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Available at: http://www.pmf.ni.ac.rs/filomat

On τ-base and e-density of topological spaces

R.B. Beshimova, R. M. Juraeva, R. Z. Manasipovaa

aNational University of Uzbekistan, University st. 4, Tashkent, 100174 Uzbekistan

Abstract. In this paper, we prove some properties of families of τ-open sets, study the properties of the
space of τ-continuous mappings, as well as the properties of the e-density of topological spaces. We prove
an analogue of A.V.Arkhangelskii’s theorem for τ-base. Also we showed that the base of a topological
space is not always a τ-base. We introduce the notion of e-density of topological spaces. As well as, we
investigate some properties of this cardinal function. It is given an example of a topological space, e-density
of which is not equal to its density.

1. Introduction

In recent researches an interest in the theory of cardinal invariants and their behavior under the influ-
ence of various covariant functors is increasing fast. In [3], [5], [6], [7], [11], [12], [13], [14] the authors
investigated several cardinal invariants under the influence of some weakly normal and normal functors
and hyperspaces.

The concept of a τ-closed subset was introduced Juhasz I. in 1980 in his book [10]. In 1987, Arkhangel’skii
A.V. introduced the classes of τ-continuous and strictly τ-continuous mappings and gave examples of their
discrepancy with the class of continuous mappings [2]. In 2016, in the work [15] Okunev O. introduced the
concept of τ-closure of a set and presented some criteria for the τ-continuity of mappings. In 2023, Georgiou
D.N., Mamadaliev N.K., Zhuraev R.M. introduced the definitions of a τ-open set and a τ-interior operator.
Using new concepts, they expanded O. Okunev’s theorem and introduced new criteria for τ-continuity
of mappings [9]. In the work [4] some properties of ω-bounded spaces were studied. In [1] the authors
introduced and investigated e-spaces and e-continuous mappings.

In this article, we proved some properties of families of τ-open sets, studied the properties of the space
of τ-continuous mappings, as well as the properties of the e-density of topological spaces. Let X be a
topological space and let A be a subset of X. We denote the closure of A in X by clXA.

Throughout the paper all spaces are assumed to be topological spaces and τ be an infinite cardinal
number.

2020 Mathematics Subject Classification. Primary 54C05; Secondary 54B20.
Keywords. τ-closeness, τ-closure, τ-base, τ-continuity, e-density, e-continuity.
Received: 13 September 2024; Revised: 20 January 2025; Accepted: 24 January 2025
Communicated by Ljubiša D. R. Kočinac
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2. On τ-base of topological spaces

Definition 2.1. [10] Let X be a topological space. A set F ⊂ X is called τ-closed in X if for each B ⊂ F such that
|B| ≤ τ, the closure of the set B in X lies in F.

It is known that every closed subset of a topological space is τ-closed. But the opposite is not always
true.

Example 2.2. [9] On the real line we will assume that all sets whose complement is countable are open, and we will
also declare the empty set is open, i.e. the set of all real numbers R has the following topology:

θ = {∅} ∪ {U : U ⊂ R, |R\U| ≤ ω}

Since every set whose cardinality of its complement does not exceed ω is open in this topological space, then an
arbitrary countable set B ⊂ R is closed. Let’s choose an arbitrary subset M ⊂ R. Then every subset B ⊂ M, whose
cardinality does not exceed ω, coincides with its closure, which means that B ⊂ M implies that clRB ⊂ M for all
|B| ≤ ω. From the arbitrariness of the set M it follows that each subset of this space is ω-closed. In particular, the set
of all irrational numbers in this space is ω-closed, but not closed.

I. Juhasz in his work [10] proved that the tightness of a topological space X does not exceed τ if and only
if every τ-closed subset is closed.

Definition 2.3. [9] Let X be a topological space. A set U ⊂ X is called τ-open in X if its complement X\U is τ-closed.

Every subset of the space defined in Example 2.2 is τ-open.
Any τ-open set containing a point x ∈ X is called a τ-neighborhood of this point.
The τ-closure of a subset A is defined as follows:

[A]τ =
⋃
{clXB : B ⊂ A, |B| ≤ τ}.

Recall that a subset A is τ-dense in X if [A]τ = X [15].
For any subsets A and B of the space X the following relation holds: if A ⊂ B, then [A]τ ⊂ [B]τ.

Example 2.4. On the set of real numbers with the natural topology, we choose the set of all rational numbers. Let’s
find its ω-closure [Q]ω =

⋃
{clRB : B ⊂ Q, |B| ≤ ω}. As a subset B ⊂ Q, |B| ≤ ω we take the set itself Q, the closure

of which coincides with the set of real numbers. This means [Q]ω = R, and we can conclude that the set of rational
numbers on the Euclidean line is ω-dense.

LetΘτ be the family of all τ-open subsets in X. The family Bτ ⊂ Θτ is called the τ-base of the topological
T1-space X, if every τ-open subset of Uτ ∈ Θτ, Uτ , ∅ can be represented as a union of some subfamily Bτ.

Theorem 2.5. (An analogue of the theorem of A.V. Arkhangelsky) The family Bτ is a τ-base of the topological space
X if and only if for every element x from X and for every τ-neighborhood V ∈ Θτ of x there exists U ∈ Bτ such that
x ∈ U ⊂ V.

Proof. Necessity: Let x be an arbitrary point in the space X and V ∈ Θτ be its τ-neighborhood. Since the
family Bτ is a τ-base by condition, then there exists Uα ∈ B

′

τ ⊂ Bτ such that
⋃
{Uα : Uα ∈ B

′

τ} = V. Then there
exists Uα ∈ B

′

τ such that x belongs to Uα ⊂ V.
Sufficiency: Let V be an arbitrary non-empty τ-open set of X and for every x from V there exists a

subset Ux ∈ Bτ such that x ∈ Ux ⊂ V. Then the subfamily {Ux : x ∈ V, Ux ∈ Bτ} covers the set V, i.e.,
V =
⋃
{Ux : x ∈ V, Ux ∈ Bτ}. Consequently, Bτ is a τ-base of the space X. Theorem 2.5 is proved.

Remark 2.6. The base of a topological space is not always a τ-base.
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Example 2.7. Consider the topological space given in Example 2.2. Since the complement of every set whose
cardinality does not exceed ω is open in this topological space, then an arbitrary set B ⊂ R for which |B| ≤ ω is closed.
Let us choose an arbitrary subset M ⊂ R. Then every subset B ⊂ M whose cardinality does not exceed ω coincides
with its closure, which means that from B ⊂ M it follows that clRB ⊂ M for all |B| ≤ ω. From the arbitrariness of
the choice of M it follows that every subset of this space is ω-closed, and hence every subset is ω-open. As the base
of this space, we can choose a family of subsets of the form B = {U : U ⊂ R, |R\U| ≤ ω}. Since each element of B is
an infinite set, it is impossible to represent the ω-open subset {x}, where x ∈ R, as a union of some subfamily of the
family B. Therefore, B is not an ω-base.

Remark 2.8. A τ-base is not always a base.

Example 2.9. The ω-base Bω = {{x} : x ∈ R} is not a base of the space (R, θ) from Example 2.4 because its elements
are not open sets.

Definition 2.10. The family Bτ(x) of τ-neighborhoods of a point x is called a τ-base of the topological space X at point
x if for every τ-neighborhood V of point x there exists U ∈ Bτ(x) such that x ∈ U ⊂ V.

Definition 2.11. Let X be a topological T1-space and for every x from X a τ-base Bτ(x) of the space X. The family
{Bτ(x) : x ∈ X} is called a system of τ-neighborhoods of the topological space X.

Theorem 2.12. Any system of τ-neighborhoods {Bτ(x) : x ∈ X} has the following properties:
(BτP 1) For every element x of X we have that Bτ(x) is non-empty and for every element U from Bτ(x) we have

that x ∈ U.
(BτP 2) If x belongs to U ∈ Bτ(y) for some y ∈ X, then there is a set V ∈ Bτ(x) such that V ⊂ U.
(BτP 3) For any elements U1, U2 of the family Bτ(x) there is a set V ∈ Bτ(x) such that V ⊂ U1 ∩U2.

Proof. The property (BτP 1) follows from the definition of a τ-base at a point x. The property (BτP 2)
follows from the fact that U is a τ-neighborhood of the point x, and therefore, by definition τ-base at a point
there is a neighborhood V ∈ Bτ(x) such that x ∈ V ⊂ U.

Let’s prove the property (BτP 3). Any elements U1, U2 of the family Bτ(x) are τ-open sets containing x.
Therefore, U1 ∩ U2 is also a τ-open set and x ∈ U1 ∩ U2. By the definition of a τ-base at a point there is an
element V of Bτ(x) such that V ⊂ U1 ∩U2. Theorem 2.12 is proved.

Proposition 2.13. For any subset A of a topological space X, the following conditions are equivalent:
1) A point x belongs to [A]τ;
2) For every Bτ(x) and every U ∈ Bτ(x) we have U ∩ A , ∅;
3) There is a system of neighborhoods Bτ(x) such that U ∩ A , ∅ for every U ∈ Bτ(x).

Proof. To prove the implication 1)⇒2) let us assume the opposite, i.e., assume that for the τ-base Bτ(x)
at the point x there is a neighborhood U ∈ Bτ(x) that does not intersect the set A. Then A ⊂ X\U. Since X\U
is a τ-closed subset, then [A]τ ⊂ X\U. Therefore, x < [A]τ, which contradicts 1).

Condition 3) directly follows from condition 2). Let us prove the implication 3)⇒1). Let us assume that
condition 1) is not satisfied, i.e., x < [A]τ. Then there is a τ-closed set F containing [A]τ such that x < F. For
a τ-open set V = X\F we have x ∈ V and V ∩ A = ∅. Further, for every τ-base Bτ(x) at the point x there is a
neighborhood U ∈ Bτ(x) such that x ∈ U ⊂ V. From V ∩A = ∅ it follows that U ∩A is empty, which means
3) does not hold. Proposition 2.13 is proved.

Corollary 2.14. If U is a τ-open set and A is some subset of the space X disjoint with U, then U ∩ [A]τ = ∅. In
particular, if U and V are disjoint τ-open subsets, then U ∩ [V]τ = [U]τ ∩ V = ∅.
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3. On τ-continuous mappings

Let X and Y be topological spaces and let τ be an infinite cardinal.

Definition 3.1. [2]. A mapping f : X → Y is called τ-continuous if for every set A ⊂ X such that |A| ≤ τ, the
mapping f |A : A→ Y is continuous.

Let Cτ(X,Y) denote the set of all τ-continuous mappings of the space X into the space Y. Note that Cτ(X,Y)
does not coincide with C(X,Y).

Example 3.2. [2] Let T(ω1) = {∞ : ∞ ≤ ω1} be the space of all ordinal numbers not exceeding the first uncountable
ordinalω1 in order topology. Let us assume that f (∞) = 0 for all∞ < ω1 and f (ω1) = 1. The function f : T(ω1)→ R
defined in this way is ω-continuous, but not continuous.

If A ⊂ X and B ⊂ Y, then ⟨A,B⟩ = { f ∈ Cτ(X, Y) : f (A) ⊂ B}.
Let ξ be the family of all finite subsets of the space X. Then the family Pξ of all sets of the form ⟨A, U⟩,

where A ∈ ξ and U is open set in Y the set that constitutes the prebase of some topology Tξ is called the
topology of pointwise convergence; Cτ(X, Y) together with this topology is denoted by Cτp(X, Y). If Y = R,
then Cτp(X, R) will be denoted by Cτp(X) .

Proposition 3.3. [8] Let β be the base of the space Y. Then sets of the form W(x1, ..., xk,U1, ...,Uk) = { f ∈ Cτ(X,Y) :
f (xi) ∈ Ui, i = 1, ..., k}, where x1, ..., xk ∈ X, U1, ...,Uk - elements of the base β and k ∈ N, form the base of the space
Cτp(X,Y) .

Theorem 3.4. If Y is a Ti-space, then the space Cτp(X,Y) with the topology of pointwise convergence is also Ti-space
for i = 0, 1, 2, 3.

Proof. 1) Let Y be a T0-space. Let us show that Cτp(X,Y) ∈ T0. To do this, we choose two arbitrary
unequal maps f1 and f2 from Cτp(X,Y). Then there is a point x from X such that f1(x) , f2(x) in the space Y.
Since Y ∈ T0, then at least for the point f2(x) there exists a neighborhood U( f2(x)), which does not contain
f1(x). Therefore, f1 does not belong to W(x, U( f2(x))). This means Cτp(X,Y) ∈ T0.

2) Let Y ∈ T1. Let us show that Cτp(X,Y) ∈ T1. Let us choose arbitrary unequal mappings f1 and f2
from Cτp(X,Y). Then there is a point x from X such that f1(x) , f2(x) in the space Y. Since Y ∈ T1, then
for every points f1(x) , f2(x) there is a neighborhood U( f2(x)) of a point f2(x) that does not contain f1(x)
and there is also a neighborhood U( f1(x)) of the point f1(x) that does not contain f2(x), i.e., f1(x) < U( f2(x)),
f2(x) < U( f1(x)). Therefore, f1 <W(x, U( f2(x))) and f2 <W(x, U( f1(x))). This means Cτp(X,Y) ∈ T1.

3) Let Y ∈ T2. Let us show that Cτp(X,Y) ∈ T2. Let us choose arbitrary different mappings f1 and f2 from
Cτp(X,Y). Then there is a point x from X such that f1(x) , f2(x) in the space Y. Since Y ∈ T2, then for every
points f1(x) , f2(x) there is a neighborhood U( f2(x)) of the point f2(x), there is also a neighborhood U( f1(x)) of
the point f1(x) that do not intersect, i.e., U( f1(x))∩U( f2(x)) = ∅. Therefore, W(x, U( f2(x)))∩W(x, U( f1(x))) = ∅.
This means Cτp(X,Y) ∈ T2.

4) Let Y ∈ T3. Let us choose an arbitrary f from Cτp(X,Y) and some arbitrary closed subset F ⊂ Cτp(X,Y)
such that f < F. Then there exist x1, ..., xn ∈ X and Ui( f (xi)) ⊂ Y such that f ∈ W(x1, ..., xn,U1, ...,Un),
where W(x1, ..., xn,U1, ...,Un) is an open set in Cτp(X,Y) and i = 1, ...,n. Let yi = f (xi). Then, since
Y ∈ T3, there are open subsets Oi ⊂ Y and Ui ⊂ Y such that yi ∈ Oi, Y\Ui ⊂ Vi and Oi ∩ Vi = ∅
for all i = 1, ...,n. The sets G(x1, ..., xn,O1, ...,On) and H(x1, ..., xn,V1, ...,Vn) are open in Cτp(X,Y) and
G(x1, ..., xn,O1, ...,On) ∩ H(x1, ..., xn,V1, ...,Vn) = ∅. Since yi ∈ Oi, then f ∈ G(x1, ..., xn,O1, ...,On). If 1 ∈ F,
then 1 < W(x1, ..., xn,U1, ...,Un). So 1(xi) < Ui and 1(xi) ∈ Vi. It follows from this that 1 ∈ H and F ⊂ H.
Since G(x1, ..., xn,O1, ...,On) and H(x1, ..., xn,V1, ...,Vn) do not intersect, then Cτp(X,Y) ∈ T3. Theorem 3.4 is
proved.
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4. On e-density of topological space

In this section we introduced the notion of e-density of topological spaces and investigated some
properties of it.

A set G in a topological space X is called extremely open (briefly e-open) if G and its clouser clXG are
open subsets of X. Recall that a subset of a topological space an e-closed if its complement is an e-open [1].
Clearly every clopen set in a topological space is an e-open set, but not conversely. For example R\{a} is an
e-open subset of R (for each a ∈ R) which is not a clopen set.

The set of all e-open subsets of X forms a base for a topology θe on X. This means that θe is weaker
topology with respect to the original topology θ. Whenever θe coincides with θ (i.e., θ = θe) the space X is
called an e-space.

An element x is called an e-cluster point of A if each e-open subset of X containing x meets A. The set
of all e-cluster points of A is called the e-closure of A and denoted by e − clXA [1]. It is easy to check that
clXA ⊂ e− clXA for each subset A of X. The inclusion may be proper. For example, we take the unit interval
(0, 1) in R. We have clR(0, 1) = [0, 1], but e − clR(0, 1) = R. The e-closure of a set A in X is the intersection of
all e-closed subsets of X containing A.

In fact, every closure of a set is closed, but the e-closure of a set need not be e-closed, in general.
Let X = { 1

n : n ∈ N} ∪ {0} be a subspace of R with the standard topology and A = {1, 1
3 ,

1
5 , . . .}. Then

e − clXA = A ∪ {0}which is not e-closed.

Definition 4.1. [1] Let X and Y be topological spaces and f : X → Y be a mapping. We say that f is e-continuous
at a point x ∈ X if for each open set V in Y containing f (x) there exists an e-open set U in X containing x such that
f (U) ⊂ V. A mapping f : X→ Y is called e-continuous if it is e-continuous at each point of X.

Clearly every e-continuous function is continuous, but the converse is not necessarily true in general. In
fact if the mapping id : R→ R is an identity, then it is continuous but not e-continuous.

Proposition 4.2. [1] Let X and Y be topological spaces and f : X→ Y be a function. Then the following statements
are equivalent.

1. f is e-continuous.
2. f−1(V) is a union of e-open subsets of X for each open subset V of Y.
3. f−1(H) is an intersection of e-closed subsets of X for each closed subset H of Y.
4. f (e − clXA) ⊂ clY f (A) for each subset A of X.

Definition 4.3. Let X be a topological space. A subset A is called e-dense in X, if e − clXA = X. e-density of a
topological space X is the smallest cardinal number |A|, where A is e-dense in X and denoted by ed(X), i.e.

ed(X) = ω +min{|A| : A is e-dense in X}.

The density of a space X is defined as the smallest cardinal number of the form |A|, where A is a dense
subset of X. This cardinal number is denoted by d(X). Clearly for any topological space X and its density
d(X), we have ed(X) ≤ d(X) and the inequality may be proper.

Example 4.4. Let R be the real line, and let Is = I × {s} for every s ∈ R, where I = [0, 1]. By letting

(x, s1)δ(y, s2) whenever x = y = 0 or x = y and s1 = s2

we define an equivalence relation δ on the set
⋃
s∈R

Is. The formula

ρ([(x, s1)], [(y, s2)]) =

|x − y|, if s1 = s2

x + y, if s1 , s2

defines a metric on the set of equivalence classes of δ. The metric space thus obtained will be called the hedgehog of
spininess c and will be denoted by J(c). For every s ∈ S the mapping fs of the interval I to J(c) defined by letting
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fs(x) = [(x, s)] is a homeomorphic embedding. The family of all balls with rational radii around points of the form
[(r, s)], where r is a rational number, is a base for J(c); so that w(J(c)) ≤ c. Since D = {[(1, s)] : s ∈ R} is a discrete
subspace of J(c), it follows that w(J(c)) = c. It is known that for every metrizable space X we have w(X) = d(X).
Therefore

d(J(c)) = c.

Let s0 be fixed in R, and let Us0 = {[(x, s0)] : x ∈ (0, 1)}. Since fs0 is homeomorphic embedding, it follows that Us0 is
open subset of J(c). Consider a subset Qs0 = {[(x, s0)] : x ∈ I ∩Q} of Is0 . It is easy to check that Qs0 is dense in [Is0 ],
where [Is0 ] = {[(x, s0)] : x ∈ I}. We will prove that Qs0 is e-dense in J(c). For each s ∈ R the set [Is] is connected,
because [Is] = fs(I). In this case the space J(c) is also connected. Let p ∈ J(c). Take an arbitrary e-open subset U of
J(c) with p ∈ U. From the connectedness of J(c), it follows that clJ(c)U = J(c). In this case we have Us0 ∩U , ∅. Since
Qs0 is dense in [Is0 ] and the subset Us0 ∩U , ∅ is nonempty open subset of [Is0 ] implies Qs0 ∩U , ∅. Thus

ed(J(c)) = |Qs0 | = ω.

This means that ed(J(c)) < d(J(c)).

Whenever X is an e-space then ed(X) = d(X).

Proposition 4.5. Let f : X→ Y be an e-continuous subjective mapping. Then ed(Y) ≤ ed(X).

Proof. Let ed(X) = τ ≥ ω. Then there exists e-dense subset A of X such that |A| = τ. Thus e − clXA = X. It
suffices to show that f (A) is an e-dense in Y. By Proposition 4.2 we have

Y = f (X) = f (e − clXA) ⊂ clY f (A) ⊂ e − clY f (A).

Therefore f (A) is an e-dense in Y. Proposition 4.5 is proved.

Recall that topological space X is an e-separable, if ed(X) = ω. Every separable space is e-separable.

Remark 4.6. The e-separability of topological space is not a hereditary property.

In Example 4.4 we consider the subset D of J(c). Since D is discrete subspace, it follows that ed(D) =
|D| = c, but ed(J(c)) = ω.

Problem 4.7. Let X be a topological space and Y be an e-open subspace of X. Is it true that ed(Y) ≤ ed(X)?
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[14] Lj. D. R. Kočinac, F. G. Mukhamadiev, A. K. Sadullaev, Sh. U. Meyliev, Some network-type properties of the space of G-permutation

degree, Appl. Gen. Topol. 24 (2023), 229–237
[15] O. Okunev, The minitightness of products, Topol. Appl. 208 (2016), 10–16.


