Filomat 39:10 (2025), 3321–3328 https://doi.org/10.2298/FIL2510321P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Decomposition of corona graph

Jhandesh Pegu^a, Karam Ratan Singh^{a,*}, Prity Kumari^a, Vishnu Narayan Mishra^b

^aDepartment of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, 791113, India ^bDepartment of Mathematics, Indira Gandhi National Tribal University, Amarkantak, 484887, Madhya Pradesh, India

Abstract. Let G = (V, E) be a finite and connected graph. The corona $G_m \odot G_n$ of two graphs G_m and G_n is defined as the graph created by taking one copy of G_m and $|V(G_m)|$ copies of G_n and attaching the i^{th} vertex of G_m to every vertex in the i^{th} copy of G_n . In this paper, we initiate to decompose the corona $G_m \odot G_n$ into cycles, paths, and claws of varying lengths.

1. Introduction

A graph G = (V, E) is finite simple connected graph with n vertices and m edges. A path graph P_n with n vertices consists of vertices $v_1, v_2, ..., v_n$ and edges $\{v_i, v_{i+1}\}$, where i = 1, 2, ..., n - 1. The length of this path graph is n - 1 which is the number of edges in the graph. A cycle graph is a graph with only one cycle and denoted by C_n with length n. A star S_n is a tree with one internal vertex and n leaves / pendent vertex, or the complete bipartite graph $K_{1,n}$. The claw is a tree which is also a complete bipartite graph $K_{1,3}$ or star graph S_4 . For term and notation not defined here refer in [4, 6]. For positive integrals m and n, see the corona in [10, 12, 20], where $G_m \odot G_n$ of two graphs G_m and G_n is the graph created by taking one copy of G_m and $|V(G_m)|$ copies of G_n and attaching the i^{th} vertex of G_m to every vertex in the i^{th} copy of G_n . Additionally, it has vertices of the form $V(G_m \odot G_n) = \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ and edges of the form $E(G_m \odot G_n) = \{e_1, e_2, e_3, ..., e_{mn}\}$ with m + n(m + 1) + 1 vertices and 2mn + 2n - 1 edges.

In [11, 17], the term "decomposition" refers to the grouping of subgraphs $H_1, H_2, ..., H_k$, of *G* such that each edge of *G* belongs to precisely one H_i , where i = 1, 2, 3, ..., k. Several authors have explored different sorts of decompositions and associated factors by placing restrictions on the decomposition's constituents [9, 13– 15, 17]. These decompositions include claw decomposition, path decomposition, and cycle decomposition. A path decomposition of graph is the decomposition of its edges into subgraphs, where each subgraph represents a path or a union of paths [2, 7, 13, 14, 18] and a cycle decomposition is a decomposition of the graph such that every member of the subgraph is a cycle [1, 5, 8, 15, 16]. Finally, a claw decomposition is a decomposition where each subgraph represents a claw or union of claws [3, 9, 17, 19, 21]. Further, the

²⁰²⁰ Mathematics Subject Classification. Primary 13A15; Secondary 05C25, 05C69.

Keywords. Claw decomposition, Corona graph, cycle decomposition, decomposition, path decomposition.

Received: 30 June 2024; Revised: 09 January 2025; Accepted: 4 February 2025

Communicated by Ljubiša D. R. Kočinac

^{*} Corresponding author: Karam Ratan Singh

Email addresses: jhandesh246@gmail.com (Jhandesh Pegu), karamratan7@gmail.com (Karam Ratan Singh),

Pritybth15@gmail.com (Prity Kumari), vishnunarayanmishra@gmail.com (Vishnu Narayan Mishra)

ORCID iDs: https://orcid.org/0000-0002-1315-547X (Jhandesh Pegu), https://orcid.org/0000-0003-1065-4780 (Karam Ratan Singh), https://orcid.org/0000-0002-2159-7710 (Vishnu Narayan Mishra)

corona graphs $S_4 \odot P_3$, $K_4 \odot P_3$, and $C_3 \odot P_3$ are depicted in Figures 1, 2, and 3. In this paper, we determine the decomposition of the corona $G_m \odot G_n$ into cycles, paths, and claws with respect to different length, where the graph *G* is S_m , C_m , K_m and P_n .

Figure 2: Corona Graph $K_4 \odot P_3$

Figure 3: Corona Graph $C_3 \odot P_3$

2. Main Results

2.1. Decomposition of $S_m \odot P_n$

Here, we define the corona $S_m \odot P_n$ of star graph S_m and path graph P_n , where it is described as the graph created by taking one copy of S_m and $|V(P_m)|$ copies of P_n and attaching the *i*th vertex of S_m to every vertex in the *i*th copy of P_n with vertices of the form $V(S_m \odot P_n) = \{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\}$ and edges of the form $E(S_m \odot P_n) = \{e_r = u_1u_{r+1}, e_s^1 = u_1v_s, e_s^2 = u_2v_s, \ldots, e_s^m = u_mv_s, e_t = v_tv_{t+1}\}$, where $s = \{1, 2, \ldots, n-1\}$, $t = r = \{1, 2, \ldots, m-1\}$, and has m + n(m + 1) + 1 vertices and 2mn + 2n - 1 edges.

Now, we start with the following result and proof.

Theorem 2.1. Let m, n be positive integers and $m, n \ge 4$, then there exists a decomposition of $S_m \odot P_n$ into (1) $\lfloor \frac{n-2}{2} \rfloor m + 1$ copies of $P_2, \lfloor \frac{m-1}{2} \rfloor$ copies of P_3 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if m, n is even. (2) $\lfloor \frac{n-2}{2} \rfloor m$ copies of $P_2, \lfloor \frac{m-1}{2} \rfloor + m$ copies of P_3 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if m, n is odd. (3) $\lfloor \frac{n-2}{2} \rfloor m + 1$ copies of $P_2, \lfloor \frac{m-1}{2} \rfloor + m$ copies of P_3 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if m is even and n is odd. (4) $\lfloor \frac{n-2}{2} \rfloor m$ copies of $P_2, \lfloor \frac{m-1}{2} \rfloor$ copies of P_3 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if m is odd and n is even.

Proof. Let $V(S_m \odot P_n) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n\}$ and $E(S_m \odot P_n) = \{e_r = u_1 u_{r+1}, e_s^1 = u_1 v_s, e_s^2 = u_2 v_s, \dots, e_s^m = u_m v_s, e_t = v_t v_{t+1}\}$, denotes the vertex and edges of $S_m \odot P_n$. The theorem's proof consists of four cases:

Case 1: When $m, n \ge 4$ and m, n are even.

For P_2 , let $E = \{e_r = u_1 u_{r+1}\}$, where $r = \{3, 5, 7, \dots, m-1\}$ and $F_t = \{e_t = v_t v_{t+1}\}$, where $t = \{2, 4, 6, \dots, n-2\}$.

For P_3 , let $G_r = \{e_r, e_{r+1}\}$, where $r = \{1, 3, 5, 7, \dots, m-3\}$. For C_3 , let $H_s^1 = \{e_s^1, e_{s+1}^1, e_t\}, H_s^2 = \{e_s^2, e_{s+1}^2, e_t\}, H_s^3 = \{e_s^3, e_{s+1}^3, e_t\}, \dots, H_s^m = \{e_s^m, e_{s+1}^m, e_t\}$, where $s = \{1, 3, 5, 7, \dots, n-s\}$. 1} and $t = \{1, 3, 5, \dots, n-1\}.$

Now take one copy of path P_2 with length one create a subgraph $\langle E \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create as subgraphs $\langle F_2 \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle F_4 \rangle$, and this process of decomposition continue until $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle F_{n-2} \rangle$. Again, take $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two creates a subgraph $\langle G_r \rangle$ and finally $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 with length three creates a subgraph $\langle H_s^1 \rangle$, $\langle H_s^2 \rangle$, till $\langle H_s^m \rangle$. In this process, the corona graph of $S_m \odot P_n$ can be decomposed into $\{\lfloor \frac{n-2}{2} \rfloor + \lfloor \frac{n-2}{2} \rfloor + \ldots + \lfloor \frac{n-2}{2} \rfloor\} + 1 = \lfloor \frac{n-2}{2} \rfloor m + 1$ copies of path P_2 of length one, $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two, and $\{\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2} \rfloor\} = \lfloor \frac{n}{2} \rfloor m$ copies of cycle C_3 with length three.

Case 2: When $m, n \ge 4$ and m, n are odd.

For P_2 , let $E_t = \{e_t = v_t v_{t+1}\}$, where $t = \{2, 4, 6, \dots, n-3\}$.

For P_3 , let $F_q = \{e_s^q, e_t\}$, where $q = \{1, 2, ..., m\}$, $s = \{m\}$, $t = \{m-1\}$ $G_r = \{e_r, e_{r+1}\}$, where $r = \{1, 3, 5, 7, ..., m-2\}$. For C_3 , let $H_s^1 = \{e_s^1, e_{s+1}^1, e_t\}$, $H_s^2 = \{e_s^2, e_{s+1}^2, e_t\}$, $H_s^3 = \{e_s^3, e_{s+1}^3, e_t\}$, ..., $H_s^m = \{e_s^m, e_{s+1}^m, e_t\}$, where $s = \{1, 3, 5, 7, ..., n-2\}$.

Now, take $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_2 \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_4 \rangle$, and this process continues until $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_{n-3} \rangle$, *m* copies of path P_3 with length two creates a subgraph F_q and $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two creates a subgraph $\langle G_r \rangle$, and finally $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 with length three creates a subgraph $\langle H_s^1 \rangle$, $\langle H_s^2 \rangle$, till $\langle H_s^m \rangle$. Hence, by the above process the corona graph $S_m \odot P_n$ can be decomposed into $\{\lfloor \frac{n-2}{2} \rfloor + \lfloor \frac{n-2}{2} \rfloor + \ldots + \lfloor \frac{n-2}{2} \rfloor\} = \lfloor \frac{n-2}{2} \rfloor m$ copies of path P_2 of length one, $\lfloor \frac{m-1}{2} \rfloor + m$ copies of path P_3 with length two, and $\{\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2} \rfloor\} = \lfloor \frac{n}{2} \rfloor m$ copies of cycle C_3 with length three. **Case 3:** When $m, n \ge 4$ and m is even and n is odd.

For P_2 , let $E = \{e_r = u_1 u_{r+1}\}$, where $r = \{3, 5, 7, \dots, m-1\}$ and $F_t = \{e_t = v_t v_{t+1}\}$, where $t = \{2, 4, 6, \dots, n-2\}$. For P_3 , let $F'_q = \{e_s^q, e_t\}$, where $q = \{1, 2, ..., m\}$, $s = \{m\}$, $t = \{m-1\}$ $G_r = \{e_r, e_{r+1}\}$, where $r = \{1, 3, 5, 7, ..., m-2\}$. For C_3 , let $H_s^1 = \{e_s^1, e_{s+1}^1, e_t\}$, $H_s^2 = \{e_s^2, e_{s+1}^2, e_t\}$, $H_s^3 = \{e_s^3, e_{s+1}^3, e_t\}$, ..., $H_s^m = \{e_s^m, e_{s+1}^m, e_t\}$, where $s = \{1, 3, 5, 7, ..., n-2\}$. 2} and $t = \{1, 3, 7, \dots, n-2\}$.

Now, take one copy of path P_2 with length one create a subgraph $\langle E \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle F_2 \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle F_4 \rangle$, and this process continues until $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle F_{n-2} \rangle$, m copies of path P_3 with length two create a subgraph F'_q and $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two creates a subgraph $\langle G_r \rangle$, and finally $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 with length three creates a subgraph $\langle H_s^1 \rangle$, $\langle H_s^2 \rangle$, till $\langle H_s^m \rangle$. Hence, by the above process the corona graph $S_m \odot P_n$ can be decomposed into $\left\lfloor \left\lfloor \frac{n-2}{2} \right\rfloor + \left\lfloor \frac{n-2}{2} \right\rfloor + \dots + \left\lfloor \frac{n-2}{2} \right\rfloor \right\rfloor + 1 = \left\lfloor \frac{n-2}{2} \right\rfloor m + 1$ copies of path P_2 of length one, $\lfloor \frac{m-1}{2} \rfloor + m$ copies of path P_3 with length two, and $\{\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2} \rfloor\} = \lfloor \frac{n}{2} \rfloor m$ copies of cycle C_3 with length three.

Case 4: When $m, n \ge 4$ and m is odd and n is even.

For P_2 , let $E_t = \{e_t = v_t v_{t+1}\}$, where $t = \{2, 4, 6, \dots, n-3\}$.

For
$$P_3$$
, let $G_r = \{e_r, e_{r+1}\}$, where $r = \{1, 3, 5, 7, \dots, m-3\}$

For C_3 , let $H_s^1 = \{e_s^1, e_{s+1}^1, e_t\}, H_s^2 = \{e_s^2, e_{s+1}^2, e_t\}, H_s^3 = \{e_s^3, e_{s+1}^3, e_t\}, \dots, H_s^m = \{e_s^m, e_{s+1}^m, e_t\}$, where $s = \{1, 3, 5, 7, \dots, n-1\}$ 1} and $t = \{1, 3, 7, \dots, n-1\}.$

Now, take $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_2 \rangle$, $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_4 \rangle$, and this process continues until $\lfloor \frac{n-2}{2} \rfloor$ copies of path P_2 with length one create a subgraph $\langle E_{n-3} \rangle$, $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two creates a subgraph $\langle G_r \rangle$ and finally $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 with length three creates a subgraph $\langle H_s^1 \rangle$, $\langle H_s^2 \rangle$, till $\langle H_s^m \rangle$. Hence, by the above process the corona graph $S_m \odot P_n$ can be decomposed into $\{\lfloor \frac{n-2}{2} \rfloor + \lfloor \frac{n-2}{2} \rfloor + \ldots + \lfloor \frac{n-2}{2} \rfloor\} = \lfloor \frac{n-2}{2} \rfloor m$ copies of path P_2 of length one, $\lfloor \frac{m-1}{2} \rfloor$ copies of path P_3 with length two, and $\{\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2} \rfloor\} = \lfloor \frac{n}{2} \rfloor m$ copies of cycle C_3 with length three. \Box

From Theorem 2.1, we have the following observations:

Observation 2.2. When $m, n \ge 4$ and m, n be positive integers, then $S_m \odot P_n$ can be decomposed into (1) $(m-1) + (\frac{n-2}{2})m$ copies of P_2 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if n is even. (2) $(m-1) + (\frac{n+1}{2})m$ copies of P_2 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , if n is odd.

Observation 2.3. When $m, n \ge 3$, and m, n be a positive integers, then $S_m \odot P_n$ can be decomposed into (1) m copies of P_2 , and $\lfloor \frac{m-1}{2} \rfloor + (n-1)m$ copies of P_3 , if m is odd. (2) m + 1 copies of P_2 , and $\lfloor \frac{m-1}{2} \rfloor + (n-1)m$ copies of P_3 , if m is even.

(3) (n-2)m+1 copies of P_2 , and $\lfloor \frac{m-1}{2} \rfloor$ copies of P_3 , and m copies of cycle C_{n+1} of length n+1, if m is even.

(4) (n-2)m copies of P_2 , and $\lfloor \frac{m-1}{2} \rfloor$ copies of P_3 , and m copies of cycle C_{n+1} of length n+1, if m is odd.

(5) (m-1) copies of P_2 , m copies of P_n , and $\frac{mn}{2}$ copies of claw $K_{1,3}$, if m = n = 3q, where q = 1, 2, ...

(6) (2m-1) copies of P_2 , *m* copies of P_n , and $\frac{n^2-n}{3}$ copies of claw $K_{1,3}$, if m = n = 3q + 1, where q = 1, 2, ...(7) (m-1) copies of P_2 , *m* copies of P_3 , *m* copies of P_n , and $\frac{nm-2m}{3}$ copies of claw $K_{1,3}$, if m = n = 3q + 2, where q = 1, 2, ...

2.2. Decomposition of $C_m \odot P_n$

The corona $C_m \odot P_n$ of cycle C_m and path P_n is defined as the graph obtained by taking one copy of C_m and $|V(C_m)|$ copies of P_n and joining the *i*th vertex of C_m to every vertex in the *i*th copy of P_n . The graph formed by the corona product $C_m \odot P_n$ has vertices of the form $V(C_m \odot P_n) = \{u_1, u_2, u_3, \dots, u_m, v_1, v_2, \dots, v_n\}$ and edges of the form $E(C_m \odot P_n) = \{e_l = u_l u_{l+1}, e_{l'} = u_{l'} u_1, e_i = u_1 v_i, e_i' = u_2 v_i, e_i'' = u_3 v_i, \dots, e_i^{m-1}$ $= u_m v_i, e_j = v_j v_{j+1}\}$, where $i = \{1, 2, \dots, n\}$, $j = l = \{1, 2, \dots, m-1\}$, $l' = \{m\}$. There are m + mn vertices and m + m(n-1) + mn edges in the corona product $C_m \odot P_n$.

Now, we are calculating the decomposition of corona graph of $C_m \odot P_n$.

Theorem 2.4. Let m, n be positive integers. If $n \ge 2, m \ge 3$, then there exists a decomposition of $C_m \odot P_n$ into a single copy of cycle C_m of length m, m copies of path P_{n+1} of length n, and m(n-1) copies of path P_2 of length one.

Proof. Let $V(C_m \odot P_n) = \{u_1, u_2, u_3, \dots, u_m, v_1, v_2, \dots, v_n\}$ be the vertex set and edges-set consisting of all edges of the form $E(C_m \odot P_n) = \{e_l = u_l u_{l+1}, e_{l'} = u_{l'} u_1, e_i = u_1 v_i, e_i' = u_2 v_i, e_i'' = u_3 v_i, \dots, e_i^{m-1} = u_m v_i, e_j = v_j v_{j+1}\}$, where $i = \{1, 2, \dots, n\}$, $j = \{1, 2, \dots, n-1\}$, $l = \{1, 2, \dots, m-1\}$, $l' = \{m\}$.

Since *m* and *n* are positive integers that can be either an odd number or an even number.

Case 1: When *m*, *n* are even and it can be written as m = n = 2q, where q = 1, 2, 3, ...

Let $F = \{e_l, e_{l'}\}$, where $l = \{1, 2, ..., m-1\}$ and $l' = \{m\}$, $E_1 = \{e_i, e_j\}$, $E_2 = \{e'_i, e_j\}$, $E_3 = \{e''_i, e_j\}$, $\dots, E_m = \{e_i^{m-1}, e_j\}$ where $i = \{1\}$, $j = \{1, 2, 3, 4, ..., n-1\}$. Also $F_i = \{e_i\}$, $F'_i = \{e'_i\}$, $F''_i = \{e''_i\}$, \dots , $F_i^{m-1} = \{e_i^{m-1}\}$ where $i = \{1, 2, ..., n-1\}$.

Then, the subgraph $\langle F \rangle$ create a single cycle C_m of length m, the subgraph $\langle E_1 \rangle$ creates 1 copy of path P_{n+1} of length n, the subgraph $\langle E_2 \rangle$ creates 1 copy of path P_{n+1} of length n, the subgraph $\langle E_3 \rangle$ creates 1 copy of path P_{n+1} of length n, and this process continues until the subgraph $\langle E_m \rangle$ creates 1 copy of path P_{n+1} of length n.

Again the subgraph $\langle F_i \rangle$ creates n - 1 copies of path P_2 of length one, the subgraph $\langle F'_i \rangle$ creates n - 1 copies of path P_2 of length one, the subgraph $\langle F'_i \rangle$ creates n - 1 copies of path P_2 of length one, and this process continues until the subgraph $\langle F_i^{m-1} \rangle$ creates n - 1 copies of path P_2 of length one. Hence $C_m \odot P_n$ of cycle C_m and path P_n can be decomposed into one copy of cycle C_m of length m, and (1 + 1 + ... + 1) = m copies of path P_{n+1} of length n and $\{(n - 1) + (n - 1) + ... + (n - 1)\} = m(n - 1)$ copies of path P_2 of length 1. **Case 2:** When m, n are odd and it can be written as m = n = 2q + 1, where q = 1, 2, 3, ...

Case 2: When *m*, *n* are odd and it can be written as m = n = 2q + 1, where q = 1, 2, 3, ...Let $F = \{e_l, e_{l'}\}$, where $l = \{1, 2, ..., m - 1\}$ and $l' = \{m\}$, $E_1 = \{e_i, e_j\}$, $E_2 = \{e'_i, e_j\}$, $E_3 = \{e''_i, e_j\}$, ..., $E_m = \{e_i^{m-1}, e_j\}$ where $i = \{1\}$, $j = \{1, 2, 3, 4, ..., n - 1\}$. Also $F_i = \{e_i\}$, $F'_i = \{e'_i\}$, $F''_i = \{e''_i\}$, ..., $F_i^{m-1} = \{e_i^{m-1}\}$ where $i = \{1, 2, ..., n - 1\}$.

Then, the subgraph $\langle F \rangle$ creates a single cycle C_m of length m, the subgraph $\langle E_1 \rangle$ creates 1 copy of path

 P_{n+1} of length *n*, the subgraph $\langle E_2 \rangle$ creates 1 copy of path P_{n+1} of length *n*, the subgraph $\langle E_3 \rangle$ creates 1 copy of path P_{n+1} of length *n*, and this process continues until the subgraph $\langle E_m \rangle$ creates 1 copy of path P_{n+1} of length *n*.

Again the subgraph $\langle F_i \rangle$ creates n - 1 copies of path P_2 of length one, the subgraph $\langle F'_i \rangle$ creates n - 1copies of path P_2 of length one, the subgraph $\langle F_i' \rangle$ creates n - 1 copies of path P_2 of length one, and this process continues until the subgraph $\langle F_i^{m-1} \rangle$ creates n-1 copies of path P_2 of length one. Hence the corona product $C_m \odot P_n$ of cycle C_m and path P_n can be decomposed into one copy of cycle C_m of length m, and (1 + 1 + ... + 1) = m copies of path P_{n+1} of length n and $\{(n-1) + (n-1) + ... + (n-1)\} = m(n-1)$ copies of path P_2 of length 1.

By employing Theorem 2.4, we have the following observation:

Observation 2.5. When $n \ge 2, m \ge 3$ and m, n be positive integers, then $C_m \odot P_n$ can be decompose into a single copy of path P_m of length m-1, m copies of path P_{n+1} of length n and (mn-m+1) copies of path P_2 of length one.

Theorem 2.6. Let *m*, *n* be a positive integers and *m*, $n \ge 4$, then there exist a decomposition of $C_m \odot P_n$ into (1) One copy of C_m , $\frac{nm}{2}$ copies of C_3 , and $(\frac{n-2}{2})m$ copies of P_2 , if m, n is even.

(2) One copy of C_m , $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 , m copies of P_3 , and $(\frac{n-3}{2})m$ copies of P_2 , if m, n is odd.

Proof. Let $V(C_m \odot P_n) = \{u_1, u_2, u_3, \dots, u_m, v_1, v_2, \dots, v_n\}$ be the vertex and $E(C_m \odot P_n) = \{e_l = u_l u_{l+1}, e_{l'} = u_{l'} u_{l}, e_i = u_1 v_i, e_i' = u_2 v_i, e_i'' = u_3 v_i, \dots, e_i^{m-1} = u_m v_i, e_j = v_j v_{j+1}\}$, where $i = \{1, 2, \dots, n\}$, $j = \{1, 2, \dots, n-1\}$, $l = \{1, 2, ..., m - 1\}, l' = \{m\}$ be the edges set.

Since *m* and *n* are positive integers that can be either an odd number or an even number.

Case 1: When n > 2, m > 4 and m = n = even number.

For C_m , let $F = \{e_l, e_{l+1}, \dots, e_{l+m-2}, e_{l'}\}$, where $l = \{1\}$, $l' = \{m\}$. For C_3 , let $E_i = \{e_i, e_{i+1}, e_j\}$, $E'_i = \{e'_i, e'_{i+1}e_j\}$, $E''_i = \{e''_i, e''_{i+1}, e_j\}$, ..., $E_i^{m-1} = \{e_i^{m-1}, e_{i+1}^{m-1}, e_j\}$, where $i = j = \{e_i^{m-1}, e_i^{m-1}, e_j\}$, where $i = j = \{e_i^{m-1}, e_i^{m-1}, e_j\}$, $E''_i = \{e_i^{m-1}, e_i^{m-1}, e_j^{m-1}, e_j^{m-1}\}$, where $i = j = \{e_i^{m-1}, e_i^{m-1}, e_j^{m-1}, e_j^{m-1}\}$, $E''_i = \{e_i^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}\}$, $E''_i = \{e_i^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}\}$, $E''_i = \{e_i^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}\}$, $E''_i = \{e_i^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}, e_j^{m-1}\}$ $\{1, 3, 5, \dots, n-1\}.$

For P_2 , let $H_j = \{e_j\}$, $H'_j = \{e_i\}$, ..., $H_j^{m-1} = \{e_j\}$, where $j = \{2, 4, 6, ..., n-2\}$. Then, the subgraph $\langle F \rangle$ creates one copy of cycle C_m of length m, the subgraph $\langle E_i \rangle$ creates $\frac{n}{2}$ copies of cycle C_3 of length three, the subgraph $\langle E'_i \rangle$ creates $\frac{n}{2}$ copies of cycle C_3 of length three, the subgraph $\langle E''_i \rangle$ creates $\frac{n}{2}$ copies of cycle C_3 of length three, and this process continues until subgraph E_i^{m-1} creates $\frac{n}{2}$ copies of cycle C_3 of length three. Finally, the subgraph $\langle H_j \rangle$, $\langle H'_j \rangle$, ..., $\langle H'_j \rangle$ creates $(\frac{n-2}{2})$ copies of path P_2 of length one. Hence, $C_m \odot P_n$ of cycle C_m and path P_n can be decomposed into a single cycle C_m of length m, $\{(\frac{n}{2}) + (\frac{n}{2}) + \dots + (\frac{n}{2})\} = \frac{nm}{2}$ copies of cycle C_3 of length three and $\{(\frac{n-2}{2}) + (\frac{n-2}{2}) + \dots + (\frac{n-2}{2})\} = (\frac{n-2}{2})m$ copies of path P_2 of length one.

Case 2: When *n* > 3, *m* > 3 and *m*= *n* = odd number.

For C_m , let $E = \{e_l, e_{l+1}, \dots, e_{l+m-2}, e_{l'}\}$, where $l = \{1\}, l' = \{m\}$.

For C₃, let $F_i = \{e_i, e_{i+1}, e_j\}, F'_i = \{e'_i, e'_{i+1}, e_j\}, F''_i = \{e''_i, e''_{i+1}, e_j\}, \dots, F^{m-1}_i = \{e^{m-1}_i, e^{m-1}_{i+1}, e_j\}$ where i = j = 1 $\{1, 3, 5, \ldots, n-2\}.$

For P_3 , let $H = \{e_i, e_j\}, H_1 = \{e'_i, e_j\}, \dots, H_{m-1} = \{e^{m-1}_i, e_j\}$, where i = n, j = n - 1.

For P_2 , let $G_j = \{e_j\}, G'_j = \{e_j\}, \ldots, G_j^{m-1} = \{e_j\}$, where $j = \{2, 4, 6, \ldots, n-3\}$.

Then, the subgraph $\langle E \rangle$ creates a single cycle C_m of length m, the subgraph $\langle F_i \rangle$ creates $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 of length three, the subgraph $\langle F'_i \rangle$ creates $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 of length three, the subgraph $< F_i'' >$ creates $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 of length three, and this process continues until the subgraph $< F_i^{m-1} >$ creates $\lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 of length three, the subgraph $\langle H \rangle$ creates a single path P_3 of length two, the subgraph $< H_1 >$ creates a single path P_3 of length two, the subgraph $< H_2 >$ creates a single path P_3 of length two, the subgraph $\langle H_3 \rangle$ creates a single path P_3 of length two, and by the above process continues until the subgraph $\langle H_{m-1} \rangle$ creates a single path P_3 of length two. Furthermore the subgraph $\langle G_j \rangle$, $\langle G'_{i} \rangle, \ldots, \langle G^{m-1}_{i} \rangle$ creates $\frac{n-3}{2}$ copies of path P_{2} of length one. Hence, $C_{m} \odot P_{n}$ of cycle C_{m} and path P_{n} can be decomposed into one copy of cycle C_m of length m, $\{(\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + \ldots + \lfloor \frac{n}{2} \rfloor)\} = m \lfloor \frac{n}{2} \rfloor$ copies of cycle C_3 of length three, (1 + 1 + ... + 1) = m copies of path P_3 of length two and $\{(\frac{n-3}{2}) + (\frac{n-3}{2}) + ... + (\frac{n-3}{2})\} = (\frac{n-3}{2})m$ copies of path P_2 of length one. \Box

By employing Theorem 2.6, we have the following observations:

Observation 2.7. When $m, n \ge 4$ and m, n be positive integers, then $C_m \odot P_n$ can be decompose into

(1) One copy of path P_m , $\frac{nm}{2}$ copies of cycle C_3 , and $\frac{m(n-2)+2}{2}$ copies of path P_2 , if m, n is even.

(2) One copy of path P_m , $\lfloor \frac{n}{2} \rfloor$ m copies of cycle C_3 , m copies of path P_3 , and $\frac{m(n-3)+2}{2}$ copies of path P_2 , if m, n is odd.

Observation 2.8. When $m, n \ge 4$ and m, n be positive integers, then $C_m \odot P_n$ can be decomposed into

(1) One copy of cycle C_m , $\frac{mn}{3}$ copies of claw $K_{1,3}$, and m copies of P_n , if n = 3q, where q = 1, 2, 3, ...

(2) One copy of cycle C_m , $m(\frac{n-1}{3})$ copies of claw $K_{1,3}$, m copies of path P_n , and m copies of path P_2 , if n = 3q + 1, where q = 1, 2, 3, ...

(3)One copy of cycle C_m , $(\frac{n-2}{3})m$ copies of claw $K_{1,3}$, m copies of path P_n , and m copies of P_3 , if n = 3q + 2, where q = 1, 2, 3, ...

(4). One copy of path P_m , one copy of path P_2 , $\frac{mn}{3}$ copies of claw $K_{1,3}$, and m copies of path P_n , if n = 3q, where q = 1, 2, 3, ...

(5) One copy of path P_m , $m(\frac{n-1}{3})$ copies of claw $K_{1,3}$, m copies of path P_n , and (m + 1) copies of path P_2 , if n = 3q + 1, where q = 1, 2, 3, ...

(6) One copy of path P_m , one copy of path P_2 , $(\frac{n-2}{3})m$ copies of claw $K_{1,3}$, m copies of path P_n , and m copies of path P_3 , if n = 3q + 2, where q = 1, 2, 3, ...

2.3. Decomposition of $K_m \odot P_n$

Here, we decompose the $K_m \odot P_n$ of the complete graph K_m and path graph P_n . It is obtained by taking one copy of K_m and $|V(P_n)|$ copies of P_n and joining the *i*-th vertex of K_m to every vertex in the *i*th copy of P_n . Let the vertex set be $V(K_m \odot P_n) = \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ and edge set be $E(K_m \odot P_n) = \{e_i = v_i v_{i+1}, e_j^1 = u_1 v_j, e_j^2 = u_2 v_j, ..., e_j^m = u_m v_j, e_k = u_k u_{k+1}, e_m = u_m u_1, e_{1^1}^1 = u_1 u_{1^+2}, e_{1^2}^2 = u_2 u_{1^2+3}, ..., e_{1^{m-2}}^{m-2} = u_{m-2} u_{1^{m-2}+(m-1)}\}$, where $i = \{1, 2, 3, ..., n-1\}$, $j = \{1, 2, 3, ..., n\}$, $k = \{1, 2, 3, ..., m-1\}$, $l^1 = \{1, 2, 3, ..., m-3\}$, $l^2 = \{1, 2, 3, ..., m-4\}$, $l^4 = \{1, 2, 3, ..., m-5\}$, ..., $l^{m-2} = \{1, 2, 3, ..., m-(m-1)\}$.

Now, we are calculating the decomposition of corona graph of $K_m \odot P_n$.

Theorem 2.9. Let m, n be positive integers and $m, n \ge 4$, then there exists a decomposition of $K_m \odot P_n$ into (1) One copy of complete graph K_m , $\frac{mn}{2}$ copies of cycle C_3 , and $m(\frac{n-2}{2})$ copies of path P_2 , if m, n are even. (2) One copy of the complete graph K_m , $m(\frac{n-1}{2})$ copies of cycle C_3 , m copies of path P_3 , and $(\frac{n-3}{2})m$ copies of path P_2 , if m, n are odd.

Proof. Let $V(K_m \odot P_n) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n\}$ and, $E(K_m \odot P_n) = \{e_i = v_i v_{i+1}, e_j^1 = u_1 v_j, e_j^2 = u_2 v_j, \dots, e_j^m = u_n v_j, e_k = u_k u_{k+1}, e_m = u_m u_1, e_{l^1}^1 = u_1 u_{l^1+2}, e_{l^2}^2 = u_2 u_{l^2+3}, \dots, e_{l^{m-2}}^{m-2} = u_{m-2} u_{l^{m-2}+(m-1)}\}$, where $i = \{1, 2, 3, \dots, n-1\}$, $j = \{1, 2, 3, \dots, n\}$, $k = \{1, 2, 3, \dots, m-1\}$, $l^1 = \{1, 2, 3, \dots, m-3\}$, $l^2 = \{1, 2, 3, \dots, m-3\}$, $l^3 = \{1, 2, 3, \dots, m-4\}$, $l^4 = \{1, 2, 3, \dots, m-5\}, \dots, l^{m-2} = \{1, 2, 3, \dots, m-(m-1)\}$, denotes the vertex and edges of $K_m \odot P_n$. The proof of the theorem consists of two cases:

Case 1. When m, n is even and $m \ge 4, n \ge 4$. Let the subgraph $E = \{e_k, e_m, e_{11}^1, e_{12}^2, \dots, e_{1m-2}^{m-2}\}$, where $k = \{1, 2, 3, \dots, m-1\}, l^1 = \{1, 2, 3, \dots, m-3\}, l^2 = \{1, 2, 3, \dots, m-3\}, l^3 = \{1, 2, 3, \dots, m-4\}, l^4 = \{1, 2, 3, \dots, m-5\}, \dots, l^{m-2} = \{1, 2, 3, \dots, m-(m-1)\}, F_j^1 = \{e_j^1, e_{j+1}^1, e_i\}, F_j^2 = \{e_j^2, e_{j+1}^2, e_i\}, \dots, F_j^m = \{e_j^m, e_{j+1}^m, e_i\}, \text{ where } j = \{1, 3, 5, \dots, n-1\}, \text{ and } G_i = \{e_i\}, \text{ where } i = \{2, 4, 6, \dots, n-2\}.$

Then the subgraph $\langle E \rangle$ generates a single complete graph K_m , the subgraph $\langle F_j^1 \rangle$ generates $\frac{n}{2}$ copies of cycle C_3 with length three, the subgraph $\langle F_j^2 \rangle$ generates $\frac{n}{2}$ copies of cycle C_3 with length three, and this process continue until the subgraph $\langle F_j^m \rangle$ generates $\frac{n}{2}$ copies of cycle C_3 with length three, the subgraph G_2 generates $\frac{n-2}{2}$ copies of P_2 with length one, the subgraph G_4 generates $\frac{n-2}{2}$ copies of P_2 with length one.

3326

Therefore, the $K_m \odot P_n$ of K_m and P_n contains one copy of K_m , $\{\frac{n}{2} + \frac{n}{2} + \frac{n}{2} + \dots + \frac{n}{2}\} = (\frac{n}{2})m$ copies of C_3 , $\left\{\frac{n-2}{2} + \frac{n-2}{2} + \dots + \frac{n-2}{2}\right\} = (\frac{n-2}{2})m$ copies of P_2 .

Case 2. When m, n is odd and $m \ge 4, n \ge 4$. Let the subgraph $E = \{e_k, e_m, e_{11}^1, e_{12}^2, \dots, e_{1m-2}^{m-2}\}$, where $k = \{1, 2, 3, \dots, m-1\}, l^1 = \{1, 2, 3, \dots, m-3\}, l^2 = \{1, 2, 3, \dots, m-3\}, l^3 = \{1, 2, 3, \dots, m-4\}, l^4 = \{1, 2, 3, \dots, m-5\}, \dots, l^{m-2} = \{1, 2, 3, \dots, m-(m-1)\}, F_j^1 = \{e_j^1, e_{j+1}^1, e_i\}, F_j^2 = \{e_j^2, e_{j+1}^2, e_i\}, \dots, F_j^m = \{e_j^m, e_{j+1}^m, e_i\}$, where $j = \{1, 3, 5, \dots, n-2\}, G_i = \{e_i\}$, where $i = \{2, 4, 6, \dots, n-1\}$, and $H^t = \{e_j^t, e_i\}$, where $t = \{1, 2, \dots, m\}, j = \{n\}$, and $i = \{n - 1\}.$

Then, the subgraph $\langle E \rangle$ generates a single complete graph K_m , the subgraph $\langle F_i^1 \rangle$ generates $\frac{n-1}{2}$ copies of cycle C_3 with length three, the subgraph $\langle F_i^2 \rangle$ generates $\frac{n-1}{2}$ copies of cycle C_3 with length three, and this process continue until the subgraph $\langle F_i^m \rangle$ generates $\frac{n-1}{2}$ copies of cycle C_3 with length three, the subgraph G_2 generates $\frac{n-3}{2}$ copies of P_2 with length one, the subgraph G_4 generates $\frac{n-3}{2}$ copies of P_2 with length one, and this process continue until the subgraph G_{n-2} generates $\frac{n-3}{2}$ copies of P_2 with length one, the subgraph H^1 generates one copy of path P_3 of length 2, the subgraph H^2 generates one copy of path P_3 of length 2, and this process continue until the subgraph H^m generates one copy of path P_3 of length 2. Therefore, the $K_m \odot P_n$ of K_m and P_n contains one copy of K_m , $\{\frac{n-1}{2} + \frac{n-1}{2} + \frac{n-1}{2} + \frac{n-1}{2} + \dots + \frac{n-1}{2}\} = (\frac{n-1}{2})m$ copies of C_3 , $\{\frac{n-3}{2} + \frac{n-3}{2} + \dots + \frac{n-3}{2}\} = (\frac{n-3}{2})m$ copies of P_2 , $\{1 + 1 + 1 + \dots + 1\} = m$ copies of P_3 .

By utilizing Theorem 2.9, we have the following observation:

Observation 2.10. When $m, n \ge 4$ and m, n be positive integers, then $K_m \odot P_n$ can be decomposed into

(1) One copy of cycle C_m , $\frac{mn}{2}$ copies of path C_3 , and $\{2(m-3) + (m-4) + \ldots + (m-(m-1)) + m(\frac{n-3}{2})\}$ copies of path P_2 , if m, n are even.

(2) One copy of cycle C_m , $(\frac{n-1}{2})m$ copies of path C_3 , m copies of path P_3 , and $\{2(m-3) + (m-4) + \ldots + (m-(m-1))\}$ 1)) + $m(\frac{n-3}{2})$ } copies of path P_2 , if m, n are odd.

(3) One copy of cycle C_m , $\frac{n}{3}m$ copies of claw $K_{1,3}$, and m copies of path P_n , if n = 3d, where d = 1, 2, 3, ...(4) One copy of the complete graph K_m , $m(\frac{n-1}{3})$ copies of claw $K_{1,3}$, m copies of path P_n , and m copies of path P_2 , if n = 3d + 1, where d = 1, 2, 3, ...

(5) One copy of cycle C_m , $\left(\frac{n-2}{3}\right)m$ copies of claw $K_{1,3}$, m copies of path P_n , and m copies of path P_3 , if n = 3d + 2, where $d = 1, 2, 3, \ldots$

3. Conclusion

In this paper, we decompose the corona graphs $S_m \odot P_n$, $C_m \odot P_n$, and $K_m \odot P_n$ into cycles, claws, and paths of different lengths. In particular, we observe that for any positive integers $m, n, S_m \odot P_n$ can be decomposed into $\lfloor \frac{n-2}{2} \rfloor m + 1$ copies of P_2 , $\lfloor \frac{m-1}{2} \rfloor$ copies of P_3 , and $\lfloor \frac{n}{2} \rfloor m$ copies of C_3 . Similarly, $C_m \odot P_n$ can be decomposed into a single copy of cycle C_m of length m, m copies of path P_{n+1} of length n and m(n-1) copies of path P_2 of length one. Moreover, $K_m \odot P_n$ can be decomposed into $\frac{m-2}{2}$ copies of complete graph K_m , $\frac{nm}{2}$ copies of cycle C_3 , and $\frac{m+n-2}{2}$ copies of path P_2 .

References

- [1] B. Alspach, H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77–99.
- [2] S. Arumugam, I. S. Hamid, V. M. Abraham, Decomposition of graphs into paths and cycles, J. Discrete Math. 2013 (2013), Aet. ID 721051.
- [3] J. Barat, C. Thomassen, Claw-decompositions and tutte-orientations, J. Graph Thery 52 (2006), 135–146.
- [4] J. A. Barnes, F. Harary, Graph theory in network analysis, Social Networks 5 (1983), 235–244.
- [5] A. C. Burgess, P. Danziger, M. T. Javed, Cycle decompositions of complete digraphs, The Electronic J. Combin. 28 (2021), 1–35.
- [6] G. Chatrand, L. Lesniak, Graphs and Digraphs, (Fourth Edition), CRC Press, Boca Raton, 2004.
- [7] K. B. Chilakamarri, Decomposition of bipartite graphs into paths, Amer. Math. Monthly 95 (1988), 634-636.
- [8] C. C. Chou, C. M. Fu, Decomposition of K_{m,n} into 4-cycles and 2t-cycles, J. Combin. Optim. 14 (2007), 205–218.

- M. Conforti, G. Cornuejols, M. R. Rao, Decomposition of wheel-and-parachute-free balanced bipartite graphs, Discrete Appl. Math. 62 (1995), 103–117.
- [10] R. Frucht, F. Harary, On the corona of two graphs 4 (1970), 322-325.
- [11] K. Heinrich, Path decomposition, Le Matem. 47 (1992), 241–258.
- [12] S. Nada, A. Elrokh, E. A. Elsakhawi, D. E. Sabra, The corona between cycles and paths, J. Egypt. Math. Soc. 25 (2017), 111–118.
- [13] T. W. Shyu, Decompositions of Complete Graphs into Paths and Cycles, Ars Combin. 97 (2010), 257–270.
- [14] T. W. Shyu, Decompositions of complete graphs into paths and stars, Discrete Math. 310 (2010), 2164–2169.
- [15] T. W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013), 301–313.
- [16] K. R. Singh, P. K. Das, On graphoidal covers of bicyclic graphs, Int. Math. Forum 5 (2010), 2093–2101.
- [17] M. Subbulakshmi, I. Valliammal, Decomposition of generalized Petersen graphs into claws, cycles and paths, J.f Math. Comput. Sci. 11 (2021), 1312–1322.
- [18] C. Thomassen, Decomposing graphs into paths of fixed length, Combinatorica 33 (2013), 97–123.
- [19] K. Ushio, S. Tazawa, S. Yamamoto, On claw-decomposition of a complete multipartite graph, Hiroshima Math. J. 8 (1978), 207–210.
- [20] F. Yakoubi, M. El Marraki, Number of spanning trees in corona product graph, In: 2015 Third World Conference on Complex Systems (WCCS), IEEE (2015), 1–4.
- [21] S. Yamamoto, H. Ikeda, S. Shige-Eda, K. Ushio, N. Hamada, On claw-decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33–42.