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Abstract. Present work is an investigation of some new sequence spaces cI
0(er), cI(er), ℓI

∞
(er) and ℓ∞(er) as a

domain of triangle Euler matrix via ideal convergence over an admissible ideal ofN. Also, defining some
algebraic, topological properties and inclusion relations on these spaces.

1. Introduction

A linear spaceω is a sequence space as its elements are sequences fromN toR orC and the norm defined
on this space is ∥x∥ = sup∥xi∥, where the setsN,R and C have their usual meanings. Throughout the paper,
the notations ℓ∞, c, and c0 will represent the spaces of all sequences which are bounded, convergent, and
convergent to zero (null sequences), respectively. An ideal I is defined to be a family of a non-empty set
X i.e I ⊆ 2X if I1, I2 ∈ I implies that their union is in I i.e I1 ∪ I2 ∈ I, and I1 ∈ I, I2 ⊆ I1 implies that I2 ∈ I.
whereas a filter is a family of sets F ⊆ 2X if and only if ∅ < F, F1,F2 ∈ F implies that their intersection is in F
i.e F1 ∩ F2 ∈ F and F1 ⊆ F2 implies that F2 ∈ F. If I , ∅ and X < I then I is said to be non-trivial, admissible
if and only if {{x} : x ∈ X} ⊆ I and maximal if there is no ideal J , I that contains I. For every I to be a
non-trivial ideal there must corresponds a filter F = F(I) = {Y : X − Y ∈ I}.
After an extensive research about usual convergence of sequences in point set topology with respect to usual
metrics, the conception of Ideal convergence or I-convergence came into existence by well known author
Kostyrko et al.[16]. Ideal convergence is a gereralization of statistical convergence which was introduced by
well known authors Fast and Steinhaus [9, 19].Young researchers or scholars are suggested to go through
deep analysis about the concept of usual convergence and Ideal convergence as both the concepts are
independent. There are many sequences that are convergent but may not I-convergent.

A large number of research work has been surfaced in the field of ideal convergent sequence spaces by
many researchers, for further details one may refer[5, 6, 10–12].

Furter, Ideal convergence likned with summability theory by Šalát et al.[20, 21] and develop some new
ideas from the perspective of sequence spaces. To know more about this concept one may refer to [13–15]
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Let, T = (tnk) be an infinite matrix of real or complex numbers, where n, k ∈N, the sequence defined as

Tn(x) =
∞∑

k=0

tnkxk, for each n ∈N. (1)

which is a T-transform of the sequence x = (xk) ∈ ω by a matrix T also assuming that the right of series
(1) converges for each n ∈ N. The mapping of convergent sequences into another convergent sequences is
given in Kojima-Schur Theorem[8] which is a necessary and sufficient conditions as follows

(i)
∑
∞

k=1 |tnk| ≤ N for every n > m;
(ii) limn→∞ tnk = βk for every fixed k;

(iii)
∑
∞

k=1 tnk = Tn → β as n→∞.

Also, if tnk = 0 for k > n and tnn , 0 for all n ∈ N then T = tnk. is known to be trangle matrix
which has a unique inverse T−1 for |T| , 0 and T−1 is a triangle matrix. Moreover, let the matrix domain
λT := {x = (xk) ∈ ω : T(x) ∈ λ}...(1.2), for every sequence x = (xk) ∈ λ which is also a sequense space. λT is a
BK-space normed by ∥x∥λT = ∥T(x)∥λ for x ∈ λT[2] only if λ is a BK-space and T is triangle matrix. A number
of research papers have been published on this idea and its generalization[3, 4, 17, 18] which motivated us
to investigate some of the new sequence spaces by Euler transfornfation of a sequence xk.

Recalling, the Euler matrix of order r, Er = (er
nk) is an infinite matrix defined as,

er
nk =


(n

k
)
(1 − r)n−krk, if 0 ≤ k ≤ n,

0, k > n

where all subscripts inN. The Euler matrix has been used in the analysis of sequence spaces and also over
ℓp-space it is contemplated as bounded linear operator. Recently, by using the Euler matrix of order r, B.
Altay, F. Basar, M. Mursaleen [1] has investigated er

p and er
∞ as sequence spaces with all sequences whose

Euler-transformation of the sequence x = (xk) are in ℓp and ℓ∞ which are also sequence spaces respectively
i.e

λ(Er) =

x = (xk) ∈ ω :
∑

n

n∑
k=0

(
n
k

)
(1 − r)n−krkxk ∈ λ


for λ ∈ {ℓp, ℓ∞}. Throughout the paper cI

0, cI and ℓI∞, will be representing the sequence spaces of all sequences
which are null, convergent and bounded via an ideal I.
In this paper, by usnig Euler matrix of order r and via an ideal convergence,we investigated cI

0(er), cI(er),
ℓI∞(er) and ℓ∞(er) as sequences spaces with all sequences whose Er-transformation of x = (xk) are in cI

0, cI, ℓI∞
and ℓ∞, respectively. We define the sequence en(x) as Euler-tranformation of a sequence x = (xk) as follows:

enx =
n∑

k=0

(
n
k

)
(1 − r)n−krkxk

In order to define main results, we recall some useful definitions and lemmas related to this investigation

Definition 1.1 ([19]). If E = {s ∈ E : s ≤ n} ⊂N, then the natural density of the set E is defined as

d(E) = lim
n→∞

1
n
|E| exists

where, |E| is the cardinality of pre-defined set E.
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Definition 1.2 ([9]). A sequence x = (xk) is statistically converges to a number ζ ∈ R if, for every ε > 0
however small, d({k ∈ N : |xk − ζ| ≥ ε}) = 0. and represented as st– lim xk = ζ. In case ζ = 0, then the
sequence x = (xk) is said to be st-null.

Definition 1.3 ([20]). A sequence x = (xk) is said to be I-Cauchy if, for every ε > 0 however small, ∃ a
number m = m(ε) such that the set {k ∈N : |xk − xm| ≥ ε} belongs to an ideal I.

Definition 1.4 ([16]). A sequence x = (xk) is said to be I-convergent to a number ζ ∈ R if, for every ε > 0
however small, the set {k ∈ N : |xk − ζ| ≥ ε} belongs to an ideal I and represented as I– lim xk = ζ. In case
ζ = 0, then (xk) is said to be I-null.

Definition 1.5 ([10]). A sequence x = (xk) is said to be I-bounded if there exists a positive real number M > 0
however large, such that, the set {k ∈N : |xk| >M} belongs to an ideal I.

Definition 1.6 ([20]). Let there exists two sequences x = (xk) and y = (yk). We say that xk = yk for almost all
k relative to I if the set {k ∈N : xk , yk} belongs to an ideal I.

Definition 1.7 ([20]). A sequence space S is said to be normal or solid, if the Cauchy product (αkxk) belongs
to S, whenever (xk) ∈ S and for any sequence of scalars (αk) with the condition |αk| < 1, for every k ∈N.

Definition 1.8 ([20]). Let S = {si ∈ N : s1 < s2 < · · · } ⊆N and K be a sequence space. A S-step space of K is
a sequence space

λK
S = {(xsi ) ∈ ω : (xs) ∈ K}.

A canonical pre-image of a sequence (xsi ) ∈ λ
K
S is a sequence (ys) ∈ ω defined as follows:

ys =

xs, if s ∈ S,
0, otherwise.

A canonical pre-image of a step space λK
S is a set of canonical pre-images of all elements in λK

S , i.e., y is in
canonical pre-image of λK

S iff y is canonical pre-image of some element x ∈ λK
S .

Definition 1.9 ([20]). A sequence space S is said to be monotone, if it contains the canonical pre-images of
its step space.

Lemma 1.1 ([20]). Every solid space =⇒ monotone space.

Lemma 1.2 ([21]). Let K1 ∈ F (I) and K2 ⊆N. If K2 < I, then K1 ∩ K2 < I.

2. Main results

In this section, we investigated some new sequence spaces cI
0(er), cI(er), ℓI∞(er) and ℓ∞(er) defined by

Euler transformation en(x) of a sequence x = (xk) over an admissible ideal I of subsets ofN and study some
algebraic, topological properties and prove some inclusion relations on these spaces.

cI
0(er) := {x = (xk) ∈ ω : {n ∈N : |en(x)| ≥ ε} ∈ I} ,

cI(er) := {x = (xk) ∈ ω : {n ∈N : |en(x) − ζ| ≥ ε, for some ζ ∈ R} ∈ I} ,

ℓI∞(er) := {x = (xk) ∈ ω : ∃M > 0 s.t {n ∈N : |en(x)| ≥M} ∈ I} ,
ℓ∞(er) := {x = (xk) ∈ ω : sup

n
|en(x)| < ∞}.

Also,

mI
0(er) := cI

0(er) ∩ ℓ∞(er) and mI(er) := cI(er) ∩ ℓ∞(er).
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Sequence spaces cI
0(er), cI(er), ℓI∞(er), mI(er), and mI

0(er) can be redefined as follows:

cI
0(er) = (cI

0)er , cI(er) = (cI)er , ℓI∞(er) = (ℓI∞)er

mI(er) = (mI)er and mI
0(er) = (mI

0)er .

Definition 2.1. A sequence x = (xk) is said to be Euler I-Cauchy if for each ε > 0, however small, there exists
a positive integer m(ε) ∈N s.t

{n ∈N : |en(x) − em(x)| ≥ ε}

belongs to I, where I ⊆N be an admissible ideal.

Example 2.1. Define a class of finite subsets ofN i.e I f = {N ⊆ N : N is finite} is an admissible ideal inN
and cI f

(er) = er
c.

Example 2.2. Let, Ser will denote the the space of all Euler statistically convergent sequences i.e

Ser :=
{
x = (xk) : d

(
{n ∈N : |en(x) − ζ| ≥ ε}

)
= 0, for any real ζ

}
.

We define Id = {N ⊆ N : d(N) = 0} a non trivial ideal that imples that cId
(er) = Ser , where d(N) represents

natural density of the set N.

Example 2.3. Every usual Euler convergent sequence converges Euler statistically but the converse may
not be true. To prove this result we consider a sequence x = (xk) defined as follows:

en(x) =

1, if n is a square,
0, otherwise.

That is en(x) = {1, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . . } and taking the limit ζ = 0. Then we have the inclusion

{n ∈N : |en(x) − ζ| ≥ ε} ⊂ {1, 4, 9, 16, . . . , r2, (r + 1)2 . . . } ......⋆

Since, Natural density of the set on right of (⋆) is zero i.e the set of squares of natural numbers, so as a result
we get,

d({n ∈N : |en(x) − ζ| ≥ ε}) = 0.

This implies that, the sequence Euler statistically convergent (xk) ∈ Ser , but the sequence is not usual Euler
convergent (xk) < Cer .

Theorem 2.1. The spaces cI(er), cI
0(er), ℓI∞(er), mI

0(er), and mI(er) are linear spaces over the real numbers R.

Proof. Let x = (xk), y = (yk) ∈ cI(er) be two arbitrary sequences and α1, α2 are scalars. Now, since x, y ∈ cI(er),
then for given ε > 0, there exist ζ1, ζ2 ∈ R, such that{

n ∈N : |en(x) − ζ1| ≥
ε
2

}
∈ I and

{
n ∈N :

∣∣∣en(y) − ζ2

∣∣∣ ≥ ε
2

}
∈ I.

Now, let

A1 =
{
n ∈N : |en(x) − ζ1| <

ε
2|α1|

}
∈ F (I),

A2 =
{
n ∈N :

∣∣∣en(y) − ζ2

∣∣∣ < ε
2|α2|

}
∈ F (I)
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be such that Ac
1,A

c
2 ∈ I. Then

A3 =
{
n ∈N :

∣∣∣en(α1x + α2y) − (α1ζ1 + α2ζ2)
∣∣∣ < ε}

⊇

{{
n ∈N : |en(x) − ζ1| <

ε
2|α1|

}
∩

{
n ∈N :

∣∣∣en(y) − ζ2

∣∣∣ < ε
2|α2|

}}
.

(2)

As a result we get here, the right side of above equation (2) belongs to the filter F (I) associated with I
over the set of natural numbers which implies that its complement set always belongs to Ideal I and hence
we get (α1x + α2y) ∈ cI(er). =⇒ cI(er) is linear space over R.
The proof for the remaining spaces cI

0(er), ℓI∞(er), mI
0(er), and mI(er) can be prove by following the similar

way as above.
■

Theorem 2.2. Spaces λ(er) are normed spaces with respect to the sup-norm as follows:

∥x∥λ(er) = sup
n
|en(x)|, where λ ∈

{
cI, cI

0, ℓ
I
∞, ℓ∞

}
. (3)

Theorem 2.3. A sequence x = (xk) is said to be Euler I-convergent if and only if for every ε > 0, ∃
m = m(ε) ∈N, such that

{n ∈N : |en(x) − em(x)| < ε} ∈ F (I). (4)

Proof. Let, the sequence x = (xk) is Euler I-convergent to some number ζ ∈ R, then for a given ε > 0 however
small, we have

Aε =
{
n ∈N : |en(x) − ζ| <

ε
2

}
∈ F (I).

Fix an integer m = m(ε) ∈ Aε. Then we have

|en(x) − em(x)| ≤ |en(x) − ζ| + |ζ − em(x)| <
ε
2
+
ε
2
= ε

for all n ∈ Aε. Hence (4) holds.
Conversely, suppose that (4) holds for all ε > 0. Then

Bε = {n ∈N : en(x) ∈ [en(x) − ε, en(x) + ε]} ∈ F (I), for all ε > 0.

Let Jε = [en(x) − ε, en(x) + ε]. Fixing ε > 0, we have Bε ∈ F (I) and B ε
2
∈ F (I). Hence Bε∩B ε

2
∈ F (I). provided

J = Jε ∩ J ε
2
, ∅,

which implies that,

{n ∈N : en(x) ∈ J} ∈ F (I)

and hence

diam (J) ≤
1
2

diam (Jε),

where, diam(J) represents length of interval J and by induction we get sequence of closed intervals as
follows: Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · · s.t

diam (In) ≤
1
2

diam (In−1), for n = (2, 3, . . . )

as a result we get,

{n ∈N : en(x) ∈ In} ∈ F (I).

Which implies that ∃ ζ ∈
⋂

n∈N In and it is a routine work to verify that ζ = I– lim en(x) showing that x = (xk)
is Euler I-convergent. Provided that result follows. ■
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Theorem 2.4. The inclusions ℓI∞(er) ⊃ cI(er) ⊃ cI
0(er) hold and are strict.

Proof. The inclusion cI(er) ⊃ cI
0(er) is obviously true. We will show only its strictness for this we take a

sequence x = (xk) s.t en(x) = 2 which implies that en(x) belongs to cI but not belongs to cI
0.

Moreover, let x = (xk) ∈ cI(er) then there exists a real number ζ s.t I– lim en(x) = ζ i.e

{n ∈N : |en(x) − ζ| ≥ ε} ∈ I.

We have

|en(x)| = |en(x) − ζ + ζ| ≤ |en(x) − ζ| + |ζ| .

From the above result we can say that the sequence (xk) must be an element of ℓI∞(er).
Also to show strictness of inclusion i.e ℓI∞(er) ⊃ cI(er) we consider an example:

Example 2.4. Define a sequence x = (xk) such that

en(x) =


1, if n is odd non-square,
0, if n is even non-square
√

n, if n is square,

=⇒ sequence en(x) belongs to ℓI∞, but en(x) not belongs to cI provided the sequence x ∈ ℓI∞(er)\cI(er).

As a result, we get that the inclusion ℓI∞(er) ⊃ cI(er) ⊃ cI
0(er) follows strictly. ■

Example 2.5. Every Euler bounded sequence is Euler I-bounded but the converse may not be true. This
follows from the following example as; let’s define a sequence x = (xk) s.t

en(x) =

 n2

n+1 , for prime n,
0, otherwise.

which proves that en(x) is not bounded sequence but the set {n ∈N : |en(x)| ≥ 1} belongs to ideal. Hence the
sequence (xk) is Euler I-bounded.

Theorem 2.5. The sequence spaces:

(a) cI(er) and ℓ∞(er), do not contain each other but overlap only.
(b) cI

0(er) and ℓ∞(er), do not contain each other but overlap only.

Proof.

(a) We shall prove the spaces cI(er) and ℓ∞(er) are not disjoint spaces for this we consider a sequence x = (xk)
s.t en(x) = 1

n for n belongs toN then x ∈ cI(er) and x ∈ ℓ∞(er) both. Moreover,we define a sequence x = (xk)
s.t

en(x) =


√

n, n is a square,
0, otherwise.

so that, x ∈ cI(er) but x < ℓ∞(er). Moreover, we again define a sequence x = (xk) s.t

en(x) =

n, n is even,
0, otherwise.

then as a result we get, (x) ∈ ℓ∞(er) but x < cI(er).
The other part can be established following same technique. ■
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Theorem 2.6. The spaces defined as:

mI
0(er) := cI

0(er) ∩ ℓ∞(er) and mI(er) := cI(er) ∩ ℓ∞(er).

are closed in ℓ∞(er) as a subspace.

Proof. We consider a Cauchy sequence (x(i)
k ) in mI(er) ⊂ ℓ∞(er). Then (x(i)

k ) converges to a point in ℓ∞(er) and
limi→∞ en(i)(x) = en(x). Let I − lim en(i)(x) = ζi for every i ∈N. Then we only need to show that

(a) Sequence (ζi) converges to ζ;
(b) The limit, I − lim en(x) = ζ exists.

(a) As (x(i)
k ) is a Cauchy sequence then for each ε > 0 however small, there always exists a positive integer

m ∈N s.t∣∣∣en(i)(x) − en( j)(x)
∣∣∣ < ε

3
, for all i, j ≥ m. (5)

Now, consider two sets Ai and A j in an ideal I defined as:

Ai =
{
n ∈N : |en(i)(x) − ζi| ≥

ε
3

}
(6)

and

A j =
{
n ∈N : |en( j)(x) − ζ j| ≥

ε
3

}
. (7)

Moreover, let i, j ≥ m and n < Ai ∩ A j then we get,

|ζi − ζ j| ≤ |en(i)(x) − ζi| + |en( j)(x) − ζ j| + |en(i)(x) − en( j)(x)| < ε by (5), (6), and(7).

Thus (ζi) is a Cauchy sequence and thus convergens to ζ ∈ R i.e limi→∞ ζi = ζ.

(b) Let δ > 0 however small, be given, then we have a positive integer n0 s.t

|ζi − ζ| <
δ
3
, for every i > n0. (8)

Which implies that (x(i)
k )→ xk as i→∞. Thus

|en(i)(x) − en(x)| <
δ
3
, for every i > n0. (9)

Since (en( j)(x)) is I-convergent to a real no. ζ j then ∃ E ∈ I s.t for every n < E so we get,

|en( j)(x) − ζ j| <
δ
3
. (10)

Moreover, let j > n0 then ∀ n < E, we get by (8), (9), and (10) s.t

|en(x) − ζ| ≤ |en(x) − en( j)(x)| + |en( j)(x) − ζ j| + |ζ j − ζ| < δ.

Therefore, (xk) is Euler I-convergent to a real no. ζ. Thus mI(er) is closed in ℓ∞(er) as a subspace. Following
the same way the proof of other parts can be established, hence can be omitted. ■

Theorem 2.7. Sequence spaces cI(er), cI
0(er), and ℓI∞(er) are BK-spaces with respect to the sup-norm as follows:

∥x∥λ(er) = sup
n
|en(x)|, where λ ∈

{
cI, cI

0, ℓ
I
∞, ℓ∞

}
. (11)
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Proof. It is known that the spaces cI, cI
0, and ℓI∞ are BK-spaces. Moreover,(1.2) satisfies and the Euler matrix

is a triangle matrix. Now, by considering all these three facts and also by Theorem of Wilansky [22], we
have concluded that spaces are BK-spaces and hence the proof is completed. ■

In the view of Theorem 2.6 and since the inclusions mI(er) ⊂ ℓ∞(er) and mI
0(er) ⊂ ℓ∞(er) are strict, we

formulate the following result without proof:

Theorem 2.8. Spaces mI(er) and mI
0(er) are nowhere dense in ℓ∞(er) as a subset.

Theorem 2.9. Spaces cI
0(er) and mI

0(er) are monotone and solid respectively.

Proof. First we shall prove the result only for cI
0(er).

Let x = (xk) ∈ cI
0(er). For ε > 0 however small, we have

{n ∈N : |en(x)| ≥ ε} ∈ I (12)

Let a = (ak) be a scalar sequence satisfies |a| ≤ 1 ∀ k ∈N then we have

|en(ax)| = |aen(x)| ≤ |a| |en(x)| ≤ |en(x)| ,∀n ∈N. (13)

From the above (12), (13) equations, we conclude that:

{n ∈N : |en(ax)| ≥ ε} ⊆ {n ∈N : |en(x)| ≥ ε} ∈ I

which implies that te set,

{n ∈N : |en(αx)| ≥ ε} belongs to ideal I.

Therefore as a result we get the sequence (axk) ∈ cI
0(er).

=⇒ Space cI
0(er) is a solid space.

Also, as we know that Every solid space is Monotone(1.1) =⇒ the space cI
0(er) is Monotone space. ■

Corollary. If the ideal I is neither maximal nor I = I f , then the sequence spaces cI(er) and mI(er) are neither solid nor
monotone.

Proof. We shall prove the result by introducing an example as follows: ■

Example 2.6. Let I = I f and let S = {n ∈N : n is an odd integer}. Consider the S-step space SK of K as:

SK = {(xk) ∈ ω : (xk) ∈ S}.

Now, defining a sequence (yk) ∈ SK s.t

en(y) =

en(x), if n ∈ S,
0, otherwise.

Moreover, we consider a sequence (xk) defined as en(x) = 3 ∀ n ∈ N then the sequence (xk) ∈ E(er), but its
S-step space preimage does not belongs to E(er), where E = cI and mI.
In this way, as a result we find E(er) are not monotone and by following the lemma(1.1) spaces E(er) are not
solid.

Theorem 2.10. Let, for a sequence x = (xk) and a non-trivial admissible ideal I inN if there exists a sequence
y = (yk) ∈ cI(er) s.t en(x) = en(y) for almost all n relative to I, then x ∈ cI(er).
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Proof. Suppose that en(x) = en(y) for almost all n relative to I. i.e,

{n ∈N : en(x) , en(y)} ∈ I.

Consider the sequence (yk) is Euler I-convergent to ζ then for every ε > 0 however small, we have the
following set belongs to ideal I i.e,

{n ∈N : |en(y) − ζ| ≥ ε} ∈ I.

Since, we have considered I as an admissible ideal of set of natural numbers so we have the result by
following the below inclusion:

{n ∈N : |en(x) − ζ| ≥ ε} ⊆ {n ∈N : en(x) , en(y)} ∪ {n ∈N : |en(y) − ζ| ≥ ε}.
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