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Abstract. Einstein’s metrics and their generalizations have attracted the attention of Mathematicians due
to their applications in physics and other natural sciences. The generalization of Einstein metrics is Ricci
solitons, η-Einstein metrics, pseudo-Einstein metrics, and Miao-Tam critical metrics. Given the established
non-existence of Einstein real hypersurfaces in a non-flat complex space form M̂n(c) [2, 13], motivated our
investigation into the properties of η-∗Einstein real hypersurface in M̂n(c).

In this paper, we examine the η-∗Einstein Hopf real hypersurface in the complex space form. We prove
that there exist η-∗Einstein Hopf real hypersurfaces.

1. Introduction

In 1982, Cecil and Ryan established the non-existence of Einstein real hypersurfaces in CPn for n ≥ 3 [2],
and in 1985, Montiel gave an analogous result inCHn for n ≥ 3 [13]. In 2002, Hamada gave a classification of
Hopf ∗Einstein real hypersurfaces of M̂n(c) [7]. In 2010, Ivey and Ryan [9] provided an updated classification
of the work of Hamada [7] in CPn and CHn.

The generalization of Einstein metrics is Ricci solitons, η-Einstein metrics, pseudo-Einstein metrics, and
Miao-Tam critical metrics. Pérez and Suh [17] proved that no Hopf real hypersurface inCPn (n ≥ 3), possess
Lie D-parallel structure Jacobi operators. Given the non-existence of Einstein real hypersurfaces in M̂n(c)
[2, 13], Chen [3] investigated real hypersurfaces endowed with Miao-Tam critical metrics of complex space
forms in 2018 and obtained some existence/non-existence results.

Takagi [24] initially classified homogeneous real hypersurfaces in CPn into types A1, A2, B, C, D, and
E, and the classification of such types of hypersurfaces in CPn was completed by Kimura [12]. However,
Montiel [13] classified real hypersurfaces inCHn into types A0, A1, A2, and B, and for complete classification
please see Cecil and Ryan [1]. Suh [21] introduced the idea of pseudo-Einstein real hypersurfaces in the
complex quadric and provided a complete classification of these hypersurfaces. Moreover, Pérez and López
[16] investigated real hypersurfaces in CPn with some conditions on the shape operator.
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On the other hand, Hamilton pioneered the study of manifolds with positive curvature by employing
an efficient approach of Ricci flow [8]. Ricci solitons are a special class of solutions to this flow. They
are often referred to as η-Einstein metrics in physics and have significant applications within this field. A
Riemannian metric 1 is called a Ricci soliton, if

1
2
LX1 + Ric = ν1, (1)

where X denotes the potential vector field, Ric is the Ricci curvature tensor, and ν is a real constant. If X = ∇ f ,
f ∈ C∞(M), then (1) is called a gradient Ricci soliton. Cho and Kimura [4, 5] proved the non-existence of
gradient Ricci soliton in Hopf or a non-Hopf hypersurface of M̂n(c).

The Ricci curvature tensor S and Ricci operator Q is defined as [10]

S(U,V) = 1(QU,V) =
2n−1∑
i=1

1(R(ei,U)V, ei), (2)

∀ U,V ∈ TM, where R is a Riemann curvature tensor and ei are local orthonormal vector fields on M2n−1.
Tachibana [23] introduced the concept of the ∗-Ricci tensor within the framework of almost Hermitian

manifolds. Subsequently, Hamada [7] extended this notion to real hypersurfaces in M̂n(c , 0) and defined
it on an almost contact metric manifold M as follows :

S∗(U,V) = 1(Q∗U,V) =
1
2

trace(Z 7→ R(U, ϕV)ϕZ), for any U,V,Z ∈ TM, (3)

where S∗ is the ∗-Ricci tensor, Q∗ is a ∗-Ricci operator, and ϕ is a (1, 1)-tensor field.
Kaimakamis and Panagiotidou [10] defined the ∗-Ricci soliton on a Riemannian manifold (M, 1) as

1
2
LX1 + Ric∗ = ν1, (4)

where Ric∗ is the ∗-Ricci tensor, ν is a real constant, and X is a potential field. The ∗-Ricci soliton of real
hypersurfaces in M̂n(c , 0) with potential structure vector field ξwas explored by them in [10].

In addition to the usual Ricci tensor, Riemannian manifolds equipped with additional structures (almost
Hermitian, almost contact, etc.) allow other possible contractions of the curvature tensor. The ∗-Ricci tensor
(which is obtained by contracting the curvature tensor jointly with the complex structure) coincides with
the usual Ricci tensor for Kahler manifolds. However, Ric∗ is essentially different for more general, almost
Hermitian manifolds. In fact, Ric∗ is not necessarily symmetric in the generic situation, but it is symmetric
for manifolds admitting the η-∗Einstein metric (5) defined below as we get Ric∗(U,V) = Ric∗(V,U).

We define, (M, 1, f ,m) as (m−) η-∗Einstein if

Ric∗ +Hess f −
1
m

d f ⊗ d f = ν1, (5)

where (M, 1) is a Riemannian manifold, m ∈ Z+, and f ∈ C∞(M). Hess f represents the Hessian of f . If
m approaches ∞ then (5) yields the gradient ∗-Ricci soliton. An η-∗Einstein metric reduces to an ∗Einstein
metric when f is constant. Furthermore, an η-∗Einstein metric is classified as expanding (ν < 0), steady
(ν = 0), or shrinking (ν > 0). Wang [25] examined D-recurrent ∗-Ricci tensor on real hypersurface in
CH2(c , 0). Recently, the authors [6, 18–20] examined Ricci solitons, ∗-Ricci solitons, and generalization of
∗Einstein metrics on almost contact metric manifolds. Also, Suh [22] investigated existence/non-existence
conditions for Ricci solitons and pseudo-Einstein real hypersurfaces in the complex hyperbolic quadric.

In light of the fact that Einstein Hopf real hypersurfaces do not exist in M̂n(c , 0), this paper investigates
the existence/non-existence of η-∗Einstein Hopf real hypersurfaces in the complex space forms. The key
findings of this work are as follows:

Theorem 1.1. Let M be a Hopf real hypersurface in M̂n(c , 0), with Aξ = 0. Then, M does not admit an η-∗Einstein
metric.
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Theorem 1.2. Let M be a Hopf real hypersurface in M̂n(c , 0), with Aξ = αξ, α , 0. Then, M admits an η-∗Einstein
metric in CHn(n ≥ 2) only. Moreover, 2n = coth2 r and M is locally congruent to a geodesic hypersphere either with
steady ∗Ricci flat metric, or with shrinking η-∗Einstein metric.

Theorem 1.1 establishes the non-existence of η-∗Einstein metrics for Hopf real hypersurfaces in the
complex space forms under the condition that Aξ = 0. In contrast, Theorem 1.2 demonstrates that for Hopf
real hypersurfaces with Aξ = αξ and α , 0, an η-∗Einstein metric exists only in the context of the complex
hyperbolic space CHn. Furthermore, it is shown that such a hypersurface is congruent to a geodesic
hypersphere, either with a steady ∗Ricci flat metric or a shrinking η-∗Einstein metric. These theorems
together highlight a distinct difference in behavior depending on the structure of the shape operator A.

As a direct consequence of these results, we deduce the non-existence of η-∗Einstein Hopf real hyper-
surfaces in the complex projective space CPn. This conclusion is formalized in the following corollary:

Corollary 1.3. There do not exist η-∗Einstein Hopf real hypersurfaces in CPn, n ≥ 2.

For the real Hopf hypersurfaces in Cn with an η-∗Einstein metric we have:

Theorem 1.4. Let M be a complete contact hypersurface in Cn. Then M admits an η-∗Einstein metric. Moreover, M
is locally congruent

(i) either to a generalized cylinder Sn−1
× Rn such that either M admits steady ∗Ricci flat metric or admits steady

η-∗Einstein metric and ξξ f = (ξ f )2

m ,

(ii) or to R2n−2
× S1 such that either M admits steady ∗Ricci flat metric or admits steady η-∗Einstein metric and

ξξ f = (ξ f )2

m .

Theorem 1.4 considers real Hopf hypersurfaces in Euclidean complex space Cn and establishes the
existence of η-∗Einstein metrics for complete contact hypersurfaces. The result characterizes such hyper-
surfaces as locally congruent to generalized cylinders or products of spheres and Euclidean spaces, with
either steady ∗Ricci flat metrics or steady η-∗Einstein metrics. The corollaries below extend this result by
classifying specific cases of real hypersurfaces, depending on whether Aξ = αξ or Aξ = 0, and further
describe the geometric structure of these hypersurfaces:

Corollary 1.5. Let M be a complete real hypersurface with Aξ = αξ, α , 0 in Cn complying with (5). Then M is
locally congruent to R2n−2

× S1 such that either M is steady η-∗Einstein metric or M is steady ∗Ricci flat metric and
ξξ f = (ξ f )2

m .

Corollary 1.6. Let M be a complete real hypersurface with Aξ = 0 of Cn complying with (5). Then, M is locally
congruent either to Sn−1

×Rn such that either M admits steady ∗Ricci flat metric or admits steady η-∗Einstein metric
or locally congruent to R2n−1 and ξξ f = (ξ f )2

m .

Our approach to obtain the results of this paper is as follows: Using η-∗Einstein condition, Gauss
equation, and Codazzi equation, we express relationships in terms of (1, 1) tensor field ϕ, shape operator
A, and principal curvature α of the structure vector field ξ for Hopf real hypersurfaces in M̂n(c) in a simple
form (see Lemma 3.3). Next, using Lemma 3.3 and eigenvalues of homogeneous real hypersurfaces in
CPn [12, 15, 24] and CHn [1, 13, 15] after suitable changes according to constant holomorphic sectional
curvatures, we analyze all the possible cases of Hopf real hypersurfaces in M̂n(c , 0) to obtain the nature of
η-∗Einstein metric (see Theorem 1.2). Similarly, we obtain the results for real hypersurfaces in Cn admitting
η-∗Einstein metric. In the results, γ, δ, λ, µ denote the principal curvatures of holomorphic distribution and
α denotes the principal curvature of ξ distribution.

The paper is organised as follows: In section 2, we present essential definitions and fundamental results
useful in subsequent sections. Section 3 is devoted to the study of the existence of Hopf real hypersurfaces
admitting η-∗Einstein metric in CPn and CHn. In section 4, we study real hypersurfaces in Cn which satisfy
(5).
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2. Preliminaries and some basic results

A complex space form is defined as a Kahler manifold with constant holomorphic sectional curvature c.
A complete, simply connected complex space form is analytically isometric to a complex Euclidean space
( Cn), a complex projective space (CPn) and a complex hyperbolic space (CHn) if c = 0, c > 0, and c < 0
respectively.

Let M̂n(c) be a non-flat complex space form with complex structure J and M denote a real hypersurface
without boundary immersed in M̂n(c). For any vector field U tangent to M, we define

JU = ϕU + η(U)N, ξ = −JN, (6)

where ϕU is the tangential part of JU, ϕ is a (1, 1) tensor field, N is a locally defined unit normal vector, ξ is
the unit structure vector field, η is a 1-form on M.

Further, we have

ϕ2U = −U + η(U)ξ, η(ξ) = 1, ϕ ◦ ξ = 0, η ◦ ϕ = 0, (7)
1(U, ξ) = η(U), 1(ϕU, ϕV) = 1(U,V) − η(U)η(V), (8)

where U,V ∈ TM and 1 is the Riemannian metric induced on M from 1̂ of ambient space. From (7) and (8),
(ϕ, η, ξ, 1) defines an almost contact metric structure on M.

If ∇̂ and ∇ denote the linear connections on M̂ and M, respectively, we have the Gauss and Weingarten
formulae

∇̂UV = ∇UV + 1(AU,V)N, ∇̂UN = −AU, (9)

respectively, where A is the shape operator of M. Also, for the almost contact metric structure on M, we
have

∇Uξ = ϕAU, (∇Uϕ)V = η(V)AU − 1(AU,V)ξ. (10)

Let R denotes the Riemann curvature tensor field of M. Then, we have the Gauss and Codazzi equations

R(U,V)Z =
c
4

(
1(V,Z)U − 1(U,Z)V + 1(ϕV,Z)ϕU − 1(ϕU,Z)ϕV (11)

+21(U, ϕV)ϕZ
)
+ 1(AV,Z)AU − 1(AU,Z)AV,

(∇UA)V − (∇VA)U =
c
4

(
η(U)ϕV − η(V)ϕU − 21(ϕU,V)ξ

)
, (12)

respectively, for any U,V,Z ∈ TM.
From (2) and (11), the Ricci operator Q on M is given by:

QU =
c
4

(
(2n + 1)U − 3η(U)ξ

)
+ hAU − A2U, (13)

where h denotes the trace of A.
From (3), (7), and (11), the ∗-Ricci operator Q∗ on M is given by:

Q∗U =
nc
2

(
U − η(U)ξ

)
− (ϕA)2U. (14)

Using (14) in (13), we find that

QU = Q∗U +
(2n − 3)c

4
η(U)ξ +

c
4

U + hAU − A2U + (ϕA)2U. (15)
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3. η-∗Einstein Hopf real hypersurfaces

Let M be a Hopf hypersurface in M̂n(c). Then the shape operator A of M complies

Aξ = αξ, (16)

where α is a constant (cf. [15], Theorem 2.1 ).
Differentiating (16) with respect to U, we find

(∇UA)ξ = αϕAU − AϕAU. (17)

Using (17) in (12), we get

(∇ξA)U = αϕAU − AϕAU +
c
4
ϕU, (18)

for any U ∈ TM. Because of self-adjointness of ∇ξA, the antisymmetry part of (18), gives

2AϕAU −
c
2
ϕU = α(Aϕ + ϕA)U. (19)

The decomposition of tangent bundle TM is

TM = ⟨ξ⟩ ⊕D, (20)

where D = {U ∈ TM : U ⊥ ξ}. Since Aξ = αξ, hence AD ⊂ D; so, we can choose U ∈ D such that

AU = µiU, i = 1, 2, . . . ,n − 1 (21)

for some function µi ∈ C∞(M). Then from (19), we get

(α − 2µi)AϕU = −(µiα +
c
2

)ϕU. (22)

Now, suppose that

AϕU = λiϕU, i = 1, 2, . . . ,n − 1 (23)

for U ∈ D, where λi are eigenvalue of A corresponding to ϕU. Then from (22), we have

(2µi − α)(2λi − α) = α2 + c. (24)

The following Lemma is crucial for proving our results.

Lemma 3.1. [11] Let M be a real hypersurface of a complex space form M̂n(c). If ϕA + Aϕ = 0, then c = 0.

Lemma 3.2. Let M be a real hypersurface with η-∗Einstein metric in M̂n(c). Then, Riemann curvature tensor R of
M satisfies

R(U,V)∇ f = (∇VQ∗)U − (∇UQ∗)V +
1
m

(
U( f )Q∗V − V( f )Q∗U

)
−
ν
m

(
U( f )V − V( f )U

)
, (25)

for any U,V ∈ TM.

Proof. Equation (5) yields

Q∗V + ∇V∇ f = νV +
1
m

(V f )∇ f . (26)

Using R(U,V) + ∇[U,V] = ∇U∇V − ∇V∇U, and (26) repeatedly, we obtain (25).
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Lemma 3.3. Let M be an η-∗Einstein Hopf real hypersurface in M̂n(c). Then,(nc
2
+

c
4

)
1((ϕA + Aϕ)U,V) +

α
2

(
1(AV, (ϕA + Aϕ)U) − 1(AU, (ϕA + Aϕ)V)

)
=
( c
4
−
ν
m

)(
V( f )η(U) − U( f )η(V)

)
+ α
(
AV( f )η(U) − AU( f )η(V)

)
, (27)

(α2

2
+

nc
2
+

c
4

)
(Aϕ + ϕA) +

α
2

(ϕA2 + A2ϕ) +
αcϕ

4
= 0. (28)

Proof. Replacing Z by ∇ f in (11), we obtain

R(U,V)∇ f =
c
4

(
ϕV( f )ϕU − ϕU( f )ϕV + V( f )U −U( f )V + 21(U, ϕV)ϕ∇ f

)
+ AV( f )AU − AU( f )AV. (29)

Utilising (29) in (25), we find

(∇VQ∗)U − (∇UQ∗)V +
1
m

(
U( f )Q∗V − V( f )Q∗U

)
=
( c
4
−
ν
m

)(
V( f )U −U( f )V

)
+

c
4

(
ϕV( f )ϕU − ϕU( f )ϕV + 21(U, ϕV)ϕ∇ f

)
+ AV( f )AU − AU( f )AV. (30)

Differentiating (14) along V on TM, we get

(∇VQ∗)U =
nc
2

(
− 1(∇Vξ,U)ξ − η(U)∇Vξ

)
− (∇Vϕ)AϕAU (31)

− ϕ(∇VA)ϕAU − ϕA(∇Vϕ)AU − ϕAϕ(∇VA)U.

This gives

(∇VQ∗)U − (∇UQ∗)V =
nc
2

(
1(∇Uξ,V)ξ + η(V)∇Uξ

)
+

nc
2

(
− 1(∇Vξ,U)ξ (32)

− η(U)∇Vξ
)
− (∇Vϕ)AϕAU + (∇Uϕ)AϕAV

+ ϕ
(
(∇UA)ϕAV − (∇VA)ϕAU

)
+ ϕA

(
(∇Uϕ)AV

− (∇Vϕ)AU
)
+ ϕAϕ

(
(∇UA)V − (∇VA)U

)
.

Using (10), (12) and (16) in (32), we find

(∇VQ∗)U − (∇UQ∗)V =
nc
2

(
1(ϕAU,V)ξ + η(V)ϕAU − 1(ϕAV,U)ξ (33)

− η(U)ϕAV
)
+ 1(AV,AϕAU)ξ − 1(AU,AϕAV)ξ

+ ϕ(∇UA)ϕAV − ϕ(∇VA)ϕAU + αϕA
(
η(V)AU

− η(U)AV
)
+

c
4

(
η(V)ϕAU − η(U)ϕAV

)
.

Taking the inner product of (30) with ξ and further utilising (14) and (33), we obtain

nc
2

(
1(ϕAU,V) − 1(ϕAV,U)

)
+ 1(AV,AϕAU) − 1(AU,AϕAV) = (34)( c

4
−
ν
m

)(
V( f )η(U) −U( f )η(V)

)
+ α
(
AV( f )η(U) − AU( f )η(V)

)
.

Using (19) in (34), we obtain (27).
Putting U = ϕX and V = ϕY in (27) and using (19) again, we obtain (28). Thus proof is complete.
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4. Proof of Theorems 1.1 and 1.2

Let M be a hypersurface in M̂n(c) with an η-∗Einstein metric such that Aξ = 0.
Then (28) implies

c
(2n + 1

4

)
(Aϕ + ϕA) = 0.

Since c , 0, therefore Aϕ+ϕA = 0. From Lemma 3.1, we see that Aϕ+ϕA = 0 gives c = 0, a contradiction.
This concludes the proof of Theorem 1.1.

Taking V = ξ and U ∈ D in (27) and using (16) and (21), we get( c
4
−
ν
m
+ αµi

)
U( f ) = 0. (35)

Putting U = V = ξ in (5), we get

ξξ f −
(ξ f )2

m
= ν. (36)

Putting U = V ∈ D in (5), we find

Ric∗(U,U) +Hess f (U,U) −
(U f )2

m
= ν1(U,U). (37)

Using (14), (21) and (23) in (37), we get

(nc
2
+ µiλi − ν

)
1(U,U) + 1(∇U∇ f ,U) −

(U f )2

m
= 0. (38)

Taking V = ϕU in (27) and using (21) and (23), we find

(µi + λi)
(
nc +

c
2
+ αλi + αµi

)
= 0. (39)

We claim that µi + λi , 0. In fact, if

µi + λi = 0, (40)

then using this in (24), we obtain c
4 = −µ

2
i . Hence, there exists real hypersurfaces in CHn only. As Hopf

hypersurfaces inCHn have atmost three distinct eigenvalues, so we consider three distinct eigenvalues α, µ,
−µ such that µ = µ1 = µ2 = · · · = µn−1 and −µ = λ1 = λ2 = · · · = λn−1. Therefore, we discuss hypersurfaces
of type A2 and B.

Let M is of type A2. Substituting eigenvalues (see Cecil and Ryan [1], Montiel [13], or Niebergall
and Ryan [15]), α = 2 coth 2r, λ = tanh r, µ = coth r in (40), we find tanh2 r = −1, a contradiction since
0 < tanh2 r < 1.

Next, if M is of type B. Utilising eigenvalues (see Cecil and Ryan [1], Montiel [13], or Niebergall and
Ryan [15]), α = 2 tanh 2r, λ = coth r, µ = tanh r in (40), we get tanh2 r = −1, a contradiction. Therefore, from
(39), we get(

n +
1
2

)
c + (µi + λi)α = 0. (41)

Now, in view of (24), we consider the following cases:
Case I : Let α2 + c , 0. So from (24), we get that µi ,

α
2 .

Using (41) in (24), we obtain

2n + 1
n

=
(λi + µi)α
µiλi

. (42)
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Now, if µi , λi, then we can discuss the case of three and five distinct eigenvalues inCPn. Suppose there
are five distinct eigenvalues α, λ = λ1 = λ2 = · · · = λp, δ = λp+1 = · · · = λn−1, µ = µ1 = µ2 = · · · = µp, and
γ = µp+1 = · · · = µn−1, therefore we discuss M as η-∗Einstein hypersurfaces of three types C, D, and E in CPn

(see [12], [15], or [24]). As these hypersurfaces have same eigenvalues so we will discuss for any one of the
three hypersurfaces say C. As the principal spaces of λ and µ are ϕ-invariant and the principal spaces of γ
and δ are interchanged by ϕ. So there will be 16 combinations for choices of eigenvalues λ, µ, γ, and δ. We
will consider one of the cases and other can be seen easily. Using eigenvalues (see Kimura [12], Niebergall
and Ryan [15], or Takagi [24]), α = −2 cot 2r, λ = tan r, δ = cot( 3π

4 − r), µ = − cot r, and γ = cot(π4 − r) in (42),
we obtain

2n + 1
n

=
(tan r − cot r)(−2 cot 2r)

(tan r)(− cot r)
, (43)

and

2n + 1
n

=
(cot( 3π

4 − r) + cot(π4 − r))(−2 cot 2r)

(cot( 3π
4 − r))(cot(π4 − r))

. (44)

From (43) and (44), we obtain

tan2 r = −1,

which is not possible.
Further, if we have three distinct eigenvalues α, λ and µ, therefore we discuss M as η-∗Einstein hyper-

surfaces of type A2 and B in CPn [12, 15, 24] and CHn [1, 13, 15].
Let M is of type A2 in CPn. Using eigenvalues (see Kimura [12], Niebergall and Ryan [15], or Takagi

[24]), λ = − tan r, µ = cot r, α = 2 cot 2r in (42), we obtain

n = −
sin2 r cos2 r

cos4 r + sin4 r
,

which gives n < 0, a contradiction.
Next, if M is of type B in CPn. Substituting eigenvalues (see Kimura [12], Niebergall and Ryan [15], or

Takagi [24]), λ = − cot r, µ = tan r, α = 2 tan 2r in (42), we get n = 1
2 , a contradiction.

Now, let M is of type A2 in CHn. Substituting eigenvalues (see Cecil and Ryan [1], Montiel [13], or
Niebergall and Ryan [15]), λ = tanh r, µ = coth r, α = 2 coth 2r in (42), we find n = tanh2 r

1+tanh4 r
, which gives

tanh2 r = 1±
√

1−4n2

2n , a contradiction.
Next, if M is of type B in CHn. Substituting eigenvalues (see Cecil and Ryan [1], Montiel [13], or

Niebergall and Ryan [15]), λ = coth r, µ = tanh r, α = 2 tanh 2r in (42), we get n = 1
2 , a contradiction.

Hence there is no hypersurface with η-∗Einstein metric in CPn and CHn with three and five distinct
eigenvalues.

Now, we discuss the case if µi = λi, then from (24) and (41), we get

nc
2
= −µ2

i . (45)

Putting λi = µi and c = −
2µ2

i
n in (24), we obtain

µi[(2n + 1)µi − 2αn] = 0, (46)

which gives

µi =
2αn

2n + 1
, (47)

as using µi = 0 in (45) gives a contradiction c = 0.
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From (45), we see that there exist η-∗Einstein hypersurfaces inCHn only. Moreover, we find that Aϕ = ϕA
as µi = λi. Hence from Theorem 5.1 (cf. [14]), M is locally congruent to type A1 in CHn.

Let M is of type A1,2 in CHn. Putting the eigenvalues of M (see Cecil and Ryan [1], Montiel [13], or
Niebergall and Ryan [15]), µ = tanh r and α = 2 coth 2r in (47), we get

(2n + 1) tanh r = 4n coth 2r, (48)

which gives 2n = tanh2 r, a contradiction.
Now, if M is of type A1,1 in CHn. Then, substituting the eigenvalues (see Cecil and Ryan [1], Montiel

[13], or Niebergall and Ryan [15]), µ = coth r and α = 2 coth 2r in (47), we get

(2n + 1) coth r = 4n coth 2r, (49)

which gives 2n = coth2 r. Hence M is a geodesic hypersphere having an η-∗Einstein metric with 2n = coth2 r.
Hence there exists a geodesic hypersphere with an η-∗ Einstein metric in CHn having two distinct

eigenvalues with 2n = coth2 r.
Now, in view of (35), we discuss the following subcases :
Subcase A : From (35), if U( f ) = 0 then, we have

∇ f = ⟨∇ f , ξ⟩ξ. (50)

Differentiating (50) along Z ∈ TM and utilising (10), yields

∇Z∇ f = ⟨∇ f , ξ⟩ϕAZ + Z(⟨∇ f , ξ⟩)ξ. (51)

We know that 1(∇W∇ f ,Z) = 1(∇Z∇ f ,W) for W,Z ∈ TM. Hence using (51) in it, we get

1(ξ( f )ϕAW +W(ξ( f ))ξ,Z) = 1(Z(ξ( f ))ξ + ξ( f )ϕAZ,W). (52)

Replacing Z by ϕX and W by ϕY in (52) and using (7), (8), and (16), we obtain

ξ( f )(AϕX + ϕAX) = 0, (53)

which yields ξ( f ) = 0, as Aϕ+ϕA = 0 gives c = 0 (cf. [11], Lemma 2.1), a contradiction. Hence f is constant,
and using this in (5) and (36), we get M is ∗Ricci flat with steady soliton.

Thus, there exists a geodesic Hopf hypersphere M in CHn having steady ∗Ricci flat metric with 2n =
coth2 r.

Subcase B : Now, we discuss if U( f ) , 0, then, from (35), we get

c
4
−
ν
m
+ αµi = 0. (54)

Since there exists a geodesic hypersphere with η-∗ Einstein metric in CHn with two distinct eigenvalues.
Hence taking λi = µi in (24) and (54), we find

ν = mµ2
i , (55)

which gives a geodesic hypersphere M in CHn with a shrinking η-∗Einstein metric.
Subcase C : If both U( f ) = 0 and c

4 −
ν
m + αµi = 0 in (35). Then, we get ν = 0 and ν = mµ2

i , which gives
µi = 0. Then, from (45), we get c = 0, a contradiction.

Case II : Let α2 + c = 0. Then, ambient space is CHn only, as c = −α2. Now, if µi ,
α
2 in (24), then λi =

α
2 .

Using value of c and λi in (41), we obtain

n =
µi

α
. (56)

Using α = 2λi in (56), we get

n =
µi

2λi
. (57)
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Now, M has three distinct eigenvalues α, µ = µi for i = 1, 2, . . . ,n − 1 and α
2 , therefore M can be a

hypersurface of two types A2 and B in CHn.
Let M is of type A2 in CHn. Using eigenvalues λ = λi = tanh r, for i = 1, 2, . . . ,n − 1; µ = µi = coth r, for

i = 1, 2, . . . ,n − 1; α = 2 coth 2r in (56), we find tanh2 r = 1−n
n , a contradiction.

Next, if M is of type B in CHn. Putting eigenvalues λ = λi = coth r, for i = 1, 2, . . . ,n− 1; µ = µi = tanh r,
for i = 1, 2, . . . ,n − 1; α = 2 tanh 2r in (56), we get tanh2 r = 4n − 1, a contradiction as 0 < tanh2 r < 1.

So, now we discuss the case λi = µi =
α
2 . In this case M is a horosphere in CHn [1]. Putting c = −α2

and the eigenvalues µi = 1, λi = 1, α = 2 in (56), we find n = 1
2 , a contradiction. This concludes the proof of

Theorem 1.2.

5. Proof of Theorem 1.4

We know that a hypersurface in Cn is said to be contact if ϕA + Aϕ = 2ζϕ, for a smooth function ζ > 0.
As M is a contact hypersurface so it is Hopf and α = η(Aξ) is constant (cf. [4], Lemma 3.1). If A has only

one principal curvature α2 ∈ D, such that α , 0.
Let U ∈ D such that AU = (α2 )U and taking V = ϕU in (27), we get

c = −
2α2

2n + 1
, (58)

which gives α = 0, a contradiction, as c = 0.
Next, let U ∈ D such that AU = µiU, AϕU = λiϕU, i = 1, 2, . . . ,n − 1 with µi ,

α
2 , so from (28), we have(α2

2
+

nc
2
+

c
4

)
(µi + λi) +

α
2

(µ2
i + λ

2
i ) +
αc
4
= 0. (59)

Eliminating λi, using (24) and (59), we get

2αµ4
i + (2nc + c)µ3

i +
(
− αnc +

cα
2

)
µ2

i +
(nc2

2
+

c2

4

)
µi −

nαc2

4
= 0. (60)

Putting c = 0 in (60), we find

αµ4
i = 0. (61)

Putting c = 0 and V = ξ, in (27), we find
ν
m

(∇ f − ξ( f )ξ) − α(A∇ f − αξ( f )ξ) = 0. (62)

Computing the inner product of (62) with U ∈ D, we obtain( ν
m
− αµi

)
U( f ) = 0. (63)

Using (61) in (63), we get

νU( f ) = 0. (64)

Now, from (64), if U( f ) = 0, then from the proof of Theorem 1.2, we can see that f is constant as
Aϕ + ϕA , 0. Using this in (5) and (36), we get M is ∗Ricci flat with steady soliton.

Next, if ν = 0 and U( f ) , 0, then M is steady soliton with η-∗Einstein metric.
From (61), if α = 0, µi , 0. Then using this and c = 0 in (24), we get λi = 0. Hence M is locally congruent

to Sn−1
× Rn.

From (61), if α , 0 and µi = 0. Then using this and c = 0 in (24), we find λi = 0. Hence M is locally
congruent to R2n−2

× S1. Thus proof is complete.
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