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Abstract. In this paper, we further investigate new construction methods for uninorms on bounded lattices
via given uninorms. More specifically, we first construct new uninorms on arbitrary bounded lattices by
extending a given uninorm on a subinterval of the lattices under necessary and sufficient conditions on
the given uninorm. Moreover, based on the resulting uninorms, we can obtain another sufficient and
necessary condition under which S∗1 is a t-conorm (T∗1 is a t-norm) in [32]. Furthermore, using closure
operators (interior operators), we also provide new construction methods for uninorms by extending the
given uninorm on a subinterval of a bounded lattice under some additional constraints and simultaneously
investigate the additional constraints carefully and systematically. Meanwhile, some illustrative examples
for the above construction methods of uninorms on bounded lattices are provided.

1. Introduction

Yager and Rybalor [37] introduced the notions of uninorms with a neutral element in the interior of the
unit interval [0, 1] which are generalizations of t-norms and t-conorms. These operators also have been
proved to play an important role in other fields, such as neural networks, decision-making, expert systems
and so on (see, e.g., [16, 20–22, 26, 27, 31, 33, 38, 39]).

Since the bounded lattice L is more general than [0, 1], the studies of uninorms on [0, 1] have been
extended to L . Uninorms on L, were first proposed in [29] as a unification of t-norms and t-conorms on L.
Since then, a lot of researchers have used many tools to construct uninorms on the bounded lattices, such
as t-norms (t-conorms) (see, e.g., [1, 2, 4–6, 8–12, 17, 18, 29, 34]), closure operators (interior operators) (see,
e.g., [13, 15, 23, 30, 40]), t-subnorms (t-subconorms) (see, e.g., [25, 28, 36, 41]), additive generators [24] and
uninorms (see, e.g., [14, 35]).

As we see, in fact, in [14] and [35], the methods to construct uninorms both start from a given uninorm
on a subinterval of a bounded lattice L and then extend it to L. The more important point is that these
methods generalize some known construction methods for uninorms in the literature. So, in this paper, we
still study the construction methods for uninorms via uninorms defined on the subinterval [0, a] (or [b, 1])
of L. In section 3, we can construct new uninorms just by extending a given uninorm U∗ on a subinterval of

2020 Mathematics Subject Classification. Primary 06B05; Secondary 06A15.
Keywords. bounded lattices, closure operators, interior operators, t-conorms, uninorms.
Received: 23 January 2024; Revised: 29 November 2024; Accepted: 02 December 2024
Communicated by Ljubiša D. R. Kočinac
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L under necessary and sufficient conditions on U∗. The resulting uninorms can provide another sufficient
and necessary condition under which S∗1 is a t-conorm (T∗1 is a t-norm) in [32]. In section 4, based on
closure operators (interior operators), we can obtain new uninorms by extending a given uninorm U∗ on
a subinterval of L. Moreover, if we take e = b, e = a, e = 1 and e = 0, respectively, then all uninorms,
constructed in sections 3 and 4, are the existing results in the literature.

2. Preliminaries

In this section, we recall some conceptions and results, which will be used in this manuscript.

Definition 2.1. ([3]) A lattice (L,≤) is bounded if it has top element 1 and bottom element 0, that is, there
exist 1, 0 ∈ L such that 0 ≤ x ≤ 1 for all x ∈ L.

Throughout this article, unless stated otherwise, we denote L as a bounded lattice in the above definition.

Definition 2.2. ([3]) Let a, b ∈ L with a ≤ b. A subinterval [a, b] of L is defined as

[a, b] = {x ∈ L : a ≤ x ≤ b}.

Similarly, we can define [a, b) = {x ∈ L : a ≤ x < b}, (a, b] = {x ∈ L : a < x ≤ b} and (a, b) = {x ∈ L : a < x < b}. If
a and b are incomparable, then we use the notation a ∥ b. If a and b are comparable, then we use the notation
a ∦ b.

Moreover, Ia denotes the set of all incomparable elements with a, that is, Ia = {x ∈ L | x ∥ a}. Ib
a denotes

the set of elements that are incomparable with a but comparable with b, that is, Ib
a = {x ∈ L | x ∥ a and x ∦ b}.

Ia,b denotes the set of elements that are incomparable with both a and b, that is, Ia,b = {x ∈ L | x ∥ a and x ∥ b}.
Obviously, Ia

a = ∅ and Ia,a = Ia.

Definition 2.3. ([32]) If an operation T : L2
→ L is associative, commutative and increasing with respect to

both variables, and has the neutral element 1 ∈ L, that is, T(1, x) = x for all x ∈ L, then it is called a t-norm
on L.

Definition 2.4. ([5]) If an operation S : L2
→ L is associative, commutative and increasing with respect to

both variables, and has the neutral element 0 ∈ L, that is, S(0, x) = x for all x ∈ L, then it is called a t-conorm
on L.

Definition 2.5. ([29]) If an operation U : L2
→ L is associative, commutative and increasing with respect to

both variables, and has the neutral element e ∈ L, that is, U(e, x) = x for all x ∈ L, then it is called a uninorm
on L.

Proposition 2.6. ([29]) Let U be a uninorm on L with the neutral element e ∈ L \ {0, 1}. Then the following results
hold obviously.

(1) Te = U | [0, e]2
→ [0, e] is a t-norm on [0, e].

(2) Se = U | [e, 1]2
→ [e, 1] is a t-conorm on [e, 1].

Definition 2.7. ([5]) Let U be a uninorm on L with the neutral element e ∈ L \ {0, 1}.

(1) If an element x ∈ L satisfies U(x, x) = x, then it is called an idempotent element of U.

(2) If a uninorm U satisfies U(x, x) = x for all x ∈ L, then it is called an idempotent uninorm on L.

Definition 2.8. ([5]) Let U be a uninorm on L with the neutral element e ∈ L \ {0, 1}.

(1) If U(0, 1) = 0, then U is a conjunctive uninorm.
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(2) If U(0, 1) = 1, then U is a disjunctive uninorm.

Definition 2.9. ([19]) A mapping cl : L→ L is called a closure operator on L if, for all x, y ∈ L, it satisfies the
following conditions:

(1) x ≤ cl(x);

(2) cl(x ∨ y) = cl(x) ∨ cl(y);

(3) cl(cl(x)) = cl(x).

Definition 2.10. ([30]) A mapping int : L→ L is called an interior operator on L if, for all x, y ∈ L, it satisfies
the following conditions:

(1) int(x) ≤ x;

(2) int(x ∧ y) = int(x) ∧ int(y);

(3) int(int(x)) = int(x).

Definition 2.11. ([41]) Let L be a bounded lattice and e ∈ L \ {0, 1}.
We denote by U∗min the class of all uninorms U on L with neutral element e satisfying the following

condition:
U(x, y) = y for all (x, y) ∈ (e, 1] × [0, e).

Similarly, we denote byU∗max the class of all uninorms U on L with neutral element e satisfying the following
condition:

U(x, y) = y for all (x, y) ∈ [0, e) × (e, 1].

Proposition 2.12. ([28]) Let S be a nonempty set and A1,A2, . . . ,An be subsets of S. Let H be a commutative binary
operation on S. Then H is associative on A1 ∪ A2 ∪ . . . ∪ An if and only if all of the following statements hold:

(i) for every combination {i, j, k} of size 3 chosen from {1, 2, . . . ,n}, H(x,H(y, z)) = H(H(x, y), z) = H(y,H(x, z))
for all x ∈ Ai, y ∈ A j, z ∈ Ak;

(ii) for every combination {i, j} of size 2 chosen from {1, 2, . . . ,n}, H(x,H(y, z)) = H(H(x, y), z) for all x ∈ Ai, y ∈
Ai, z ∈ A j;

(iii) for every combination {i, j} of size 2 chosen from {1, 2, . . . ,n}, H(x,H(y, z)) = H(H(x, y), z) for all x ∈ Ai, y ∈
A j, z ∈ A j;

(iv) for every i ∈ {1, 2, . . . ,n}, H(x,H(y, z)) = H(H(x, y), z) for all x, y, z ∈ Ai.

In Theorem 4.8 of [32], if we take b = 1, then we can obtain the following Proposition 2.13(1). Meanwhile,
its dual result is given by Proposition 2.13(2).

Proposition 2.13. ([32]) Let b, a ∈ L \ {0, 1}.

(1) For a t-norm V : [b, 1]2
→ [b, 1], an ordinal sum extension T∗1 of V to L defined by

T∗1(x, y) =

V(x, y) if (x, y) ∈ [b, 1]2,

x ∧ y otherwise,
is a t-norm if and only if x ∥ y for all x ∈ Ib and y ∈ [b, 1).

(2) For a t-conorm W : [0, a]2
→ [0, a], an ordinal sum extension S∗1 of W to L defined by

S∗1(x, y) =

W(x, y) if (x, y) ∈ [0, a]2,

x ∨ y otherwise,
is a t-conorm if and only if x ∥ y for all x ∈ Ia and y ∈ (0, a].
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3. New construction methods for uninorms via uninorms on bounded lattices

In this section, we focus on the construction methods for uninorms on a bounded lattice L by extending
a given uninorm U∗ on a subinterval [0, a] (or [b, 1] ) of L under sufficient and necessary conditions on U∗.
Based on the new uninorms, we can obtain another sufficient and necessary condition under which S∗1 is a
t-conorm (T∗1 is a t-norm) in [32].

Theorem 3.1. Let U∗ be a uninorm on [0, a] with a neutral element e ∈ L for a ∈ L\ {0, 1}. Then U1 : L2
→ L defined

by

U1(x, y) =


U∗(x, y) if (x, y) ∈ [0, a]2,

x if (x, y) ∈ Ie,a × [0, e],
y if (x, y) ∈ [0, e] × Ie,a,

x ∨ y otherwise,
is a uninorm on L with the neutral element e if and only if U∗ satisfies the following conditions:

(1) for z ∈ Ie,a, if (x, y) ∈ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z;

(2) for z ∈ Ie,a, if (x, y) ∈ [0, a]× ((Ia
e ∪ (e, a])∩{l ∈ L | l ∥ z})∪ ((Ia

e ∪ (e, a])∩{l ∈ L | l ∥ z})× [0, a], then U∗(x, y) ∥ z;

(3) for z ∈ Ie
a, if (x, y) ∈ ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z;

(4) for z ∈ Ie
a, if (x, y) ∈ [0, a]× ((Ia

e ∪ (e, a])∩{l ∈ L | l ∥ z})∪ ((Ia
e ∪ (e, a])∩{l ∈ L | l ∥ z})× [0, a], then U∗(x, y) ∥ z.

Proof. Necessity. Suppose that U1(x, y) is a uninorm with the neutral element e. Next we need to show that
U∗ satisfies the conditions (1), (2), (3) and (4).

(1). For z ∈ Ie,a, if (x, y) ∈ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z.

Assume that for z ∈ Ie,a, there exists (x, y) ∈ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2 such that U∗(x, y) ∥ z. Then

U1(x, z) = z and U1(x, y) = U∗(x, y). Since U∗(x, y) ∥ z, this contradicts the increasingness property of U1(x, y).
Thus, for z ∈ Ie,a, if (x, y) ∈ ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z.
(2). For z ∈ Ie,a, if (x, y) ∈ [0, a] × ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) ∪ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) × [0, a], then

U∗(x, y) ∥ z.
Now we give the proof of that for z ∈ Ie,a, if (x, y) ∈ [0, a] × ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}), then U∗(x, y) ∥ z,
and the other case is obvious by the commutativity of U∗. Assume that for z ∈ Ie,a, there exists (x, y) ∈
[0, a] × ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) such that U∗(x, y) ∦ z. Then U1(x,U1(y, z)) = U1(x, z ∨ a) = z ∨ a and
U1(U1(x, y), z) = U1(U∗(x, y), z) = z. Since z ∨ a , z, this contradicts the associativity of U1(x, y). Thus, for
z ∈ Ie,a, if (x, y) ∈ [0, a] × ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) ∪ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) × [0, a], then U∗(x, y) ∥ z.

(3). For z ∈ Ie
a, if (x, y) ∈ ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z.
Assume that for z ∈ Ie

a, there exists (x, y) ∈ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2 such that U∗(x, y) ∥ z. Then

U1(x,U1(y, z)) = U1(x, z) = z and U1(U1(x, y), z) = U1(U∗(x, y), z) = z ∨ a. Since z ∨ a , z, this contradicts the
associativity of U1. Thus, for z ∈ Ie

a, if (x, y) ∈ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z.

(4). For z ∈ Ie
a, if (x, y) ∈ [0, a] × ((Ia

e ∪ (e, a]) ∩ {l ∈ L | l ∥ a}) ∪ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) × [0, a], then

U∗(x, y) ∥ z.
Now we prove that for z ∈ Ie

a, if (x, y) ∈ [0, a]×((Ia
e∪(e, a])∩{l ∈ L | l ∥ z}), then U∗(x, y) ∥ z, and the other case

is obvious by the commutativity of U∗. Assume that for z ∈ Ie
a, there exists (x, y) ∈ [0, a]×((Ia

e∪(e, a])∩{l ∈ L | l ∥
z}) such that U∗(x, y) ∦ z. Then U1(x,U1(y, z)) = U1(x, z ∨ a) = z ∨ a and U1(U1(x, y), z) = U1(U∗(x, y), z) = z.
Since z ∨ a , z, this contradicts the associativity of U1. Thus, for z ∈ Ie

a, if (x, y) ∈ [0, a] × ((Ia
e ∪ (e, a]) ∩ {l ∈

L | l ∥ a}) ∪ ((Ia
e ∪ (e, a]) ∩ {l ∈ L | l ∥ z}) × [0, a], then U∗(x, y) ∥ z.

Sufficiency. First, we can see that U1 is commutative and e is the neutral element of U1. Hence, we only
need to prove the increasingness and the associativity of U1.

I. Increasingness: Next, we prove that if x ≤ y, then U1(x, z) ≤ U1(y, z) for all z ∈ L. It is easy to verify
that U1(x, z) ≤ U1(y, z) if both x and y belong to one of the intervals [0, e], Ia

e , (e, a], Ie
a, Ie,a or (a, 1] for all z ∈ L.

The residual proof can be split into all possible cases.
1. x ∈ [0, e]
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1.1. y ∈ Ia
e ∪ (e, a]

1.1.1. z ∈ [0, e] ∪ Ia
e ∪ (e, a]

U1(x, z) = U∗(x, z) ≤ U∗(y, z) = U1(y, z)
1.1.2. z ∈ Ie

a ∪ Ie,a ∪ (a, 1]
U1(x, z) = z ≤ y ∨ z = U1(y, z)

1.2. y ∈ Ie
a ∪ Ie,a ∪ (a, 1]

1.2.1. z ∈ [0, e]
U1(x, z) = U∗(x, z) ≤ x < y = U1(y, z)

1.2.2. z ∈ Ia
e ∪ (e, a]

U1(x, z) = U∗(x, z) ≤ z < y ∨ z = U1(y, z)
1.2.3. z ∈ Ie

a ∪ Ie,a ∪ (a, 1]
U1(x, z) = z ≤ y ∨ z = U1(y, z)

2. x ∈ Ia
e

2.1. y ∈ (e, a]
2.1.1. z ∈ [0, e] ∪ Ia

e ∪ (e, a]
U1(x, z) = U∗(x, z) ≤ U∗(y, z) = U1(y, z)

2.1.2. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)
2.2. y ∈ Ie

a
2.2.1. z ∈ [0, e]

U1(x, z) = U∗(x, z) ≤ x < y = U1(y, z)
2.2.2. z ∈ Ia

e ∪ (e, a]
If z ∥ y, then U1(x, z) = U∗(x, z) ≤ a < y ∨ a = y ∨ z = U1(y, z).
If z ∦ y, then U1(x, z) = U∗(x, z) < y = y ∨ z = U1(y, z).

2.2.3. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)
2.3. y ∈ Ie,a

2.3.1. z ∈ [0, e]
U1(x, z) = U∗(x, z) ≤ x < y = U1(y, z)

2.3.2. z ∈ Ia
e

If z ∥ y, then U1(x, z) = U∗(x, z) ≤ a < y ∨ a = y ∨ z = U1(y, z).
If z ∦ y, then U1(x, z) = U∗(x, z) < y = y ∨ z = U1(y, z).

2.3.3. z ∈ (e, a]
U1(x, z) = U∗(x, z) ≤ a < y ∨ a = y ∨ z = U1(y, z)

2.3.4. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)
2.4. y ∈ (a, 1]

2.4.1. z ∈ [0, e] ∪ Ia
e ∪ (e, a]

U1(x, z) = U∗(x, z) ≤ a < y = U1(y, z)
2.4.2. z ∈ Ie

a ∪ Ie,a ∪ (a, 1]
U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)

3. x ∈ (e, a]
3.1. y ∈ Ie

a
3.1.1. z ∈ [0, e]

U1(x, z) = U∗(x, z) ≤ x < y = U1(y, z)
3.1.2. z ∈ Ia

e ∪ (e, a]
If z ∥ y, then U1(x, z) = U∗(x, z) ≤ a < y ∨ a = y ∨ z = U1(y, z).
If z ∦ y, then U1(x, z) = U∗(x, z) < y = y ∨ z = U1(y, z).

3.1.3. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)
3.2. y ∈ (a, 1]

3.2.1. z ∈ [0, e] ∪ Ia
e ∪ (e, a]
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U1(x, z) = U∗(x, z) ≤ a < y = U1(y, z)
3.2.2. z ∈ Ie

a ∪ Ie,a ∪ (a, 1]
U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)

4. x ∈ Ie
a, y ∈ (a, 1], z ∈ L
U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)

5. x ∈ Ie,a, y ∈ Ie
a ∪ (a, 1]

5.1. z ∈ [0, e]
U1(x, z) = x ≤ y = U1(y, z)

5.2. z ∈ Ia
e ∪ (e, a] ∪ Ie

a ∪ Ie,a ∪ (a, 1]
U1(x, z) = x ∨ z ≤ y ∨ z = U1(y, z)

II. Associativity: It can be shown that U1(x,U1(y, z)) = U1(U1(x, y), z) for all x, y, z ∈ L. By Proposition
2.12, we just verify the following cases.

1. If x, y, z ∈ [0, e] ∪ Ia
e ∪ (e, a], then U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)) for U∗ is associative.

2. If x, y, z ∈ Ie
a ∪ Ie,a ∪ (a, 1], then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = U1(x ∨ y, z) = U1(U1(x, y), z)

and U1(y,U1(x, z)) = U1(y, x ∨ z) = x ∨ y ∨ z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)).
3. If x, y ∈ [0, e] and z ∈ Ie

a∪ Ie,a∪ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z).
4. If x, y ∈ Ia

e , z ∈ Ie
a ∪ Ie,a, x ∦ z and y ∦ z, then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) =

U1(U1(x, y), z).
If x, y ∈ Ia

e , z ∈ Ie
a ∪ Ie,a and at least one of x, y is incomparable with z, then U1(x,U1(y, z)) = U1(x, y ∨ z) =

x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨ z = U1(U∗(x, y), z) = U1(U1(x, y), z).
5. If x, y ∈ Ia

e and z ∈ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z).
6. If x, y ∈ (e, a], z ∈ Ie

a, x ∦ z and y ∦ z, then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z).
If x, y ∈ (e, a], z ∈ Ie

a and at least one of x and y is incomparable with z, then U1(x,U1(y, z)) = U1(x, y∨z) =
x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨ z = U1(U∗(x, y), z) = U1(U1(x, y), z).

7. If x, y ∈ (e, a] and z ∈ Ie,a, then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨ z =
U1(U∗(x, y), z) = U1(U1(x, y), z).

8. If x, y ∈ (e, a] and z ∈ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z).
9. If x ∈ [0, e] and y, z ∈ Ie

a∪ Ie,a∪ (a, 1], then U1(x,U1(y, z)) = U1(x, y∨z) = y∨z = U1(y, z) = U1(U1(x, y), z)
and U1(y,U1(x, z)) = U1(y, z) = y ∨ z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)).

10. If x ∈ Ia
e ∪ (e, a], y, z ∈ Ie

a ∪ Ie,a ∪ (a, 1], then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = U1(x ∨
y, z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, x ∨ z) = x ∨ y ∨ z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) =
U1(y,U1(x, z)).

11. If x ∈ [0, e], y ∈ Ia
e , z ∈ Ie

a ∪ Ie,a and y ∦ z, then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) =
U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)).

If x ∈ [0, e], y ∈ Ia
e , z ∈ Ie

a ∪ Ie,a and y ∥ z, then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨
z = U1(U∗(x, y), z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = y ∨ z = z ∨ a. Thus U1(x,U1(y, z)) =
U1(U1(x, y), z) = U1(y,U1(x, z)).

12. If x ∈ [0, e], y ∈ Ia
e and z ∈ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z)

and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1 (x, z)).
13. If x ∈ [0, e], y ∈ (e, a], z ∈ Ie

a and y ∦ z, then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) =
U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1 (x, z)).

If x ∈ [0, e], y ∈ (e, a], z ∈ Ie
a and y ∥ z, then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨

z = U1(U∗(x, y), z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = y ∨ z = z ∨ a. Thus U1(x,U1(y, z)) =
U1(U1(x, y), z) = U1(y,U1(x, z)).

14. If x ∈ [0, e], y ∈ (e, a] and z ∈ Ie,a, then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨
z = U1(U∗(x, y), z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = y ∨ z = z ∨ a. Thus U1(x,U1(y, z)) =
U1(U1(x, y), z) = U1(y,U1(x, z)).

15. If x ∈ [0, e], y ∈ (e, a] and z ∈ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z)
and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1 (x, z)).

16. If x ∈ Ia
e , y ∈ (e, a], z ∈ Ie

a, x ∦ z and y ∦ z, then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y),
z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)).
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If x ∈ Ia
e , y ∈ (e, a], z ∈ Ie

a and at least one of x, y is incomparable with z, then U1(x,U1(y, z)) = U1(x, y∨z) =
x∨y∨z = z∨a = U∗(x, y)∨z = U1(U∗(x, y), z) = U1(U1(x, y), z) and U1(y,U1(x, z))= U1(y, x∨z) = y∨x∨z = z∨a.
Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1(x, z)).

17. If x ∈ Ia
e , y ∈ (e, a] and z ∈ Ie,a, then U1(x,U1(y, z)) = U1(x, y ∨ z) = x ∨ y ∨ z = z ∨ a = U∗(x, y) ∨ z =

U1(U∗(x, y), z) = U1(U1(x, y), z) and U1(y,U1(x, z)) = U1(y, x ∨ z) = x ∨ y ∨ z = z ∨ a. Thus U1(x,U1(y, z)) =
U1(U1(x, y), z) = U1(y,U1(x, z)).

18. If x ∈ Ia
e , y ∈ (e, a] and z ∈ (a, 1], then U1(x,U1(y, z)) = U1(x, z) = z = U1(U∗(x, y), z) = U1(U1(x, y), z)

and U1(y,U1(x, z)) = U1(y, z) = z. Thus U1(x,U1(y, z)) = U1(U1(x, y), z) = U1(y,U1 (x, z)).

Remark 3.2. Theorem 3.1 seem to be restrained for there are some conditions on the given uninorm U∗.
However, these conditions are necessary for our construction methods. On one hand, these additional
conditions are necessary and sufficient; on the other hand, in case of e = a or e = 0, these conditions
naturally hold and then Theorem 3.1 is the existing result in the literature as follows. These show the
rationality of these conditions and our uninorm in some degree.

If we take e = a in Theorem 3.1, then we can obtain the existing result in the literature.

Remark 3.3. In Theorem 3.1, if taking e = a, then [0, a] = [0, e], Ie,a = Ie, Ia
e ∪ Ie

a ∪ (e, a] = ∅ and U∗ is a t-norm
on [0, a]. Moreover, the conditions (1), (2), (3) and (4) in Theorem 3.1 naturally hold.

By the above fact, if taking e = a in Theorem 3.1, then we retrieve the uninorm Ut : L2
→ L constructed

by Çaylı, Karaçal, and Mesiar ([5], Theorem 1) as follow:

Ut(x, y) =


Te(x, y) if (x, y) ∈ [0, e]2,

x if (x, y) ∈ Ie × [0, e],
y if (x, y) ∈ [0, e] × Ie,

x ∨ y otherwise.

Lemma 3.4. In Theorem 3.1, if e = 0, then the condition (4) holds.

Proof. If e = 0, then we can rewrite the condition (4) as follow: for z ∈ Ia, if (x, y) ∈ [0, a] × ((0, a] ∩ {l ∈ L | l ∥
z})∪((0, a]∩{l ∈ L | l ∥ z})×[0, a], then U∗(x, y) ∥ z. Next we just prove that for z ∈ Ia, if (x, y) ∈ [0, a]×((0, a]∩{l ∈
L | l ∥ z}), then U∗(x, y) ∥ z. The other case in the above is obvious by the commutativity of U∗. Obviously,
U∗ is a t-conorm on [0, a]. Assume that for z ∈ Ia, there exists (x, y) ∈ [0, a] × ((0, a] ∩ {l ∈ L | l ∥ z}) such that
U∗(x, y) ∦ z, that is, U∗(x, y) < z. For (x, y) ∈ [0, a]×((0, a]∩{l ∈ L | l ∥ z}), we can obtain that U∗(x, y) ∈ [x∨y, a].
If U∗(x, y) < z, then y ≤ x∨y ≤ U∗(x, y) < z. This contradicts with the fact y ∈ {l ∈ L | l ∥ z}. Hence, U∗(x, y) ∥ z.

In Theorem 3.1, if taking e = 0, then U∗ is a t-conorm on [0, a] and Ie,a∪Ia
e = ∅. Thus, Ia

e∪(e, a] = (e, a] = (0, a]
and the conditions (1), (2) and (4) hold by Lemma 3.4. In this case, we can obtain the following proposition.

Proposition 3.5. Let S be a t-conorm on [0, a] for a ∈ L \ {0, 1}. Then the function S1 : L2
→ L defined by

S1(x, y) =

S(x, y) if (x, y) ∈ [0, a]2,

x ∨ y otherwise,
is a t-conorm if and only if for z ∈ Ia, if (x, y) ∈ ((0, a] ∩ {l ∈ L | l ∦ z})2, then S(x, y) ∦ z.

Remark 3.6. In Proposition 3.5, we give a sufficient and necessary constraint condition under which S1 is a
t-conorm. Obviously, this condition differs from that in Proposition 2.13(2). More precisely, our condition
is based on the viewpoint of t-conorms; the condition in Proposition 2.13(2) is based on the viewpoint of L.

The next example illustrates the construction method of uninorms on bounded lattices in Theorem 3.1.

Example 3.7. Given a bounded lattice L1 drawn in Fig.1 and a uninorm U∗ : [0, a]2
→ [0, a] shown in Table

1. It is clear that U∗ satisfies the conditions in Theorem 3.1 on L1. Based on Theorem 3.1, a uninorm U1 on
L1, shown in Table 2, can be obtained.
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Fig.1. The lattice L1

Table 1: U∗ on [0, a].

U∗ 0 b e c m n k d a
0 0 0 0 c m n k d a
b 0 b b c m n k d a
e 0 b e c m n k d a
c c c c c d d d d a
m m m m d m n d d a
n n n n d n n d d a
k k k k d d d k d a
d d d d d d d d d a
a a a a a a a a a a

Table 2: U1 on L1.

U1 0 b e c m n k d a l s f 1
0 0 0 0 c m n k d a l s f 1
b 0 b b c m n k d a l s f 1
e 0 b e c m n k d a l s f 1
c c c c c d d d d a f s f 1
m m m m d m n d d a l f f 1
n n n n d n n d d a f f f 1
k k k k d d d k d a f f f 1
d d d d d d d d d a f f f 1
a a a a a a a a a a f f f 1
l l l l f l f f f f l f f 1
s s s s s f f f f f f s f 1
f f f f f f f f f f f f f 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Remark 3.8. Let U1 be a uninorm in Theorem 3.1.
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(1) U1 is disjunctive, i.e., U1(0, 1) = 1.

(2) If a = 1, then U1 = U∗.

(3) U1 is idempotent if and only if U∗ is idempotent.

(4) U1 ∈ U
∗
max if and only if U∗ ∈ U∗max.

Remark 3.9. By Remark 3.8(4), we can easily construct the uninorms, which need not belong to the class of
U
∗
max. In Theorem 3.1, if U∗ <U∗max, then the uninorm U1 does not belong toU∗max. Next, we give a example

for the uninorm U∗ on [0, a] of L2, shown in Table 3, satisfying U∗ < U∗max and the conditions in Theorem
3.1. Therefore, we can easily construct a uninorm U1 by U∗ such that U1 <U∗max.
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Fig.2. The lattice L2

Table 3: U∗ on [0, a].

U∗ 0 b e m c d a
0 0 0 0 m c c a
b 0 b b m c c a
e 0 b e m c d a
m m m m m a a a
c c c c a a a a
d c c d a a a a
a a a a a a a a

Next, we give the dual result of Theorem 3.1.

Theorem 3.10. Let U∗ be a uninorm on [b, 1] with a neutral element e for b ∈ L\{0, 1}. Then the function U2 : L2
→ L

defined by

U2(x, y) =


U∗(x, y) if (x, y) ∈ [b, 1]2,

x if (x, y) ∈ Ie,b × [e, 1],
y if (x, y) ∈ [e, 1] × Ie,b,

x ∧ y otherwise,
is a uninorm on L with the neutral element e ∈ L if and only if U∗ satisfies the following conditions:

(1) for z ∈ Ie,b, if (x, y) ∈ ((Ib
e ∪ [b, e)) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z;
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(2) for z ∈ Ie,b, if (x, y) ∈ [b, 1]× ((Ib
e ∪ [b, e))∩{l ∈ L | l ∥ z})∪ ((Ib

e ∪ [b, e))∩{l ∈ L | l ∥ z})× [b, 1], then U∗(x, y) ∥ z;

(3) for z ∈ Ie
b, if (x, y) ∈ ((Ib

e ∪ [b, e)) ∩ {l ∈ L | l ∦ z})2, then U∗(x, y) ∦ z;

(4) for z ∈ Ie
b, if (x, y) ∈ [b, 1]× ((Ib

e ∪ [b, e))∩{l ∈ L | l ∥ z})∪ ((Ib
e ∪ [b, e))∩{l ∈ L | l ∥ z})× [b, 1], then U∗(x, y) ∥ z.

Proof. It can be proved immediately by the proof similar to Theorem 3.1.

If we take e = b in Theorem 3.10, then we can obtain the existing result in the literature.

Remark 3.11. If taking e = b in Theorem 3.10, then [b, 1] = [e, 1], Ie,b = Ie, Ib
e ∪ Ie

b ∪ [b, e) = ∅ and U∗ is a
t-conorm on [b, 1]. Moreover, the conditions (1), (2), (3) and (4) in Theorem 3.10 naturally hold.

By the above fact, if taking e = b in Theorem 3.1, then we retrieve the uninorm Us : L2
→ L constructed

by Çaylı, Karaçal, and Mesiar ([5], Theorem 1) as follow:

Us(x, y) =


Se(x, y) if (x, y) ∈ [e, 1]2,

x if (x, y) ∈ Ie × [e, 1],
y if (x, y) ∈ [e, 1] × Ie,

x ∧ y otherwise.

Remark 3.12. In Theorem 3.10, if taking e = 1, then U∗ is a t-norm on [b, 1] and Ie,b ∪ Ib
e = ∅. Thus, the

conditions (1) and (2) hold and Ib
e ∪ [b, e) = [b, e) = [b, 1). In this case, the condition (4) in Theorem 3.10 holds.

By Remark 3.12, if e = 1 in Theorem 3.10, then the following proposition holds.

Proposition 3.13. Let T be a t-norm on [b, 1] for b ∈ L \ {0, 1}. Then the function T1 : L2
→ L defined by

T1(x, y) =

T(x, y) if (x, y) ∈ [b, 1]2,

x ∧ y otherwise,
is a t-norm on L if and only if for z ∈ Ib, if (x, y) ∈ ([b, 1) ∩ {l ∈ L| l ∦ z})2, then T(x, y) ∦ z.

Remark 3.14. In Proposition 3.13, we give a sufficient and necessary condition under which T1 is a t-norm.
Obviously, this condition differs from that in Proposition 2.13(1). More precisely, our constraint condition is
based on the viewpoint of t-norms; the constraint condition in Proposition 2.13(1) is based on the viewpoint
of L.

Remark 3.15. Let U2 be a uninorm in Theorem 3.10.

(1) U2 is conjunctive, i.e., U2(0, 1) = 0.

(2) If b = 0, then U2 = U∗.

(3) U2 is idempotent if and only if U∗ is idempotent.

(4) U2 ∈ U
∗

min if and only if U∗ ∈ U∗min.

4. Constructing uninorms via given uninorms based on closure and interior operators

In this section, we mainly construct new uninorms by extending given uninorms based on interior
operators and closure operators.

For convenience,U∗
⊥

denotes the class of all uninorms U on L with neutral element e satisfying U(x, y) ∈
[0, e] implies (x, y) ∈ [0, e]2. Similarly, U∗

⊤
denotes the class of all uninorms U on L with neutral element e

satisfying U(x, y) ∈ [e, 1] implies (x, y) ∈ [e, 1]2.
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Theorem 4.1. Let U∗ be a uninorm on [0, a] with a neutral element e for a ∈ L \ {0, 1} and cl be a closure operator.
Let U3 : L2

→ L be a function defined as follow:

U3(x, y) =



U∗(x, y) if (x, y) ∈ [0, a]2,

x if (x, y) ∈ (L \ [0, a]) × [0, e],
y if (x, y) ∈ [0, e] × (L \ [0, a]),
cl(x) ∨ cl(y) if (x, y) ∈ Ie,a × Ie,a,

1 otherwise.

(1) Suppose that cl(x) ∨ cl(y) ∈ Ie,a for all x, y ∈ Ie,a.

(i) Let us assume that U∗ ∈ U∗
⊥

. Then U3 is a uninorm with the neutral element e ∈ L if and only if x ∥ y for
all x ∈ Ie,a and y ∈ Ia

e .

(ii) Let us assume that Ie,a ∪ Ie
a ∪ (a, 1) , ∅. Then U3 is a uninorm with the neutral element e ∈ L if and only if

U∗ ∈ U∗
⊥

and x ∥ y for all x ∈ Ie,a and y ∈ Ia
e .

(2) Suppose that cl(x) ∨ cl(y) ∈ Ie
a ∪ (a, 1] for all x, y ∈ Ie,a.

(i) Let us assume that x ∥ y for all x ∈ Ie,a, y ∈ Ia
e and U∗ ∈ U∗

⊥
. Then U3 is a uninorm with the neutral element

e ∈ L.

(ii) Let us assume that cl(x) ∨ cl(y) < 1 for all x, y ∈ Ie,a and Ie,a ∪ Ie
a ∪ (a, 1) , ∅. Then U3 is a uninorm with

the neutral element e ∈ L if and only if x ∥ y for all x ∈ Ie,a, y ∈ Ia
e and U∗ ∈ U∗

⊥
.

Proof. (1)(i) Necessity. Let U3(x, y) be a uninorm with a neutral element e and cl(x) ∨ cl(y) ∈ Ie,a for all
x, y ∈ Ie,a. We prove that x ∥ y for all x ∈ Ie,a and y ∈ Ia

e .
Assume that there exist x ∈ Ie,a and y ∈ Ia

e such that x ∦ y, i.e., y < x. Then U3(x, y) = 1 and
U3(x, x) = cl(x) ∨ cl(x) = cl(x). Since cl(x) < 1, the increasingness property of U3 is violated. Thus x ∥ y for
all x ∈ Ie,a and y ∈ Ia

e .
Sufficiency. By the definition of U3, U3 is commutative and e is the neutral element of U3. Thus, we only

need to prove the increasingness and the associativity of U3.
I. Increasingness: We prove that if x ≤ y, then U3(x, z) ≤ U3(y, z) for all z ∈ L. It is easy to verify that

U3(x, z) ≤ U3(y, z) if both x and y belong to one of the intervals [0, e], Ia
e , (e, a], Ie

a, Ie,a or (a, 1] for all z ∈ L. The
proof is split into all possible cases.

1. x ∈ [0, e]
1.1. y ∈ Ia

e ∪ (e, a]
1.1.1. z ∈ [0, e] ∪ Ia

e ∪ (e, a]
U3(x, z) = U∗(x, z) ≤ U∗(y, z) = U3(y, z)

1.1.2. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = z ≤ 1 = U3(y, z)
1.2. y ∈ Ie

a ∪ (a, 1]
1.2.1. z ∈ [0, e]

U3(x, z) = U∗(x, z) ≤ x < y = U3(y, z)
1.2.2. z ∈ Ia

e ∪ (e, a]
U3(x, z) = U∗(x, z) ≤ a < 1 = U3(y, z)

1.2.3. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = z ≤ 1 = U3(y, z)
1.3. y ∈ Ie,a

1.3.1. z ∈ [0, e]
U3(x, z) = U∗(x, z) ≤ x < y = U3(y, z)

1.3.2. z ∈ Ia
e ∪ (e, a]

U3(x, z) = U∗(x, z) ≤ a < 1 = U3(y, z)
1.3.3. z ∈ Ie

a ∪ (a, 1]
U3(x, z) = z ≤ 1 = U3(y, z)
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1.3.4. z ∈ Ie,a
U3(x, z) = z ≤ cl(y) ∨ cl(z) = U3(y, z)

2. x ∈ Ia
e

2.1. y ∈ (e, a]
2.1.1. z ∈ [0, e] ∪ Ia

e ∪ (e, a]
U3(x, z) = U∗(x, z) ≤ U∗(y, z) = U3(y, z)

2.1.2. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = 1 = U3(y, z)
2.2. y ∈ Ie

a ∪ (a, 1]
2.2.1. z ∈ [0, e]

U3(x, z) = U∗(x, z) ≤ x < y = U3(y, z)
2.2.2. z ∈ Ia

e ∪ (e, a]
U3(x, z) = U∗(x, z) ≤ a < 1 = U3(y, z)

2.2.3. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = 1 = U3(y, z)
3. x ∈ (e, a], y ∈ Ie

a ∪ (a, 1]
3.1. z ∈ [0, e]

U3(x, z) = U∗(x, z) ≤ x < y = U3(y, z)
3.2. z ∈ Ia

e ∪ (e, a]
U3(x, z) = U∗(x, z) ≤ a < 1 = U3(y, z)

3.3. z ∈ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = 1 = U3(y, z)
4. x ∈ Ie

a, y ∈ (a, 1]
4.1. z ∈ [0, e]

U3(x, z) = x ≤ y = U3(y, z)
4.2. z ∈ Ia

e ∪ (e, a] ∪ Ie
a ∪ Ie,a ∪ (a, 1]

U3(x, z) = 1 = U3(y, z)
5. x ∈ Ie,a, y ∈ Ie

a ∪ (a, 1]
5.1. z ∈ [0, e]

U3(x, z) = x < y = U3(y, z)
5.2. z ∈ Ia

e ∪ (e, a] ∪ Ie
a ∪ (a, 1]

U3(x, z) = 1 = U3(y, z)
5.3. z ∈ Ie,a

U3(x, z) = cl(x) ∨ cl(z) < 1 = U3(y, z)
II. Associativity: We demonstrate that U3(x,U3(y, z)) = U3(U3(x, y), z) for all x, y, z ∈ L. By Proposition

2.12, we just consider the following cases.
1. If x, y, z ∈ [0, e] ∪ Ia

e ∪ (e, a], then U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)) for U∗ is associative.
2. If x, y, z ∈ Ie

a ∪ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z).
3. If x, y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = cl(x) ∨ cl(y) ∨ cl(z) = U3(cl(x) ∨ cl(y), z) =

U3(U3(x, y), z).
4. If x, y ∈ [0, e] and z ∈ Ie

a∪ Ie,a∪ (a, 1], then U3(x,U3(y, z)) = U3(x, z) = z = U3(U∗(x, y), z) = U3(U3(x, y), z).
5. If x, y ∈ Ia

e ∪ (e, a] and z ∈ Ie
a ∪ Ie,a ∪ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(U∗(x, y), z)

= U3(U3(x, y), z) and U3(y,U3(x, z)) = U3(y, 1) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).
6. If x, y ∈ Ie

a and z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z).
7. If x, y ∈ Ie,a and z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(cl(x) ∨ cl(y), z) = U3(U3(x, y), z).
8. If x ∈ [0, e] and y, z ∈ Ie

a ∪ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(y, z) = U3(U3(x, y), z) and
U3(y,U3(x, z)) = U3(y, z) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).

9. If x ∈ [0, e] and y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = cl(y) ∨ cl(z) = U3(y, z) =
U3(U3(x, y), z).

10. If x ∈ Ia
e ∪ (e, a] and y, z ∈ Ie

a ∪ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z) and
U3(y,U3(x, z)) = U3(y, 1) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).

11. If x ∈ Ia
e ∪ (e, a] and y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = 1 = U3(1, z) = U3(U3(x, y), z).
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12. If x ∈ Ie
a and y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = 1 = U3(1, z) = U3(U3(x, y), z).

13. If x ∈ Ie,a and y, z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z). Thus
U3(x,U3(y, z)) = U3(U3(x, y), z).

14. If x ∈ [0, e], y ∈ Ia
e ∪ (e, a] and z ∈ Ie

a ∪ Ie,a ∪ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(U∗(x, y), z) =
U3(U3(x, y), z) and U3(y,U3(x, z)) = U3(y, z) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).

15. If x ∈ [0, e], y ∈ Ie
a and z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(y, z) = U3(U3(x, y), z) and

U3(y,U3(x, z)) = U3(y, z) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).
16. If x ∈ [0, e], y ∈ Ie,a and z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(y, z) = U3(U3(x, y), z) and

U3(y,U3(x, z)) = U3(y, z) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).
17. If x ∈ Ia

e ∪ (e, a], y ∈ Ie
a and z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z) and

U3(y,U3(x, z)) = U3(y, 1) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).
18. If x ∈ Ia

e ∪ (e, a], y ∈ Ie,a and z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z) and
U3(y,U3(x, z)) = U3(y, 1) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).

19. If x ∈ Ie
a, y ∈ Ie,a and z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(1, z) = U3(U3(x, y), z) and

U3(y,U3(x, z)) = U3(y, 1) = 1. Thus U3(x,U3(y, z)) = U3(U3(x, y), z) = U3(y,U3(x, z)).
(1)(ii) We just prove that If Ie,a ∪ Ie

a ∪ (a, 1) , ∅, then the condition U∗ ∈ U∗
⊥

is necessary. The proof can be
split into all possible cases.

a. U∗(x, y) < [0, e] for all (x, y) ∈ [0, e] × (Ia
e ∪ (e, a]) ∪ (Ia

e ∪ (e, a]) × [0, e] ∪ Ia
e × Ia

e .
Now we give the proof of U∗(x, y) < [0, e] for all (x, y) ∈ [0, e] × (Ia

e ∪ (e, a]) ∪ Ia
e × Ia

e , and the other case is
obvious by the commutativity of U∗. Assume that there exists (x, y) ∈ [0, e] × (Ia

e ∪ (e, a]) ∪ Ia
e × Ia

e such that
U∗(x, y) ∈ [0, e]. If z ∈ Ie,a∪Ie

a∪(a, 1), then U3(x,U3(y, z)) = U3(x, 1) = 1 and U3(U3(x, y), z) = U3(U∗(x, y), z) = z.
Since z < 1, the associativity of U3 is violated. Thus U∗(x, y) < [0, e] for all (x, y) ∈ [0, e) × (Ia

e ∪ (e, a]) ∪ (Ia
e ∪

(e, a]) × [0, e) ∪ Ia
e × Ia

e .
b. U∗(x, y) < [0, e] for all (x, y) ∈ (e, a]2

∪ (e, a] × Ia
e ∪ Ia

e × (e, a].
Now we just prove that U∗(x, y) < [0, e] for all (x, y) ∈ (e, a]2

∪ (e, a] × Ia
e , and the other case is obvious

by the commutativity of U∗. By the increasingness of U∗, we can obtain that y = U∗(e, y) ≤ U∗(x, y). Since
y ∈ Ia

e ∪ (e, a], U∗(x, y) < [0, e]. Thus U∗(x, y) < [0, e] for all (x, y) ∈ (e, a]2
∪ (e, a] × Ia

e ∪ Ia
e × (e, a].

(2)(i) By the definition of U3, U3 is commutative and e is the neutral element of U3. Thus, we only need
to show the increasingness and the associativity of U3.

I. Increasingness: We prove that if x ≤ y, then U3(x, z) ≤ U3(y, z) for all z ∈ L. Next, it is enough to check
the cases that are different from those in the proof of Theorem 4.1(1)(i).

1. x ∈ [0, e], y ∈ Ie,a
1.1. z ∈ Ie,a

U3(x, z) = z < cl(y) ∨ cl(z) = U3(y, z)
2. x ∈ Ie,a

2.1. y ∈ Ie,a
2.1.1. z ∈ Ie,a

U3(x, z) = cl(x) ∨ cl(z) ≤ cl(y) ∨ cl(z) = U3(y, z)
2.2. y ∈ Ie

a ∪ (a, 1]
2.2.1. z ∈ Ie,a

U3(x, z) = cl(x) ∨ cl(z) ≤ 1 = U3(y, z)
II. Associativity: It can be shown that U3(x,U3(y, z)) = U3(U3(x, y), z) for all x, y, z ∈ L. By Proposition

2.12 and the proof of Theorem 4.1(1)(i), we just check the cases that are different from the cases in the proof
of Theorem 4.1(1)(i).

1. If x, y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = 1 = U3(cl(x) ∨ cl(y), z) = U3(U3(x, y), z).
2. If x ∈ [0, e] and y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y) ∨ cl(z)) = cl(y) ∨ cl(z) = U3(y, z) =

U3(U3(x, y), z).
3. If x ∈ Ia

e ∪ (e, a]∪ Ie
a and y, z ∈ Ie,a, then U3(x,U3(y, z)) = U3(x, cl(y)∨cl(z)) = 1 = U3(1, z) = U3(U3(x, y), z).

4. If x, y ∈ Ie,a and z ∈ (a, 1], then U3(x,U3(y, z)) = U3(x, 1) = 1 = U3(cl(x) ∨ cl(y), z) = U3(U3(x, y), z).
(2)(ii) In the following, we only prove that if cl(x)∨ cl(y) < 1 for all x, y ∈ Ie,a and Ie,a ∪ Ie

a ∪ (a, 1) , ∅, then
x ∥ y for all x ∈ Ie,a, y ∈ Ia

e and U∗ ∈ U∗
⊥

are necessary. First, assume that there exist x ∈ Ie,a and y ∈ Ia
e such

that x ∦ y, i.e., y < x. Then U3(x, x) = cl(x) ∨ cl(x) and U3(x, y) = 1. Since cl(x) ∨ cl(x) < 1, the increasingness
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of U3 is violated. Thus x ∥ y for all x ∈ Ie,a and y ∈ Ia
e . Then we can obtain that U∗ ∈ U∗

⊥
is necessary by the

proof similar to Theorem 4.1(1)(ii).

If we take e = 0 and e = a in Theorem 4.1, respectively, then we can obtain some existing results in the
literature.

Remark 4.2. If taking e = 0 in Theorem 4.1, then [e, a] = [0, a], Ie
a = Ia, Ie,a ∪ Ia

e ∪ [0, e) = ∅ and U∗ is a t-conorm
on [0, a]. Moreover, based on the above case, the conditions in Theorem 4.1 naturally hold.

By the above fact, if taking e = 0 in Theorem 4.1, then we retrieve the t-conorm S∗2 : L2
→ L constructed

by Çaylı ([7], Theorem 1) as follow:

S∗2(x, y) =


Se(x, y) if (x, y) ∈ [0, a]2,

x if (x, y) ∈ (Ia ∪ (a, 1]) × {0},
y if (x, y) ∈ {0} × (Ia ∪ (a, 1]),
1 otherwise.

Remark 4.3. If taking e = a in Theorem 4.1, then [0, a] = [0, e], Ie,a = Ie, Ie
a ∪ Ia

e ∪ (e, a] = ∅ and U∗ is a t-norm
on [0, a]. Moreover, in this case, U∗ ∈ U∗

⊥
and x ∥ y for all x ∈ Ie,a and y ∈ Ia

e naturally hold.

By the above fact, if taking e = a in Theorem 4.1, then we retrieve the uninorm U1
cl,1 : L2

→ L under the
conditions cl(x)∨ cl(y) ∈ Ie for all x, y ∈ Ie or cl(x)∨ cl(y) ∈ (e, 1] for all x, y ∈ Ie, constructed by Zhao and Wu
([40], Proposition 3.1) as follow:

U1
cl,1(x, y) =



Te(x, y) if (x, y) ∈ [0, e]2,

x if (x, y) ∈ Ie × [0, e] ∪ (e, 1] × [0, e],
y if (x, y) ∈ [0, e] × Ie ∪ [0, e] × (e, 1],
cl(x) ∨ cl(y) if (x, y) ∈ Ie × Ie,

1 otherwise.

Moreover, if taking cl(x) = x ∨ a for x ∈ L in U1
cl,1, then we retrieve the uninorm UT

e : L2
→ L constructed

by Çaylı ([8], Theorem 2.23) as follow:

UT
e (x, y) =



Te(x, y) if (x, y) ∈ [0, e]2,

x if (x, y) ∈ (L \ [0, e]) × [0, e],
y if (x, y) ∈ [0, e] × (L \ [0, e]),
x ∨ y ∨ e if (x, y) ∈ Ie × Ie,

1 otherwise.

The next example illustrates the construction method of uninorms on bounded lattices in Theorem 4.1.

Example 4.4. Given a bounded lattice L3 depicted in Fig.3., a uninorm U∗ : [0, a]2
→ [0, a] shown in Table

4 and a closure operator cl : L3 → L3 defined by cl(x) = x for all x ∈ L3. It is easy to see that L3, U∗ and cl
satisfy the conditions in Theorem 4.1(1)(i) on L3. By Theorem 4.1, we can obtain a uninorm U3 on L4 with
the neutral element e, shown in Table 5.
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Fig.3. The lattice L3.

Table 4: U∗ on [0, a].

U∗ 0 b e k c a
0 0 0 0 k c a
b 0 b b k c a
e 0 b e k c a
k k k k k c a
c c c c c c a
a a a a a a a

Table 5: U3 on L3.

U3 0 b e k c a m t n l s d 1
0 0 0 0 k c a m t n l s d 1
b 0 b b k c a m t n l s d 1
e 0 b e k c a m t n l s d 1
k k k k k c a 1 1 1 1 1 1 1
c c c c c c a 1 1 1 1 1 1 1
a a a a a a a 1 1 1 1 1 1 1
m m m m 1 1 1 m t n l 1 1 1
t t t t 1 1 1 t t l l 1 1 1
n n n n 1 1 1 n l n l 1 1 1
l l l l 1 1 1 l l l l 1 1 1
s s s s 1 1 1 1 1 1 1 1 1 1
d d d d 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Remark 4.5. (1) In Theorem 4.1(1), the condition cl(x) ∨ cl(y) ∈ Ie,a for all x, y ∈ Ie,a can not be omitted, in
general.

(2) Similarly, in Theorem 4.1(2), the condition cl(x) ∨ cl(y) ∈ Ie
a ∪ (a, 1] for all x, y ∈ Ie,a can not be omitted.

The next example illustrates the facts in Remark 4.5. That is, if the conditions in Theorem 4.1 do not
hold, then the associativity of U3 can be violated.
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Example 4.6. Given a bounded lattice L4 depicted in Fig.4., a uninorm U∗ : [0, a]2
→ [0, a] shown in Table 6

and a closure operator cl : L4 → L4 defined by cl(m) = b for m ∈ L4 and cl(x) = x for all x ∈ L4\{m}. It is easy to
see that U∗ ∈ U∗

⊥
and cl does not satisfy the conditions in Remark 4.5, i.e., cl(m)∨ cl(k) = b∨ k = b ∈ Ie

a ∪ (a, 1]
and cl(k) ∨ cl(k) = k ∨ k = k ∈ Ie,a for m, k ∈ Ie,a. By Theorem 4.1, we can obtain a function U3 on L4, shown in
Table 7. Since U3(k,U3(k,m)) = U3(k, b) = 1 and U3(U3(k, k),m) = U3(k,m) = b for k,m ∈ L4, the function U3
does not satisfy associativity. Thus, the function U3 is not a uninorm on L4.

•
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• e
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• b

•

1

•m

•k

@
@@

�
��

Fig.4. The lattice L4.

Table 6: U∗ on [0, a].

U∗ 0 e a
0 0 0 a
e 0 e a
a a a a

Table 7: U3 on L4.

U3 0 e a k m b 1
0 0 0 a k m b 1
e 0 e a k m b 1
a a a a 1 1 1 1
k k k 1 k b 1 1
m m m 1 b b 1 1
b b b 1 1 1 1 1
1 1 1 1 1 1 1 1

Remark 4.7. Let U3 be a uninorm in Theorem 4.1.

(1) U3 is disjunctive, i.e., U3(0, 1) = 1.

(2) If a = 1, then U3 = U∗.

(3) U3 is not idempotent, in general. In fact, if (a, 1) , ∅, then there exists x such that x ∈ (a, 1) and then
U3(x, x) = 1 , x. This is a contradiction with that U3 be idempotent.

(4) U3 ∈ U
∗
max if and only if U∗ ∈ U∗max.

Also, we give the dual result of Theorem 4.1.

Theorem 4.8. Let U∗ be a uninorm on [b, 1] with a neutral element e for b ∈ L \ {0, 1} and int be an interior operator.
Let U4 : L2

→ L be a function defined as follow:
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U4(x, y) =



U∗(x, y) if (x, y) ∈ [b, 1]2,

x if (x, y) ∈ (L \ [b, 1]) × [e, 1],
y if (x, y) ∈ [e, 1] × (L \ [b, 1]),
int(x) ∧ int(y) if (x, y) ∈ Ie,b × Ie,b,

0 otherwise.

(1) Suppose that int(x) ∧ int(y) ∈ Ie,b for all x, y ∈ Ie,b.
(i) Let us assume that U∗ ∈ U∗

⊤
. Then U4 is a uninorm with the neutral element e ∈ L if and only if x ∥ y for

all x ∈ Ie,b and y ∈ Ib
e .

(ii) Let us assume that Ie,b ∪ Ie
b ∪ (0, b) , ∅. Then U4 is a uninorm with the neutral element e ∈ L if and only if

U∗ ∈ U∗
⊤

and x ∥ y for all x ∈ Ie,b and y ∈ Ib
e .

(2) Suppose that int(x) ∧ int(y) ∈ Ie
b ∪ [0, b) for all x, y ∈ Ie,b.

(i) Let us assume that x ∥ y for all x ∈ Ie,b and y ∈ Ib
e and U∗ ∈ U∗

⊤
. Then U4 is a uninorm with the neutral

element e ∈ L.
(ii) Let us assume that Ie,b ∪ Ie

b ∪ (0, b) , ∅ and 0 < int(x) ∧ int(y) for all x, y ∈ Ie,b. Then U4 is a uninorm on
L with the neutral element e ∈ L if and only if x ∥ y for all x ∈ Ie,b, y ∈ Ib

e and U∗ ∈ U∗
⊤

.

Proof. It can be proved immediately by the proof similar to Theorem 4.1.

If we take e = 1 and e = b in Theorem 4.8, respectively, then we can obtain some existing results in the
literature.

Remark 4.9. If taking e = 1 in Theorem 4.8, then [b, e] = [b, 1], Ie
b = Ib, Ie,b ∪ Ib

e ∪ (e, 1] = ∅ and U∗ is a t-norm
on [b, 1]. Moreover, in this case, the conditions in Theorem 4.8 naturally hold.

By the above fact, if taking e = 1 in Theorem 4.8, then we retrieve the following t-norm T∗2 : L2
→ L

constructed by Çaylı ([7], Theorem 1) as follow:

T∗2(x, y) =


Te(x, y) if (x, y) ∈ [b, 1]2,

x if (x, y) ∈ (Ib ∪ [0, b)) × {1},
y if (x, y) ∈ {1} × (Ib ∪ [0, b)),
0 otherwise.

Remark 4.10. If taking e = b in Theorem 4.8, then [b, 1] = [e, 1], Ie,b = Ie, Ie
b∪ Ib

e ∪ [b, e) = ∅ and U∗ is a t-conorm
on [b, 1]. Moreover, in this case, U∗ ∈ U∗

⊤
and x ∥ y for all x ∈ Ie,b and y ∈ Ib

e naturally hold.
By the above fact, if taking e = b in Theorem 4.8, then we retrieve the uninorm U0

int,1 : L2
→ L under the

conditions int(x)∧ int(y) ∈ Ie for all x, y ∈ Ie or int(x)∧ int(y) ∈ [0, e) for all x, y ∈ Ie, constructed by Zhao and
Wu ([40], Corollary 4.1) as follow:

U0
int,1(x, y) =



Se(x, y) if (x, y) ∈ [e, 1]2,

x if (x, y) ∈ Ie × [e, 1] ∪ [e, 1] × [0, e),
y if (x, y) ∈ [e, 1] × Ie ∪ [0, e) × [e, 1],
int(x) ∧ int(y) if (x, y) ∈ Ie × Ie,

0 otherwise.
Moreover, if taking int(x) = x ∧ b for x ∈ L in U0

int,1, then we retrieve the following uninorm US
e : L2

→ L
constructed by Çaylı ([8], Theorem 2.23) as follow:

US
e (x, y) =



Se(x, y) if (x, y) ∈ [e, 1]2,

x if (x, y) ∈ (L \ [e, 1]) × [e, 1],
y if (x, y) ∈ [e, 1] × (L \ [e, 1]),
x ∧ y ∧ e if (x, y) ∈ Ie × Ie,

0 otherwise.
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Remark 4.11. (1) In Theorem 4.8(1), we observe that the condition int(x)∧ int(y) ∈ Ie,b for all x, y ∈ Ie,b can
not be omitted, in general.

(2) Similarly, in Theorem 4.8(2), the condition int(x)∧ int(y) ∈ Ie
b∪ [0, b) for all x, y ∈ Ie,b can not be omitted,

in general.

Remark 4.12. Let U4 be a uninorm in Theorem 4.8.

(1) U4 is conjunctive, i.e., U4(0, 1) = 0.

(2) If b = 0, then U4 = U∗.

(3) U4 is not idempotent, in general. In fact, if (0, b) , ∅, then there exists x such that x ∈ (0, b) and then
U4(x, x) = 0 , x. This is a contradiction with that U4 be idempotent.

(4) U4 ∈ U
∗

min if and only if U∗ ∈ U∗min.

5. Conclusions

The new construction methods for uninorms on L using a uninorm defined on a subinterval of L were
introduced in [14] and [35]. In this paper, we continue investigating the construction methods based on
different tools under some additional constraints.

We give some remarks about the results in this paper as follows.
(1) These methods generalize some construction methods in the literature, such as Theorem 1 in [5],

Theorem 1 in [7], Proposition 3.1 and Corollary 4.1 in [40], Theorem 3.1 and Theorem 3.5 in [6], Theorem
2.23 in [8], and also bring some interesting results, such as Propositions 3.5 and 3.13.

(2) Although the additional constraint conditions on the given uninorms are always needed for the
construction methods, we try to investigate the additional constraints carefully and systematically and
show that some additional constraints are sufficient and necessary.

(3) In [41], Zhang et al. introduced the classes of uninorms U∗min andU∗max. In this paper, we show that
whether U belongs toU∗min (U∗max) depends on whether U∗ belongs toU∗min (U∗max), where U is constructed
based on U∗.

The new methods for uninorms on L in this paper provide a novel perspective to study the constructions
of uninorms and we believe that they can work well to investigate other operators in the future research.
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[5] G. D. Çaylı, F. Karaçal, R. Mesiar, On a new class of uninorms on bounded lattices, Inf. Sci. 367 (2016), 221–231.
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[13] G. D. Çaylı, New construction approaches of uninorms on bounded lattices, Int. J. Gen. Syst. 50 (2021), 139–158.
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