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Abstract. The topology of strong Whitney convergence on bornology was introduced by Caserta in [6].
This paper studies the complete metrizability and several other completeness properties of the space of all
real-valued continuous functions on a metric space, equipped with the topologies of Whitney and strong
Whitney convergence on bornology. The Polishness of these topologies coincides with their complete
metrizability.

1. Introduction

For any two metric spaces (X, d) and (Y, ρ), C(X,Y) denotes the set of all continuous functions from X to
Y. For Y = R with the usual metric, the space C(X,R) is denoted by C(X).

A family B of nonempty subsets of X is called a bornology on X if B forms a cover of X, is stable under
finite union and hereditary under inclusion (see [14]). A base for a bornology B is any subfamily B0 of B
such that B0 is cofinal in B under set inclusion. If every member of B0 is closed (compact) in (X, d), then B
is said to have a closed (respectively, compact) base.

The smallest (respectively, largest) bornology on X is the family F of all finite (respectively, P0(X) of all
nonempty) subsets of X. The familyK of all nonempty relatively compact subsets of X is another important
bornology on X.

Several topologies have been studied on C(X,Y) such as the topology of pointwise convergence τp, the
topology of uniform convergence τu and the topology of uniform convergence on compacta τk (see [21]).

For any two metric spaces (X, d), (Y, ρ) and a bornology B, the most commonly used topology on
C(X,Y) is the classical topology of uniform convergence on B, denoted by τβ. A stronger version of τβ was
introduced by Beer and Levi in [2], called the topology of strong uniform convergence on B, denoted by
τs
β. The topology τs

β was further studied in [[3], [5], [16]]. In [6], Caserta generalized the topology τs
β to a

new topology called the topology of strong Whitney convergence on B, denoted by τsw
β . The topology τw

β

of Whitney convergence on B is a generalization of the well-known topology, the Whitney topology τw,
introduced by H. Whitney in [24] and further studied in [[13], [17], [11], [19], [18]]. For more details on
Whitney topology, see the research monograph [22].
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Several topological properties of τsw
β and τw

β , like metrizability, countability properties, countable tight-
ness, Fréchet, cardinal functions and connectedness have been studied in [9], [7] and [10]. Complete
metrizability and Polishness of τβ and τs

β have been studied by L. Holá in [15].
In this paper, we give a characterization of the complete metrizability of τsw

β and τw
β on C(X). Several

other completeness properties, such as pseudo-completeness, Čech-completeness, partition-completeness,
sieve-completeness and almost Čech-completeness of τw

β and τsw
β on C(X), are studied in this paper. Also,

we see that the Polishness of τsw
β coincides with the complete metrizability. Moreover, the Polishness of τsw

β

is equivalent to the Polishness of τβ.

2. Preliminaries

All metric spaces are assumed to have at least two points. For any nonempty subset A of X and δ > 0,
Aδ denotes the δ-enlargement of A defined as Aδ =

⋃
x∈A

Sδ(x) = {x ∈ X : d(x,A) < δ}, where Sδ(x) denotes the

open ball with center x and radius δ. For other terms and notations, we refer to [[25], [12], [21]].
For a bornology B and any two metric spaces (X, d) and (Y, ρ), the classical topology τβ of uniform

convergence on B for the space C(X,Y) is determined by the uniformity ∆B which has basic entourages of
the form

[B, ϵ] = {( f , 1) : ρ( f (x), 1(x)) < ϵ for all x ∈ B} (B ∈ B, ϵ > 0).

For the bornology F (respectively, K ), τF (respectively, τK ) is the topology of pointwise convergence τp
(respectively, the topology of uniform convergence on compacta τk). For B = P0(X), τβ is the topology τu

of uniform convergence.
The classical topology τw

β of Whitney convergence onB for the space C(X,Y) is determined by the uniformity
∆w
B

which has basic entourages of the form

[B, ϵ]w = {( f , 1) : ρ( f (x), 1(x)) < ϵ(x) for all x ∈ B} (B ∈ B, ϵ ∈ C+(X)).

Here C+(X) represents the set of all positive real-valued continuous functions on X. If B = P0(X), then τw
β

is the Whitney topology τw.
The topology τs

β of strong uniform convergence on B is determined by the uniformity ∆s
B

which has basic
entourages of the form

[B, ϵ]s = {( f , 1) : ∃ δ > 0, ρ( f (x), 1(x)) < ϵ for all x ∈ Bδ} (B ∈ B, ϵ > 0).

The topology τsw
β of strong Whitney convergence on B is determined by the uniformity ∆sw

B
which has basic

entourages of the form

[B, ϵ]sw = {( f , 1) : ∃ δ > 0, ρ( f (x), 1(x)) < ϵ(x) for all x ∈ Bδ} (B ∈ B, ϵ ∈ C+(X)).

In general, the following relation holds between the above-defined topologies:

τβ ⊆ τs
β ⊆ τ

sw
β and τβ ⊆ τw

β ⊆ τ
sw
β ⊆ τ

w.

The concept of a shield was introduced by Beer et al. in [4]. For a nonempty subset A of X, a superset
A1 of A is called a shield for A provided that for every closed subset C of X with C ∩ A1 = ∅, there exists
δ > 0 such that C ∩ Aδ = ∅.

A bornology B on X is called shielded from closed sets if B contains a shield for each of its members. It is
well known that a bornology with a compact base is shielded from closed sets.

Recall that for a bornology B on a metric space (X, d) with a closed base, B ⊆ K if and only if B has a
compact base. From Theorem 2.4 in [9], B has a compact base if and only if τβ = τs

β = τ
w
β = τ

sw
β on C(X,Y)

for every metric space (Y, ρ).
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3. Complete Metrizability and related completeness properties

In this section, we give a characterization for the complete metrizability of (C(X), τsw
β ) and (C(X), τw

β ) and
study various completeness properties.

A family B of nonempty open subsets of a space X is called a π-base if every nonempty open subset of
X contains at least one member ofB. A space X is called pseudo-complete if it has a sequence {Bn : n ∈N} of
π-bases such that whenever Un ∈ Bn for each n and Un+1 ⊆ Un, then

⋂
n∈N

Un , ∅.

Before giving a characterization of complete metrizability for (C(X), τsw
β ), from [15] we would like to

mention that (C(X), τβ) is completely metrizable if and only if every nonempty compact set in X belongs to
B and B has a countable base.

Also, (C(X), τs
β) is completely metrizable if and only if every nonempty compact set in X belongs to B

and B is shielded from closed sets and has a countable base.
A subset A of a space X is called relatively pseudocompact if f (A) is a bounded subset of R for all

f ∈ C(X).
In a similar manner to Lemma 3.1 in [15], we can prove the following.

Lemma 3.1. Let (X, d) be a metric space and B be a bornology on X with a closed base. If (C(X), τw
β )((C(X), τsw

β )) is
of the second Baire category, then every relatively pseudocompact subset of X is contained in B.

Remark 3.2. Note that in Lemma 3.1, the condition is necessary for pseudo-completeness of (C(X), τw
β )((C(X), τsw

β ))
as well. But the converse need not be true. Consider X = Q, the set of rational numbers, with the usual metric and
B = K . Then every relatively pseudocompact subset of X is in B. But (C(X), τsw

β ) = (C(X), τw
β ) = Ck(X) is not

pseudo-complete (in fact, not Baire), by Corollary 4.5 in [20].

Next, we give a sufficient condition for pseudo-completeness of (C(X), τw
β ). Before that we prove a

lemma, motivated from Lemma 3.1 in [19].

Lemma 3.3. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then for any f1, f2 ∈ C(X),
ϕ1, ϕ2 ∈ C+(X) and B1,B2 ∈ B with B1 ⊆ B2, closure of [B2, ϕ2]w[ f2] in (C(X), τw

β ) is contained in [B1, ϕ1]w[ f1] if
and only if [ f2(x) − ϕ2(x), f2(x) + ϕ2(x)] ⊆ ( f1(x) − ϕ1(x), f1(x) + ϕ1(x)) for every x ∈ B1.

Proof. First we prove sufficiency. Let 1 ∈ [B2, ϕ2]w[ f2] and x ∈ B1. If 1(x) < [ f2(x) − ϕ2(x), f2(x) + ϕ2(x)], then
[x,V] = {h ∈ C(X) : h(x) ∈ V} is a neighborhood of 1 in (C(X), τw

β ), where V = R \ [ f2(x)−ϕ2(x), f2(x)+ϕ2(x)].
Since x ∈ B2, [x,V] ∩ [B2, ϕ2]w[ f2] = ∅. This gives a contradiction, hence 1 ∈ [B1, ϕ1]w[ f1].

For necessity, let y ∈ B1 and p ∈ [ f2(y) − ϕ2(y), f2(y) + ϕ2(y)]. Define 1(x) = f2(x) + (p− f2(y))·ϕ2(x)
ϕ2(y) . Observe

that 1 ∈ C(X) and 1(y) = p such that 1 ∈ [B2, ϕ2]w[ f2]. As for any neighborhood [B, ϵ]w[1] of 1 in (C(X), τw
β ),

consider the function k ∈ C(X), defined by k(x) = 1(x)+ sign( f2(x) − 1(x))·min{ ϵ(x)
2 , |1(x) − f2(x)|}. Then k ∈

[B, ϵ]w[1]∩ [B2, ϕ2]w[ f2]. Thus 1 ∈ [B1, ϕ1]w[ f1], which shows that p = 1(y) ∈ ( f1(y)−ϕ1(y), f1(y)+ϕ1(y)).

Theorem 3.4. Let (X, d) be a metric space and B be a bornology on X with a closed base such thatK ⊆ B and B has
a countable base. Then (C(X), τw

β ) is pseudo-complete.

Proof. Let B0 = {Bn : n ∈ N} be a countable base for B. We can assume that B0 is an increasing base
for B i.e. Bn ⊆ Bn+1∀ n. Consider a collection B j = {[Bn, ϕ]w[ f ] : f ∈ C(X), ϕ ∈ C+j (X),n ∈ N} for every

j ∈ N, where C+j (X) = {ϕ ∈ C+(X) : ϕ(x) < 1
2 j ∀x ∈ X}. Clearly, each B j is a π-base for (C(X), τw

β ). Now,

let U j ∈ B j for every j such that U j+1 ⊆ U j. Without loss of generality, U j can be taken as [Bn j , ϕ j]w[ f j]
with n j < n j+1 ∀ j, where ϕ j ∈ C+j (X), f j ∈ C(X) and Bn j ∈ B0, for all j. By Lemma 3.3, for every j,
we have [ f j+1(x) − ϕ j+1(x), f j+1(x) + ϕ j+1(x)] ⊆ ( f j(x) − ϕ j(x), f j(x) + ϕ j(x)) ∀x ∈ Bn j . Since for every j,
ϕ j(x) < 1

2 j ∀x ∈ X and (Bn j ) j∈N is increasing, by Cantor’s intersection theorem, for every m, we have
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∞⋂
j=m

( f j(x) − ϕ j(x), f j(x) + ϕ j(x)) = { f (x)} ∀x ∈ Bnm for some f (x) ∈ R. This defines a function f such that

f ∈
∞⋂

m=1
Um. Also note that for every m, | f (x) − f j(x)| < 1

2 j , ∀x ∈ Bnm , j ≥ m. It shows that ( fn) converges

uniformly to f on Bnm , for every m. Since every nonempty compact set in X belongs to B, ( fn) converges
uniformly to f on each compact subset of X, which gives f ∈ C(X).

Recall that a bornology Bwith a closed base on a metric space (X, d), is shielded from closed sets if and
only if τsw

β = τ
w
β on C(X). (See [8]). We have the following corollary to Theorem 3.4.

Corollary 3.5. Let (X, d) be a metric space and B be a bornology on X with a closed base such that K ⊆ B, B is
shielded from closed sets and B has a countable base. Then (C(X), τsw

β ) is pseudo-complete.

Remark 3.6. Note that the conditions taken in Theorem 3.4 and Corollary 3.5 for pseudo-completeness of (C(X), τw
β )

and (C(X), τsw
β ) are equivalent to the complete metrizability of τβ and τs

β, respectively. But the converse need not be
true in any case. Let X be an uncountable discrete metric space and B = K , then (C(X), τsw

β ) = (C(X), τw
β ) = Ck(X)

is pseudo-complete, by Corollary 4.5 in [20]. But B has not countable base.

Now we give a characterization for complete metrizability of (C(X), τsw
β ).

Theorem 3.7. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) For every complete metric space (Y, ρ), (C(X,Y), τsw
β ) is completely metrizable.

(ii) (C(X), τsw
β ) is completely metrizable.

(iii) Every nonempty compact set in X belongs to B and B has a countable base consisting of compact sets.

(iv) B = K and X is hemicompact.

(v) B = K and X is locally compact and separable.

Proof. (i)⇒ (ii) It is immediate.
(ii)⇒ (iii) If (C(X), τsw

β ) is completely metrizable, then by Lemma 3.1, every nonempty compact set in X
belongs to B and from Theorem 3.2 in [9], B has a countable base consisting of compact sets.

(iii) ⇒ (i) If B has a compact base, then τβ = τsw
β and the complete metrizability of τβ follows from

Theorem 3.1 in [15].
(iii)⇔ (iv) Observe that B = K if and only if every nonempty compact set in X belongs to B and B has

a compact base. Also,K has a countable base consisting of compact sets if and only if X is hemicompact.
(iv)⇔ (v) It follows from the fact that a metric space is hemicompact if and only if it is locally compact

and separable.

Similarly, we can prove the following result for the topology τw
β .

Theorem 3.8. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) For every complete metric space (Y, ρ), (C(X,Y), τw
β ) is completely metrizable.

(ii) (C(X), τw
β ) is completely metrizable.

(iii) Every nonempty compact set in X belongs to B and B has a countable base consisting of compact sets.

(iv) B = K and X is hemicompact.
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(v) B = K and X is locally compact and separable.

Remark 3.9. It is known that (C(X), τw) is always pseudo-complete, (see [11], [19]). Then for X = R with the usual
metric and B = P0(X), (C(X), τsw

β ) = (C(X), τw
β ) = (C(X), τw) is pseudo-complete but B ⊈ K . So by Theorem 3.2 in

[9], (C(X), τsw
β ) is not metrizable.

We give an example that shows the metrizability of (C(X), τsw
β ) is not equivalent to the complete metriz-

ability of (C(X), τsw
β ) which discards Corollary 2 in [6]. Moreover, the pseudocompactness of X andB having

a countable base need not imply the complete metrizability of (C(X), τsw
β ).

Example 3.10. Let X = { 1
n : n ∈ N}

⋃
{0} with the usual metric and B be the bornology F of all finite subsets

of X with a countable base {{0, 1, 1
2 , ...,

1
n } : n ∈ N}. Since X is a countable non-discrete compact metric space,

(C(X), τsw
β ) = Cp(X) is metrizable but not completely metrizable. Also note that X < B, then by Lemma 3.1, Cp(X) is

not Baire.

The next example shows that the complete metrizability of (C(X), τsw
β ) need not imply the pseudocom-

pactness of X.

Example 3.11. Let X = R with the usual metric and B be the bornology on X with base {[−n,n] : n ∈ N}. Now
B = K and X is hemicompact but X is not pseudocompact.

Note that the complete metrizability of (C(X), τsw
β ) implies the complete metrizability of (C(X), τβ) and

(C(X), τs
β). But the following example shows that the converse need not hold.

Example 3.12. Let X = R with the usual metric and B be the bornology on R with base {[n,∞) : n ∈ Z}. Observe
that every nonempty compact set in X belongs to B. Also, B is shielded from closed sets as each [n,∞) is shield of
itself. Then both τβ and τs

β are completely metrizable but B ⊈ K , hence (C(X), τsw
β ) is not completely metrizable.

Recall that, a space X is pointwise countable type if each point of X is contained in a compact subset of
X having countable character. A subset B of a space X is said to have countable character if there exists a
countable family {Wn : n ∈ N} of open subsets of X such that each Wn contains B and for any open set W
containing B, there exists some Wn contained in W.

Before showing equivalence of complete metrizability of (C(X), τsw
β ) to other completeness properties,

we state the followings.

Lemma 3.13. Let (X, d) be a metric space, D a dense subset of X and B a compact subset of D. Then B has a countable
character in D if and only if B has a countable character in X.

Proof. Let B has a countable character {Wn : n ∈N} in D, then for each n, choose Un, open subsets of X such
that Wn = Un ∩D. Then it is easy to see that B has countable character {Un : n ∈N} in X.

Theorem 3.14. The space (C(X), τsw
β ) is a space of point countable type if and only if (C(X), τsw

β ) contains a dense
subspace of point countable type.

Proof. It follows from Lemma 3.13 and homogeneity of (C(X), τsw
β ).

Theorem 3.15. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) (C(X), τsw
β ) is Čech-complete.

(ii) (C(X), τsw
β ) is sieve-complete.
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(iii) (C(X), τsw
β ) is partition-complete.

(iv) (C(X), τsw
β ) is almost Čech-complete.

(v) (C(X), τsw
β ) is pseudo-complete q-space.

(vi) (C(X), τsw
β ) is Baire q-space.

(vii) Every nonempty compact set in X belongs to B and B has a countable base consisting of compact sets.

(viii) (C(X), τsw
β ) is completely metrizable.

Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv) follows from Proposition 4.4 in [23].
(iv) ⇒ (v) Since (C(X), τsw

β ) has a dense subspace of point countable type, by Theorem 3.14 (C(X), τsw
β )

is of point countable type, hence q-space. Now the implication follows from the fact that any almost
Čech-complete space is pseudo-complete, (see [1]).

(v)⇒ (vi) It is immediate.
(vi)⇒ (vii) It can be proved in the same manner as the proof of (ii)⇒ (iii) in Theorem 3.7.
(vii)⇒ (viii) It directly follows from Theorem 3.7.
(viii)⇒ (i) It is obvious.

Since Theorem 3.14 holds for (C(X), τw
β ) also, we have the following result whose proof is similar to the

proof of Theorem 3.15.

Theorem 3.16. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) (C(X), τw
β ) is Čech-complete.

(ii) (C(X), τw
β ) is sieve-complete.

(iii) (C(X), τw
β ) is partition-complete.

(iv) (C(X), τw
β ) is almost Čech-complete.

(v) (C(X), τw
β ) is pseudo-complete q-space.

(vi) (C(X), τw
β ) is Baire q-space.

(vii) Every nonempty compact set in X belongs to B and B has a countable base consisting of compact sets.

(viii) (C(X), τw
β ) is completely metrizable.

4. Polishness of τsw
β

A space X is called Polish if it is completely metrizable and separable.
We show the equivalence of Polishness and complete metrizability of (C(X), τsw

β ). Moreover, the complete
metrizability of (C(X), τsw

β ) agrees with the Poilshness of (C(X), τs
β).

Theorem 4.1. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) (C(X), τsw
β ) is completely metrizable.

(ii) (C(X), τsw
β ) is Polish.
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Proof. It is sufficient to prove (i) ⇒ (ii). If (C(X), τsw
β ) is completely metrizable, then B = K and X is

hemicompact. So, τsw
β = τk. And it is well known that if X is hemicompact metric space, then (C(X), τk) is

separable.

Similarly, we can prove that the Polishness of (C(X), τw
β ) is equivalent to the complete metrizability.

Theorem 4.2. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) (C(X), τw
β ) is completely metrizable.

(ii) (C(X), τw
β ) is Polish.

Polishness of τβ and τs
β not only gives the coincidence of these topologies with the compact-open

topology but also the bornology B isK , (see [15]).

Theorem 4.3. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) (C(X), τs
β) is Polish.

(ii) τs
β = τk on C(X) and X is hemicompact.

(iii) (C(X), τβ) is Polish.

(iv) τβ = τk on C(X) and X is hemicompact.

(v) B = K and X is hemicompact.

Proof. (i)⇔ (ii) By Theorem 4.1 in [15].
(iii)⇔ (iv) By Theorem 4.2 in [15].
(ii)⇔ (v)⇔ (iv) From Theorem 4.8 in [8], it is easy to see that in both the cases τs

β = τk and τβ = τk, we
have B = K .

From Theorems 3.7, 3.8, 3.15, 3.16, 4.1, 4.2 and 4.3, we have the following.

Corollary 4.4. Let (X, d) be a metric space and B be a bornology on X with a closed base. Then the following are
equivalent.

(i) For every complete metric space (Y, ρ), (C(X,Y), τsw
β ) is completely metrizable.

(ii) For every complete metric space (Y, ρ), (C(X,Y), τw
β ) is completely metrizable.

(iii) (C(X), τsw
β ) is completely metrizable.

(iv) (C(X), τw
β ) is completely metrizable.

(v) (C(X), τsw
β ) is Čech-complete.

(vi) (C(X), τw
β ) is Čech-complete.

(vii) (C(X), τsw
β ) is sieve-complete.

(viii) (C(X), τw
β ) is sieve-complete.

(ix) (C(X), τsw
β ) is partition-complete.
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(x) (C(X), τw
β ) is partition-complete.

(xi) (C(X), τsw
β ) is almost Čech-complete.

(xii) (C(X), τw
β ) is almost Čech-complete.

(xiii) (C(X), τsw
β ) is pseudo-complete q-space.

(xiv) (C(X), τw
β ) is pseudo-complete q-space.

(xv) (C(X), τsw
β ) is Baire q-space.

(xvi) (C(X), τw
β ) is Baire q-space.

(xvii) (C(X), τsw
β ) is Polish.

(xviii) (C(X), τs
β) is Polish.

(xix) (C(X), τw
β ) is Polish.

(xx) (C(X), τβ) is Polish.

(xxi) Every nonempty compact set in X belongs to B and B has a countable base consisting of compact sets.

(xxii) B = K and X is hemicompact.

(xxiii) B = K and X is locally compact and separable.
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