set of ad-operators onA. Assume that mcd(A) and ad(A) are pointwise ordered.

Theorem 3.21. IfA is a normal residuated lattice, then θ ≤ ω− iff ω ≤ θ−, for any θ ∈ mcd(A) and ω ∈ ad(A).

Proof. Let θ ∈ mcd(A) and ω ∈ ad(A) and θ ≤ ω−. Then θ(x) ≤ ω−(x) = (ω(x−))− and (ω(x−))−− ≤ (θ(x))− for
any x ∈ A. So, (θ(x−))− ≥ (ω(x−−))−− ≥ (ω(x))−− ≥ ω(x) and θ−(x) ≥ ω(x). As a result, θ−(x) ≥ ω(x) for all
x ∈ A and θ− ≥ ω.

Conversely, letω ≤ θ−. Thenθ−(x) ≥ ω(x) for any x ∈ A. We have (θ(x−))− ≥ ω(x) and (θ(x−))−− ≤ (ω(x))−.
So, (θ(x−−))−− ≤ (ω(x−))− = ω−(x) and ω−(x) ≥ (θ(x−−))−− ≥ (θ(x))−− ≥ θ(x). Consequently, ω−(x) ≥ θ(x) for
all x ∈ A and ω− ≥ θ.

4. Residuated lattice with Glivenko property

LetA be a residuated lattice. If the following property is provided for any x, y ∈ A

(x→ y)−− = x→ y−−

then we say that a residuated latticeA has Glivenko property (see, [10]).

Proposition 4.1. ([10]) A residuated latticeA has Glivenko property iffA satisfies the identity, for any x ∈ A,

(x−− → x)−− = 1.

An element x of a residuated latticeA is called regular if x−− = x.We shall denote by Re1(A) to the set of
all regular elements in A. We set x ⊔ y := (x ∨ y)−−, x ⊓ y := (x ∧ y)−−, x⇝ y := (x→ y)−−, x ⊗ y := (x ⊙ y)−−

and x ⊞ y := (x ⊕ y)−− for x, y ∈ Re1(A). Then Re1(A) = (Re1(A),⊓,⊔,⊗,⇝, 0, 1) is an involutive residuated
lattice. Note that ⊔ and ⊗ are different, in general, from ∨ and ⊙, respectively. Hence, Reg(A) may not be a
subalgebra ofA. We known that ifA is a normal residuated lattice, then x⊗ y = x⊙ y for every x, y ∈ Re1(A).
We have x ⊞ y = x ⊕ y for any residuated lattice. Indeed, x ⊞ y = (x ⊕ y)−− = x ⊕ y by Lemma 2.2 (4).

Theorem 4.2. ([7]) The following conditions are equivalent for any residuated latticeA.

(1) A has Glivenko property,

(2) the map x 7→ x−− defines a homomorphism from A onto Re1(A).

Proposition 4.3. ([24]) A residuated latticeA has Glivenko property iff (x→ y)−− = x−− → y−− , for any x, y ∈ A.

Remark 4.4. ([24]) Every Rℓ-monoid satisfies the identity (x → y)−− = x−− → y−−. Because of this, it has
Glivenko property .

Theorem 4.5. Suppose thatA is a normal residuated lattice with Glivenko property, θ : A→ A is an mcd-operator
(a strong mcd-operator) on A. If φ : Re1(A)→ Re1(A) is the mapping defined by φ(x) = (θ(x))−− for all x ∈ Re1(A),
then φ is an mcd-operator (a strong mcd-operator) on Re1(A).
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Proof. (T1) Let x, y ∈ Re1(A). Thenφ(x⊗y) = (θ(x⊙y))−− = (θ(x)⊙(y))−− = (θ(x))−−⊙(θ(y))−− = φ(x)⊙φ(y) =
φ(x) ⊗ φ(y).

(T2) Let x ∈ Re1(A). Then x ⊗ φ(x) = x ⊙ φ(x) = x ⊙ (θ(x))−− = x−− ⊙ (θ(x))−− = (x ⊙ θ(x))−− ≤ (θ(θ(x)))−− ≤
(θ((θ(x))−−))−− = (θ(φ(x)))−− = φ(φ(x)).

(T3) φ(1) = (θ(1))−− = (1)−− = (1−)− = 0− = 1.

(T4) Let x, y ∈ Re1(A) such that x ≤ y. Then we have (θ(x))−− ≤ (θ(y))−− and φ(x) ≤ φ(y).

(T5) If θ is a strong mcd-operator, then for any x ∈ Re1(A), φ(x) = (θ(x))−− ≤ (θ(θ(x)))−− ≤ (θ((θ(x))−−))−− =
(θ(φ(x)))−− = φ(φ(x)).

Example 4.6. Let A = {0, a, b, v, 1}. Define ⊙ and→ as follows:

•

• •

•

•

0

v

a b

1

⊙ 0 a b v 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
v 0 a b v v
1 0 a b v 1

→ 0 a b v 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
v 0 a b 1 1
1 0 a b v 1

ThenA is a normal residuated lattice (see, [4]). Moreover,A has Glivenko property. We define θ : A −→ A
operator as follows:

θ(x) =
{

1, x = 1
v, x , 1

Then it is clear that θ is a strong mcd-operator. We have Re1(A) = {0, a, b, 1} and φ(x) = (θ(x))−− = 1 for all
x ∈ Re1(A). It is easy to ascertain that φ is a strong mcd-operator on Re1(A).

Theorem 4.7. Suppose thatA is a residuated lattice with Glivenko property, ω : A→ A is an ad-operator (a strong
ad-operator) on A. If δ : Re1(A)→ Re1(A) the mapping defined by δ(x) = (ω(x))−− for all x ∈ Re1(A), then δ is an
ad-operator (a strong ad-operator) on Re1(A).

Proof. (D1) Let x, y ∈ Re1(A). Then δ(x⊞ y) = δ(x⊕ y) = (ω(x⊕ y))−− = (ω(x)⊕ω(y))−− = (ω(x))−−⊕ (ω(y))−− =
δ(x) ⊕ δ(y) = δ(x) ⊞ δ(y).

(D2) Let x ∈ Re1(A). Then δ(δ(x)) = δ((ω(x))−−) = (ω((ω(x))−−))−− = (ω(ω(x)))−−−− = (ω(ω(x)))−− ≤ (x ⊕
ω(x))−− = x−− ⊕ (ω(x))−− = x ⊕ δ(x) = x ⊞ δ(x).
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(D3) δ(0) = (ω(0))−− = (0)−− = (0−)− = 1− = 0.

(D4) Let x, y ∈ Re1(A) such that x ≤ y. Then we have (ω(x))−− ≤ (ω(y))−− and δ(x) ≤ δ(y).

(D5) If ω is a strong ad-operator, then for any x ∈ Re1(A), δ(δ(x)) = δ((ω(x))−−) = (ω((ω(x))−−))−− =
(ω(ω(x)))−−−− = (ω(ω(x)))−− ≤ (ω(x))−− = δ(x).

Example 4.8. Let A = {0, a, b, c, d, e, 1}. Define ⊙ and→ as follows:

•

•

•

•

•

•

•

0

a

b

c

d

e

1

⊙ 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 a a 0 0 a a
b 0 a a 0 0 a b
c 0 0 0 c c c c
d 0 0 0 c c c d
e 0 a a c c e e
1 0 a b c d e 1

→ 0 a b c d e 1
0 1 1 1 1 1 1 1
a d 1 1 d d 1 1
b d e 1 d d 1 1
c b b b 1 1 1 1
d b b b e 1 1 1
e 0 b b d d 1 1
1 0 a b c d e 1

Then A is a residuated lattice with Glivenko property. Note that A isn’t a normal residuated lattice. We
can obtain easily that Re1(A) = {0, b, d, 1} and ⊕ is as follows:

⊕ 0 a b c d e 1
0 0 b b d d 1 1
a b b b 1 1 1 1
b b b b 1 1 1 1
c d 1 1 d d 1 1
d d 1 1 d d 1 1
e 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

We define ω : A −→ A operator as follows:

x 0 a b c d e 1
ω(x) 0 b b d d 1 1

It is easy to ascertain that ω is a strong ad-operator on A. If δ : Re1(A) → Re1(A) the mapping defined by
δ(x) = (ω(x))−− for all x ∈ Re1(A), then δ is as follows:
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x 0 b d 1
δ(x) 0 b d 1

It is easy to see that δ is a strong ad-operator on Re1(A).

Theorem 4.9. Suppose that A is a normal residuated lattice with Glivenko property and τ : Re1(A) → Re1(A) is
an mcd-operator (a strong mcd-operator) on the involutive residuated lattice Re1(A). If θ : A → A is the mapping
defined by θ(x) = τ(x−−) for all x ∈ A, then θ is an mcd-operator (a strong mcd-operator) onA.

Proof. (T1) Let x, y ∈ A. Then
θ(x ⊙ y) = τ((x ⊙ y)−−) = τ(x−− ⊙ y−−) = τ(x−− ⊗ y−−) = τ(x−−) ⊗ τ(y−−) = τ(x−−) ⊙ τ(y−−) = θ(x) ⊙ θ(y).

(T2) Let x ∈ A. Then x ⊙ θ(x) = x ⊙ τ(x−−) ≤ x−− ⊙ τ(x−−) = x−− ⊗ τ(x−−) ≤ τ(τ(x−−)) ≤ τ((τ(x−−))−−) =
τ((θ(x))−−) = θ(θ(x)).

(T3) θ(1) = τ(1−−) = τ(1) = 1.

(T4) Let x, y ∈ A such that x ≤ y. Then we have x−− ≤ y−− and τ(x−−) ≤ τ(y−−). So, we have θ(x) ≤ θ(y).

(T5) If τ is a strong mcd-operator, then for any x ∈ A,θ(x) = τ(x−−) ≤ τ(τ(x−−)) ≤ τ((τ(x−−))−−) = τ((θ(x))−−) =
θ(θ(x)).

Example 4.10. We consider the residuated latticeA = ({0, a, b, v, 1},∧,∨,⊙,→, 0, 1) from Example 4.6. Then
Re1(A) = ({0, a, b, 1},⊓,⊔,⊗,⇝, 0, 1) is an involutive residuated lattice with the following operations:

•

• •

•

0

a b

1

⊗ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⇝ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

We define τ : Re1(A) −→ Re1(A) operator as follows:

x 0 a b 1
τ(x) 0 a b 1

Then it is clear that τ is a strong mcd-operator on Re1(A). Define θ : A → A by θ(x) = τ(x−−) for all x ∈ A.
Then θ is as follows:

x 0 a b v 1
θ(x) 0 a b 1 1

Then it is easy to verify that θ is a strong mcd-operator on A.
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Theorem 4.11. Suppose that A is a residuated lattice with Glivenko property. If π : Re1(A) → Re1(A) is an
ad-operator (a strong ad-operator) on Re1(A), then the mapping ω : A→ A such that ω(x) = π(x−−) for any x ∈ A,
is an ad-operator (a strong ad-operator) onA.

Proof. (D1) Let x, y ∈ A. Then ω(x ⊕ y) = π((x ⊕ y)−−) = π(x−− ⊕ y−−) = π(x−− ⊞ y−−) = π(x−−) ⊞ π(y−−) =
π(x−−) ⊕ π(y−−) = ω(x) ⊕ ω(y).

(D2) Let x ∈ A. Then ω(ω(x)) = ω(π(x−−)) = π((π(x−−))−−) = π(π(x−−−−)) = π(π(x−−)) ≤ x−− ⊞ π(x−−) =
x−− ⊕ π(x−−) = x−− ⊕ ω(x) = x ⊕ ω(x).

(D3) ω(0) = π(0−−) = π(0) = 0.

(D4) Let x, y ∈ A such that x ≤ y. Then we have x−− ≤ y−− and π(x−−) ≤ π(y−−). As a result, we have
ω(x) ≤ ω(y).

(D5) If π is a strong ad-operator, then for any x ∈ A, ω(ω(x)) = ω(π(x−−)) = π((π(x−−))−−) = π(π(x−−−−)) =
π(π(x−−)) ≤ π(x−−) = ω(x).

Example 4.12. We consider the residuated latticeA = ({0, a, b, c, d, e, 1},∧,∨,⊙,→, 0, 1) and the involutive residu-
ated lattice Re1(A) = ({0, b, d, 1},⊓,⊔,⊗,⇝, 0, 1) from Example 4.8. We define π : Re1(A) −→ Re1(A) operator as
follows:

x 0 b d 1
π(x) 0 d b 1

Then it is clear that π is an ad-operator on Re1(A). If ω : A → A the mapping defined by ω(x) = π(x−−) for any
x ∈ A, then ω is as follows:

x 0 a b c d e 1
ω(x) 0 d d b b 1 1

It is easy to ascertain that ω is an ad-operator on A.

5. The Boolean center of the residuaded lattice

Suppose that (A,∨,∧, 0, 1) is a bounded lattice. We remember that an element a ∈ A is called complemented
if there is an element b ∈ A such that a ∨ b = 1 and a ∧ b = 0 (see, [2, 6, 15]). We shall denote B(A) to the set
of complemented elements of A.

Lemma 5.1. ([9]) The following properties are true in every residuated latticeA:

(1) If a ∈ A has a complement, the complement must coincide with a−,

(2) B(A) = {a ∈ A : a− ∨ a = 1},

(3) If a ∈ B(A), then for each x ∈ A, x ⊙ a = x ∧ a.

B(A) = (B(A),∨,∧,− , 0, 1) is a Boolean algebra with the operations induced by those ofA.

Remark 5.2. ([7]) B(A) is a subalgebra both of A and Re1(A). Usually, Re1(A) , B(A). Nevertheless,
Re1(A) is a Boolean algebra iffA is pseudocomplemented, and Re1(A) = B(A) iffA is stonean, i.e., the equation
x− ∨ x−− = 1 hold in A.
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Definition 5.3. Let A be a residuated lattice, C a subalgebra of A and θ : A −→ A (ω : A −→ A) an
mcd-operator (ad-operator) on A. Then, C is called a co-derivative (derivative) subalgebra with respect to θ
(ω) if θ(x) ∈ C (ω(x) ∈ C) for any x ∈ C .

Proposition 5.4. A subalgebra C is a co-derivative (derivative) subalgebra with respect to an mcd-operator θ (an
ad-operator ω) iff C is a derivative (co-derivative) subalgebra with respect to the ad-operator θ− (mcd-operator ω−).

Proof. (⇒) Let C be a co-derivative subalgebra with respect to an mcd-operator θ and x ∈ C. Then we have
x− ∈ C, θ(x−) ∈ C and (θ(x−))− ∈ C. So, θ−(x) ∈ C and C is derivative subalgebra ofA.

(⇐) Let C be a derivative subalgebra with respect to an ad-operator ω and x ∈ C. Then we have x− ∈ C,
ω(x−) ∈ C and (ω(x−))− ∈ C. As a result, ω−(x) ∈ C and C is co-derivative subalgebra ofA.

Example 5.5. We consider the residuated lattice A = ({0, a, b, v, 1},∧,∨,⊙,→, 0, 1) and θ operator from
Example 4.6. Then it is easy to verify that B(A) = {0, 1}. Since θ(0) = v < B(A), B(A) is not co-derivative
subalgebra of A with respect to θ. However, B(A) is co-derivative subalgebra of Re1(A) with respect to
φ(x) = (θ(x))−− = 1 for all x ∈ Re1(A).

Proposition 5.6. ([6]) LetA be a residuated lattice. We consider the following statements for a ∈ A:

(1) a ∈ B(A),

(2) a ⊙ a = a,

(3) a−− = a,

(4) a ⊙ a = a and a− → a = a,

(5) (a→ x)→ a = a, for every x ∈ A,

(6) a ∧ a− = 0.

Then (1) implies (2) , (3), (4) and (5) but (2)⇏(1), (3)⇏(1), (4)⇏(1), (5)⇏(1).

Proposition 5.7. ([6]) If residuated lattice A is an Rℓ-monoid, then the statements (1), (2), (3) and (4) from
Proposition 5.6 are equivalent.

Proposition 5.8. LetA be an Rℓ-monoid and θ be an mcd-operator on A. Then B(A) is a co-derivative subalgebra
ofA with respect to θ.

Proof. Let a ∈ B(A). Then a ⊙ a = a by Proposition 5.6 (2). We have θ(a ⊙ a) = θ(a) ⊙ θ(a) = θ(a). So,
θ(a) ∈ B(A) by Proposition 5.7.

6. Filters

Assume thatA is a residuated lattice. A nonempty subset F of A is provided the following conditions:

(F1) x, y ∈ F =⇒ x ⊙ y ∈ F,

(F2) x ∈ F, y ∈ A, x ≤ y =⇒ y ∈ F.

Then it is called a filter of A.
A subset D of A is said to be a deductive system of A if

(DS1) 1 ∈ D,

(DS2) x, x→ y ∈ D =⇒ y ∈ D.
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It is known that a subset of A is a deductive system of A iff it is a filter (see, [24]).

Definition 6.1. LetA be a residuated lattice with mcd-operator θ and F be a filter ofA. Then F is called a
θ-filter if θ(x) ∈ F for every x ∈ F.

Proposition 6.2. Suppose thatA is a residuated lattice with mcd-operatorθ . Then the subset F = {x ∈ A : θ(x) = 1}
of A is a θ-filter.

Proof. (F1) Let x, y ∈ F. Then we have θ(x) = 1 and θ(y) = 1. Since θ(x ⊙ y) = θ(x) ⊙ θ(y) by (T1), we must
have θ(x ⊙ y) = 1. So, x ⊙ y ∈ F.

(F2) Let x ∈ F, y ∈ A and x ≤ y. Then we have θ(x) = 1 ≤ θ(y). So, θ(y) = 1 and y ∈ F.

Finally, let x ∈ F. Then we get θ(x) = 1. Hence, θθ(x) = θ(θ(x)) = θ(1) = 1. It means that θ(x) ∈ F.

Lemma 6.3. Suppose thatA is a normal residuated lattice with Glivenko property, θ is an mcd-operator onA and
F is θ-filter ofA. Then, F ∩ Re1(A) is a φ-filter of Re1(A) with respect to φ(x) = (θ(x))−− .

Proof. We know that F ∩ Re1(A) is a filter of Re1(A) (see, [7]). Let x ∈ F ∩ Re1(A). Then θ(x) ∈ F by the
hypothesis. Moreover, we have θ(x) ≤ (θ(x))−− by Proposition 2.1 (4) and (θ(x))−− ∈ F. Since (θ(x))−− is
regular, φ(x) = (θ(x))−− ∈ F ∩ Re1(A).

Lemma 6.4. Suppose that A is a normal residuated lattice with Glivenko property. If φ is an mcd-operator on the
involutive residuated lattice Re1(A) and G isφ-filter of Re1(A), then there is aθ-filter F ofA such that G = F∩Re1(A)
with respect to θ(x) = φ(x−−).

Proof. We take F = {x ∈ A : x ≥ a1 ⊙ . . . ⊙ an f or some n ≥ 1 and a1, . . . , an ∈ G}. It is easy to see that F is a
filter ofA (see, [7]). Let x ∈ F. Then
a1 ⊙ . . . ⊙ an ≤ x for some n ≥ 1 and a1, . . . , an ∈ G,
a1 ⊙ . . . ⊙ an ≤ x ≤ x−− by Proposition 2.1 (4),
φ(a1 ⊙ . . . ⊙ an) ≤ φ(x−−) by (T4),
φ(a1 ⊙ . . . ⊙ an) = φ(a1) ⊙ . . . ⊙ φ(an) ≤ φ(x−−) by (T1).
Since G is φ-filter, φ(ai) ∈ G for 1 ≤ i ≤ n. So, θ(x) = φ(x−−) ∈ F.

Filters of residuated lattice are in one-to-one correspondence with their congruences (see, [18]). For any
filter F of residuated latticeA, we define a relation ∼F on A as follows:

x ∼F y⇐⇒ x→ y, y→ x ∈ F.

Then∼F is a congruence relation. The set of all congruence classes is denoted by A/F, i.e, A/F := {x/F : x ∈ A}
where x/F = {y ∈ A : x ∼F y}. Define the binary operations ∧,∨,⊙,→ on A/F as follows:

x/F ∧ y/F = (x ∧ y)/F
x/F ∨ y/F = (x ∨ y)/F
x/F ⊙ y/F = (x ⊙ y)/F

x/F→ y/F = (x→ y)/F

Therefore (A/F,∧,∨,⊙,→, 0/F, 1/F) is a residuated lattice which is called quotient residuated lattice with
respect to F.

Theorem 6.5. Suppose thatA is a residuated lattice, θ : A −→ A is an mcd-operator (a strong mcd-operator) and F
is a θ-filter of residuated latticeA. Then the mapping ϑ : A/F→ A/F such that ϑ(x/F) = θ(x)/F is an mcd-operator
(a strong mcd-operator) on the quotient residuated latticeA/F .
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Proof. Let x, y ∈ A and x ∼F y. Then x → y, y → x ∈ F and so θ(x → y), θ(y → x) ∈ F. Since θ(x → y) ≤
θ(x) → θ(y) and θ(y → x) ≤ θ(y) → θ(x) by Proposition 3.10 (1), we have θ(x) → θ(y), θ(y) → θ(x) ∈ F by
(F2). Thus θ(x) ∼F θ(y). That means the relation ∼F on A with the mcd-operator is a congruence relation.

Now we will show that ϑ satisfies (T1)-(T5) conditions. Let x, y ∈ A.

(T1) ϑ(x/F ⊙ y/F) = ϑ((x ⊙ y)/F) = θ(x ⊙ y)/F = (θ(x) ⊙ θ(y))/F = θ(x)/F ⊙ θ(y)/F = ϑ(x/F) ⊙ ϑ(y/F).

(T2) x/F ⊙ ϑ(x/F) = x/F ⊙ θ(x)/F = (x ⊙ θ(x))/F ≤ θ(θ(x))/F = ϑ(θ(x)/F) = ϑ(ϑ(x/F)) = ϑϑ(x/F).

(T3) ϑ(1/F) = θ(1)/F = 1/F.

(T4) Let x, y ∈ A such that x/F ≤ y/F. Then we know that x/F ≤ y/F iff x → y ∈ F. Since F is a
θ-filter, we get θ(x → y) ∈ F . Moreover, we must have θ(x) → θ(y) ∈ F and θ(x)/F ≤ θ(y)/F. So,
ϑ(x/F) = θ(x)/F ≤ θ(y)/F = ϑ(y/F).

(T5) If θ is a strong mcd-operator, then for any x ∈ A, ϑ(x/F) = θ(x)/F ≤ θ(θ(x))/F = ϑ(θ(x)/F) = ϑ(ϑ(x/F)) =
ϑϑ(x/F).

Example 6.6. Let A = {0, a, b, c, 1}. Define ⊙ and→ as follows:

•

•

• •

•

0

c

a b

1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

ThenA is a residuated lattice. We define θ : A −→ A operator as follows:

x 0 a b c 1
θ(x) 0 c 1 c 1

Then we can check that θ be a strong mcd-operator on A. We consider F = {b, 1}. It is easy to see that F
is a θ-filter of residuated lattice A. Then A/F = {0/F, c/F, 1/F} where a/F = c/F and b/F = 1/F. We define
ϑ : A/F→ A/F by ϑ(x/F) = θ(x)/F for all x/F ∈ A/F. Then ϑ is as follows:

x/F 0/F c/F 1/F
ϑ 0/F c/F 1/F

We can check that the mapping ϑ is a strong mcd-operator on the quotient residuated latticeA/F .
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