
Filomat 39:2 (2025), 575–586
https://doi.org/10.2298/FIL2502575S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we have generalized the interval-valued fuzzy metric M(x, y, t) by allowing it to
take the positive interval number instead of ordinary positive real number. In our case, both ‘t′ and the
grade value ‘M(x, y, t)′ are interval numbers.The underlying topology of this generalized interval-valued
fuzzy metric (GIVF metric) is studied. Two celebrated fixed point theorems of Banach and Edelstein are
extended in this space. Also the problem related to image filter processing is studied.

1. Introduction

Translating the idea of probalistic metric on a nonempty set X,Kramosil and Michalek [8] first introduced
a definition of fuzzy metric in 1975. In fact, the statement that the “the probability that the distance between
a pair of points x, y is less than t” is replaced by the fuzzy statement “the truth value M(x, y, t) that the
distance between a pair of points x, y ∈ X is less than t”. Afterwards systematic investigations in this
area rapidly increased. In 1979, starting with the concept of distance between two fuzzy sets, Ercez [2]
introduced another form of fuzzy metric. Later in 1982, Deng [1] proposed a fuzzy metric by assigning
distance between any two fuzzy elements. In 1984, Kaleva and Seikkala [6] proceeded with a definition of
fuzzy metric as a function which, corresponding to every pair of point x, y ∈ X, gives a non-negative fuzzy
real number as their distance. In order to induce a Hausdorff topology, George and Veeramani [3] slightly
modified the definition of fuzzy metric given by Kramosil and Michalek which extended some results such
as 1st countability and Hausdorffness of the underlying topology induced by the fuzzy metric. Also Kočinac
[7] investigated Selection properties in fuzzy metric spaces. As a natural generalization of fuzzy metric the
concept of intuitionistic metric is developed. In this direction Park [9] first defined Samanta, Vishali fuzzy
metric in 2004. Later Sadati et al. [10] defined modified Samanta, Vishali fuzzy metric in 2008. On the other
hand, generalizing the concept of fuzzy set, the concept of interval-valued fuzzy sets was introduced by
Zadeh [14] in 1975, where each membership value lies in a subinterval of [0, 1] instead of a definite value
in [0, 1]. Using this concept, in 2012 [12] Yonghong shen et al. introduced the definition of interval-valued
fuzzy metric space by generalizing the ordinary fuzzy set M(x, y, t) to an interval-valued fuzzy set. In
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this paper we further generalize this interval-valued fuzzy metric and call it generalized interval-valued
fuzzy metric (GIVF metric) by allowing ‘t′ to take positive interval number instead of ordinary positive real
number. We study the underlying topology of this GIVF metric, extend the famous fixed point theorems
of Banach and Edelstein and finally study image filter processing in this setting. The organisation of the
paper is as follows:

Sections 1 and 2 are respectively Introduction and Preliminaries. Section 3, contains the definition of
generalized interval-valued fuzzy (GIVF) metric spaces with illustrations. In Subsection 3.1, GIVF-metric
topology is studied by defining open ball and the associated topology is found to be Hausforff and 1st
countable. In Subsection 3.2 compactness and boundedness of GIVF-metric spaces are observed. Section 4
is dedicated to establish the fixed point theorems of Banach and Edelstein in GIVF-metric spaces. In Section
5, image filtering problem in GIVF metric setting is discussed. Finally in Section 6 conclusion and the future
scopes are outlined.

2. Preliminaries

We begin this section by recalling the necessary definitions and conventions.

Definition 2.1. ([11]) A t-norm is a function ∗[0, 1] × [0, 1] → [0, 1] which is commutative, associative,
monotonic increasing w.r.t. both the components and a ∗ 1 = a,∀a ∈ [0, 1]. If in addition, the function
∗ : [0, 1] × [0, 1]→ [0, 1] is continuous ∗ is named as continuous t-norm.

Definition 2.2. ([5]) A t-conorm is a function ⋄ : [0, 1] × [0, 1] → [0, 1] which is commutative, associative,
monotonic increasing and a ⋄ 0 = a. If in addition, the function ⋄ : [0, 1] × [0, 1] → [0, 1] is continuous ⋄ is
named as continuous t-conorm.

Definition 2.3. [5] A t-conorm ⋄ is said to be Archimedean if for each a, b ∈ (0, 1) there exists n ∈ N such
that an

⋄ > b,where an
⋄ denotes a ⋄ a ⋄ · · · ⋄ a (n times).

Let r− and r+ be two real numbers such that r− ≤ r+. Then the closed interval [r−, r+] is denoted by r̃. For
any r ∈ R, the interval [r, r] is denoted by r.

Define p̃ ≤ q̃ if and only if p− ≤ q− and p+ ≤ q+; ‘p̃ < q̃ if and only if p− < q−, p+ < q+. Also let
[I] = {r̃ : 0 ≤ r̃ ≤ 1}, (I] = {r̃ : 0 < r̃ ≤ 1} and (I) = {r̃ : 0 < r̃ < 1}. A metric Φ can be defined on R̃+ as
Φ(r̃, s̃) = |r− − s−| + |r+ − s+|, where R̃+ = {r̃ : 0 < r̃}.
Let ∗ be a t-norm on [0, 1]. The binary operation ∗I : [I] × [I]→ [I] defined by r̃ ∗I s̃ = [r− ∗ s−, r+ ∗ s+] satisfies
the properties

a. Commutative

b. Associative

c. Monotonic Increasing

d. 1̄ ∗I t̃ = t̃

and is called the induced interval-valued t-norm (induced IV t-norm) on [I].

Similarly, if ⋄ is a t-conorm defined on [0, 1] then the binary operation ⋄I : [I] × [I]→ [I], that is defined
by r̃ ⋄I s̃ = [r− ⋄ s−, r+ ⋄ s+] satisfies the properties

a. Commutative

b. Associative

c. Monotonic Increasing

d. ã ⋄I 0 = ã,
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and is called the induced interval-valued t-conorm (induced IV t-conorm) on [I].
It is to be noted that if ∗(⋄) is continuous then the induced ∗I(⋄I) is also continuous.

Definition 2.4. ([8]) The triplet (X,M, ∗) is a fuzzy metric space if X is a nonempty set, * is a continuous
t-norm and M is a fuzzy set on (X2

×R) satisfying for all x, y, z ∈ X and t, s ∈ R the following axioms:
(KM1) M(x, y, t) = 0,∀t < 0;
(KM2) M(x, y, t) = 1,∀t > 0 ⇐⇒ x = y;
(KM3) M(x, y, t) =M(y, x, t);
(KM4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
(KM5) M(x, y, .) : (0,∞)→ [0, 1] is left continuous and non -decreasing;
(KM6) lim

t→∞
M(x, y, t) = 1.

In [3], George and Veeramani slightly changed some of the above conditions to introduce following
definition of a fuzzy metric space whose induced topology is Hausdorff.

Definition 2.5. ([3]) The triplet (X,M, ∗) is said to be a fuzzy metric space if X is a nonempty set, ‘*’ is a
continuous t-norm and M is a fuzzy set on X2

× (0,∞) satisfying for all x, y, z ∈ X and t, s > 0 the following
axioms:
(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 ∀t > 0⇐⇒ x = y;
(GV3) M(x, y, t) =M(y, x, t);
(GV4) M(x, y, t) ∗M(y, z, s) ⩽M(x, z, t + s);
(GV5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

As a generalisation of the concept of George and Veeramani, in [12] Yonghong Shen et al. introduced
the concept of interval valued fuzzy metric.

Definition 2.6. ([12]) The triplet (X,M, ∗I) is said to be an interval-valued fuzzy metric space if X is an
arbitrary nonempty set, ∗I is a continuous induced IV t-norm on [I] and M is an interval-valued fuzzy set
on X2

× (0,∞) satisfying for all x, y, z ∈ X and t, s > 0 the following axioms:

C1 M(x, y, t) > 0;

C2 M(x, y, t) = 1 if and only if x = y;

C3 M(x, y, t) =M(y, x, t);

C4 M(x, y, t) ∗I M(y, z, s) ≤M(x, z, t + s);

C5 M(x, y, .) : (0,∞)→ (I] is continuous;

C6 lim
t→∞

M(x, y, t) = 1.

In the above definition, M = [M−, M+] is called an interval-valued fuzzy metric on X. The functions
M−(x, y, t) and M+(x, y, t) denote the lower nearness degree and upper nearness degree between x and y
with respect to t respectively.

3. Generalized interval-valued fuzzy (GIVF) metric spaces

In this section, we introduce a definition of a Generalized interval-valued fuzzy metric space, give
examples and study some of its properties.
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Definition 3.1. Let X , φ and let ∗I be the continuous induced IV t-norm on [I]. A mapping M : X ×
X × (R̃+) −→ (I] satisfying for all t, s, r ∈ X and l̃, m̃ > 0 the following conditions is called a Generalized
Interval-Valued Fuzzy Metric (briefly, GIVF-metric) on X:

a M(t, s, l̃) > 0 ∀l̃ = [l−, l+] > 0;

b M(t, s, l̃) = 1 ∀l > 0 if and only if t = s;

c M(t, s, l̃) =M(s, t, l̃);

d M(t, s, .) is monotonically increasing;

e M(t, r, l̃) ∗IM(r, s, m̃) ⩽M(t, s, l̃ + m̃);

f M(t, s, .) : R̃+ −→ (I] is continuous.

g liml−−→∞M(t, s, [l−, l+]) = 1.

Then we call (X,M, ∗I), a GIVF metric space andM = [M−, M+] is called the GIVF-metric on the set X.

Proposition 3.2. Let (X,M, ∗I) be a GIVF metric space and letM(t, s, l̃) > 1 − m̃ where l̃ > 0 and 0 < m̃ < 1. Then
there exists 0 < l̃0 < l̃ such thatM(t, s, l̃0) > 1 − m̃.

Proof. It is known that for a given t, s ∈ X, M(t, s, .) is continuous. GivenM(t, s, l̃) > 1 − m̃. SoM−(t, s, l̃) >
1 − m+ and M+(t, s, l̃) > 1 − m−. Choose ϵ > 0 such that ϵ + (1 − m+) < M−(t, s, l̃) and ϵ + (1 − m−) <
M
+(t, s, l̃). Then ϵ + (1 − m̃) < M(t, s, l̃). For this ϵ > 0, by the continuity of M(t, s, .), there exists δ̃ > 0

such that Φ(M(t, s, k̃), M(t, s, l̃)) < ϵ whenever Φ(k̃, l̃) < δ̃. Choose 0 < l̃0 < l̃ such that Φ(l̃0, l̃) < δ̃. Then
Φ(M(t, s, l̃),M(t, s, l̃0)) < ϵ. So,M−(t, s, l̃) −M−(t, s, l0) < ϵ andM+(t, s, l̃) −M+(t, s, l̃0) < ϵ (by the increasing
property ofM(t, s, .)). So,M−(t, s, l̃0)+ϵ >M−(t, s, l̃) andM+(t, s, l̃0)+ϵ >M+(t, s, l̃).Therefore,M(t, s, l̃0)+ϵ ≥
M(t, s, l̃) > (1 − m̃) + ϵ. Thus, the result follows.

In the following examples the induced IV t-norm is given by t̃ ∗I s̃ = [t−.s−, t+.s+], where t̃ = [t−, t+], s̃ =
[s−, s+].

Example 3.3. LetM(p, q, l̃) = [M−(p, q, l̃), M+(p, q, l̃)] = [e
−|p − q|

l− , e
−|p − q|

l+ ].

Proof. It is sufficient to check the condition (e) of Definition 3.1, because others are straightforward. We

see that |x − z| ≤ |x − y| + |y − z| ≤ (
t− + s−

t−
|x − y| +

t− + s−

s−
|y − z|). So,

|x − z|
(t− + s−)

≤ (
|x − y|

t−
+
|y − z|

s−
) =⇒

e
−(
|x − y|

t−
+
|y − z|

s−
)
≤ e
−(
|x − z|
t− + s−

)
. Similarly, we can show that e

−(
|x − y|

t+
+
|y − z|

s+
)
≤ e
−

|x − z|
t+ + s+ .

So,M(p, q, l̃) ∗IM(q, r, m̃) ≤ M(p, r, l̃ + m̃).

Example 3.4. M(p, q, l̃) = [M−(p, q, l̃), M+(p, q, l̃)] = [
k(l−)n

k(l−)n + td(p, q)
,

k(l+)n

k(l+)n + sd(p, q)
]

∀p, q ∈ X, l̃ > 0 and k, t,n, s ∈ R+ such that t ≥ s and d is a metric on X.
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Proof. Note thatM(p, q, l̃) ∗I M(q, r, m̃) =

[
k(l−)n

× k(m−)n

(k(l−)n + td(p, q))(k(m−)n + td(q, r))
,

k(l+)n
× k(m+)n

(k(l+)n + sd(p, q))(k(m+)n + sd(q, r))
] and

M(p, r, l̃ + m̃) = [
k(l− +m−)n

k(l− +m−)n + td(p, r)
,

k(l+ +m+)n

k(l+ +m+)n + sd(p, r)
].

Now, k((l−)n(m−)n)(k(l−+m−)n+ td(p, r)) ≤ (l−+m−)n(k2(l−)n(m−)n+kt(l−)nd(q, r)+kt(m−)nd(p, q)+ t2d(p, q)d(q, r)
as
ktd(p, r)(l−)n(m−)n

≤ ktd(p, q)(m−)n(l− + m−)n + ktd(q, r)(l−)n(l− + m−)n. Similarly k(l+)n(m+)n(k(l+ + m+)n) +
sd(p, r) ≤ (l+ +m+)n(k2((l+)n(m+)n + ks(l+)nd(q, r) + ks(m+)nd(p, q) + s2d(p, q)d(q, r). So,M(p, q, l̃) ∗I M(q, r, m̃) ≤
M(p, r, l̃ + m̃). All other properties of being interval-valued fuzzy metric holds trivially.

3.1. GIVF-metric Topology

Definition 3.5. Let (X,M, ∗I) be a GIVF metric space. Then the open ball centered at y ∈ X is defined as
B(y, k̃, l̃) = {z ∈ X :M(y, z, l̃) > 1 − k̃ where l̃ > 0 and k̃ ∈ (I)}.

Definition 3.6. Let (X,M, ∗I) be a GIVF metric space and O ⊆ X. Then O is said to be open in (X,M, ∗I) if
for each x ∈ O there exists an open ball B centered at x such that B ⊆ O.

Theorem 3.7. Every open ball in (X,M, ∗I) is an open set.

Proof. Take x ∈ X and m̃ ∈ (I) and l̃ > 0. Consider the open ball B(x, m̃, l̃).
Let y ∈ B(x, m̃, l̃) and so M(x, y, l̃) > 1 − m̃. Then, by Proposition 3.2,there exists 0 < l̃0 < l̃ with

M(x, y, l̃0) > 1− m̃. Choose ϵ̃ > 0 such that l̃0 + ϵ̃ < l̃ and let m̃0 =M(x, y, l̃0). Then m̃0 > 1− m̃. Choose s̃ ∈ (I)
such that m̃0 > 1− s̃ > 1− m̃. For these m̃0 and s̃ with m̃0 > 1− s̃ there exists m̃1 ∈ (I) such that m̃0 ∗I m̃1 ≥ 1− s̃.
Take the open ball B(y, 1 − m̃1, ϵ̃) and let z ∈ B(y, 1 − m̃1, ϵ̃). ThenM(y, z, ϵ̃) > m̃1 and by triangle inequality
ofM, we haveM(x, z, l̃) ≥ M(x, y, l0) ∗I M(y, z, ϵ̃) ≥ (m̃0 ∗I m̃1) ≥ 1 − s̃ > 1̃ − m̃. Hence z ∈ B(x, m̃, l̃) and so
B(y, 1 − m̃1, ϵ̃) ⊆ B(x, m̃, l̃). Therefore B(x, m̃, l̃) is open.

Theorem 3.8. If (X,M, ∗I) is a GIVF-metric space. Define τM = {Y ⊆ X : ∀y ∈ Y, there exist k̃ ∈ (I) and t̃ > 0 such
that B(y, k̃, t̃) ⊆ Y}. Then τM is a topology on X induced by the GIVF-metricM.

Proof. [(i)] Clearly ∅,X ∈ τM.
[(ii)] τM is closed under arbitrary unions.
[(iii) Let A1,A2 ∈ τM and let A = A1 ∩ A2. Let p ∈ A.
Then there exist 0 < m̃i < 1 and l̃i > 0 such that B(p, m̃i, li) ⊆ Ai, i = 1, 2. Take l̃0 = l̃1 ∧ l̃2 and

m̃0 = m̃1 ∧ m̃2. Then, 1 − m̃0 ≥ 1̃ − m̃1 , 1 − m̃0 ≥ 1 − m̃2 and l̃0 ≤ l1 , l̃0 ≤ l̃2. So if, q ∈ B(p, m̃0, l̃0)
then M(p, q, l̃1) ≥ M(p, q, l̃0) > 1̃ − m̃0 ≥ 1̃ − m̃1 and M(p, q, l̃2) ≥ M(p, q, l̃0) > 1 − m̃0 ≥ 1 − m̃2. Hence
q ∈ B(p, m̃1, l̃1)∩B(p, m̃2, l̃2) ⊆ A1 ∩A2. Thus B(p, m̃0, l̃0) ⊆ A1 ∩A2 and so A1 ∩A2 ∈ τM. So, τM is a topology
on X.

Remark 3.9. In otherwords the collection of all open sets in a GIVF metric space X is a topology on X.

Remark 3.10. The above discussed topology is found to be first countable as we can define at every x ∈ X,
a collection of open sets

Nx = {B(x, [
1
n2 ,

1
n2 ], [

1
k2 ,

1
k2 ])| n, k ∈ N} and Nx which serves as a countable neighbourhood basis at x.Hence

first countability of (X, τM) follows.

Theorem 3.11. A GIVF-metric space (X,M, ∗I) induces a Hausdorff topology τM.
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Proof. Consider a GIVF-metric space (X,M, ∗I) and x, y ∈ X (x and y are distinct). Then there exists t̃ > 0̃
for which M(x, y, t̃) = m̃ ∈ (I). Now, choose m̃0 ∈ (I) such that m̃ < m̃0 < 1. Then there exists m̃1 ∈ (I)

such that m̃1 ∗I m̃1 ≥ m̃0. Now we consider, B(x, 1 − m̃1, [
t−

2
,

t+

2
]) and B(y, 1 − m̃1, [

t−

2
,

t+

2
]). Suppose that

B(x, 1 − m̃1, [
t−

2
,

t+

2
]) ∩ B(y, 1 − m̃1, [

t−

2
,

t+

2
]) , ∅. Let z ∈ B(x, 1 − m̃1, [

t−

2
,

t+

2
]) ∩ B(y, 1 − m̃1, [

t−

2
,

t+

2
]). Then

M(x, z, [
t−

2
,

t+

2
]) > m̃1 andM(y, z, [

t−

2
,

t+

2
]) > m̃1. So, m̃ = M(x, y, t̃) ≥ M(x, z, [

t−

2
,

t+

2
]) ∗I M(y, z, [

t−

2
,

t+

2
]) ≥

m̃1 ∗I m̃1 ≥ m̃0 > m̃,which is a contradiction. Hence τM is Hausdorff.

Theorem 3.12. Let (X, d) be a metric space

andM(u, v, l̃) = [
l−

l− + d(u, v)
,

l+

l+ + d(u, v)
],u, v ∈ X, l̃ > 0. Let τd and τM be topologies induced by d andM on X

respectively. Then a set O is open in τd iff it is open in τM.

Proof. Let O ∈ τd and p ∈ O. Then there exists r0 > 0 such that Bd(p, r0) ⊆ O.Choose 0 < r < 1 such that r < r0.

Now, consider the open ball BM(p, m̃, l̃) in τM, where m̃ ∈ (I) and l̃ > 0 are such that m̃ = r and l̃ = 1 − r.

If q ∈ BM(p, r, 1 − r) then M(p, q, 1 − r) > 1 − r =⇒ [
1 − r

(1 − r) + d(p, q)
,

1 − r
(1 − r) + d(p, q)

] > [1 − r, 1 − r] =⇒

1 − r
(1 − r) + d(p, q)

> 1 − r. Hence d(p, q) < r < r0 and so q ∈ Bd(p, r0) =⇒ BM(p, r, 1 − r) ⊆ Bd(p, r0) =⇒ O is open

in τM.
Let O ∈ τM and let p ∈ O. Then there exist m̃ ∈ (I) and l̃ > 0 such that BM(p, m̃, l̃) ⊆ O. Now q ∈

BM(p, m̃, l̃) ⇐⇒ [
l−

l− + d(p, q)
,

l+

l+ + d(p, q)
] > [1 − m+, 1 − m−] ⇐⇒

l−

l− + d(p, q)
> 1 − m+, and

l+

l+ + d(p, q)
>

1 − m− ⇐⇒ d(p, q) <
l−m+

1 −m+
and d(p, q) <

l+m−

1 −m−
. Let rd = min{

l−m+

1 −m+
,

l+m−

1 −m−
}. Take an open ball

Bd(p, rd). Then Bd(p, rd) ⊆ BM(p, m̃, l̃) ⊆ O =⇒ O is open in τd. Therefore, we conclude that τd and τM are the
same.

3.2. Compactness and boundedness
Definition 3.13. (I) Let (X,M, ∗I) be a GIVF metric space. Then a subset C of X is said to be compact in
(X,M, ∗I) if for any open cover {Ci}i∈∆ of C, ∃ a finite subset δ of ∆ such that C ⊆

⋃
i∈δ

Ci.

(II) Given (X,M, ∗I) a GIVF-metric space, we call Y ⊆ X as GIVF-bounded if there exist l̃ > 0 and m̃ ∈ (I)
such that,M(p, q, l̃) > 1 − m̃ ∀p, q ∈ Y.

Definition 3.14. In a GIVF-metric space (X,M, ∗I) a sequence {xn} is said to be convergent if there exists
x ∈ X such that lim

n→∞
M(x, xn, l̃) = 1, for all l̃ > 0.

Theorem 3.15. Let (X,M, ∗I) be a compact GIVF Metric space. Then every sequence {xn} has a convergent subse-
quence.

Proof. Let {xn} be a sequence in (X,M, ∗I). If possible, let {xn} have no convergent subsequence. Then for
each x ∈ X there exist α̃(x) > 0 and 0 < k̃(x) < 1 such that B(x, k̃(x), ˜α(x)) contains only finitely many terms
of the sequence {xn}.
Now, {B(x, k̃(x), α̃(x)) : x ∈ X} is an open cover of X. As (X,M, ∗I) is compact so, there exists a finite subset
F of X such that {B(x, k̃(x), α̃(x)) : x ∈ F} covers X. Then X contains only finitely many terms of {xn}, a
contradiction. Hence {xn} has a convergent subsequence.

Theorem 3.16. Given a GIVF-metric space (X,M, ∗I) induced by metric d, as in Example 3.4, then Y ⊆ X is
GIVF-bounded iff Y is bounded in (X, d).
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Proof. Let Y be GIVF-bounded in (X,M, ∗I). Then there exist m̃ ∈ (I) and l̃ > 0, such that M(p, q, l̃) >
1 − m̃, ∀p, q ∈ Y.

Then [
k(l−)n

k(l−)n + td(p, q)
,

k(l+)n

k(l+)n + sd(p, q)
] > [1 −m+, 1 −m−].

i.e.
k(l−)n

k(l−)n + td(p, q)
> 1−m+ and

k(l+)n

k(l+)n + sd(p, q)
> 1−m− =⇒ d(p, q) <

k(l−)nm+

t(1 −m+)
and d(p, q) <

k(l+)nm−

s(1 −m−)
=⇒

d(p, q) < K0, ∀ p, q ∈ Y where K0 = min(
k(l−)nm+

t(1 −m+)
,

k(l+)nm−

s(1 −m−)
) > 0

=⇒ Y is a bounded set in (X, d).Conversely, suppose that Y is bounded in (X, d).Then there exists K0 > 0 such

that, d(p, q) < K0 ∀p, q ∈ Y. Let l > 0 where l̃ = [l−, l+]. Then,
k(l−)n

k(l−)n + td(p, q)
>

k(l−)n

k(l−)n + tK0
= 1−

tK0

k(l−)n + tK0

where, 0 <
tK0

tK0 + k(l−)n < 1 and
k(l+)n

k(l+)n + sd(p, q)
> 1−

sK0

k(l+)n + sK0
,where 0 <

sK0

sK0 + k(l+)n ≤
tK0

tK0 + k(l−)n < 1.

Choose m̃ = [
sK0

k(l+)n + sK0
,

tK0

k(l−)n + tK0
] ∈ (I). ThenM(p, q, l̃) > 1̃ − m̃, ∀p, q ∈ Y =⇒ Y is GIVF-bounded in

(X,M, ∗I).

Theorem 3.17. If A ⊆ X and A is compact in (X,M, ∗I) then A is also GIVF-bounded in the space (X,M, ∗I).

Proof. Given A is compact. Fix some m̃ ∈ (I) and l̃ > 0 and consider {BM(c, m̃, l̃) : c ∈ A}. Clearly A ⊆⋃
c∈A

BM(c, m̃, l̃).By the compactness of A, then there exists a finite subset {BM(p1, m̃, l̃),BM(p2, m̃, l̃), · · · ,BM(pn, m̃, l̃)} ⊆

{BM(c, m̃, l̃) : c ∈ A} such that, A ⊆
n⋃

i=1

BM(pi, m̃, l̃). Let p, q ∈ A and so p ∈ BM(pi, m̃, l̃) and q ∈ BM(p j, m̃, l̃), for

some 1 ≤ i, j ≤ n.
Let δ = [ min

1≤i, j≤n
M
−(pi, p j, l̃), min

1≤i, j≤n
M
+(pi, p j, l̃)].Now,M(p, q, [3l−, 3l+]) ≥ M(p, pi, l̃)∗IM(p j, pi, l̃)∗IM(p j, q, l̃) ≥

(1− m̃) ∗I δ ∗I (1− m̃),∀p, q ∈ A. Choose k̃ ∈ (I) such that (1− m̃) ∗I δ ∗I (1− m̃) > 1− k̃. ThenM(p, q, [3l−, 3l+]) >
1̃ − k̃∀p, q ∈ A =⇒ A is GIVF-bounded.

Theorem 3.18. A compact set in a GIVF metric space is closed.

Proof. As every compact set in Hausdorff space is closed and the topology generated by GIVF-metric is
Hausdorff so the result follows immediately.

4. Banach contraction theorem, Edelstein theorem in GIVF metric spaces

Definition 4.1. (Archimedean induced IV t-conorm) An induced IV t-conorm ⋄I is called Archimedean if
for each ã, b̃ ∈ (I) ∃n so that ãn

⋄I
> b̃.

Proposition 4.2. If ⋄1 and ⋄2 are two Archimedean t-conorms on [0, 1] then the induced IV t-conorm ⋄I is also
Archimedean.

Proof. Suppose ã, b̃ ∈ (I). Then there exist m,n ∈ N such that (a−⋄1
)n > b− and (a+⋄2

)m > b+ (as ⋄1, ⋄2 both
are Archimedean t-conorms). Let max{n,m} = M. Then (a−⋄1

)M > b− and (a+⋄2
)M > b+ which implies ãM

⋄I
> b̃.

Hence ^I is Archimedean.

Proposition 4.3. For an Archimedean induced IV t-conorm ^I lim
n

ãn
^I
= 1 where ã ∈ (I).

Definition 4.4. In a GIVF-metric space (X,M, ∗I) a sequence {xn} is said to be a cauchy sequence if
lim

n,m→∞
M(xn, xm, l̃) = 1, for all l̃ > 0.
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Definition 4.5. A GIVF-metric space (X,M, ∗I) is complete if every cauchy sequence in it is convergent.

Definition 4.6. A mapping T : (X,M) → (X,M) is named as k̃-^I-contraction if there exists k̃ ∈ (I) and a
continuous t-conorm ^I satisfying ∀ x, y ∈ X, ∀t̃ > 0 :
M(T(x),T(y), t̃) ≥ k̃^IM(x, y, t̃).

Theorem 4.7. Let (X,M, ∗I) be a complete GIVF metric space and let T be a k̃-^I contraction on X. If ^I is
Archimedean, then T has a unique fixed point.

Proof. Take x ∈ X. Define the sequence {xn} as follows. For n ≥ 2, define xn = T(xn−1) and x1 = T(x). As-
sumption provides that there exists k̃ ∈ (I) satisfying ∀ x, y ∈ X,∀ t̃ > 0̃ such that M(Tx,Ty, t̃) ≥ k̃^IM(x, y, t̃).
By Mathematical induction, we will prove that for each t̃ > 0, M(xn+1, xn, t̃) ≥ k̃n

^I
for each n ∈N ...............(1)

M(x2, x1, t̃) =M(Tx1,Tx, t̃) ≥ k̃^IM(x1, x, t̃) ≥ k̃^I . Let us assume that (1) is true for n = m i.e. M(xm+1, xm, t̃) ≥
k̃m
^I
. Then M(xm+2, xm+1, t̃) = M(T(xm+1),T(xm), t̃) ≥ k̃^IM(xm+1, xm, t̃) ≥ k̃^Ik̃m

^I
= k̃m+1

^I
. So, (1) is true for

n = m + 1. Hence as M(xn+1, xn, t̃) ≥ kn
^I

for each n ∈ N and each t̃ > 0. So ∧t̃>0M(xn+1, xn, t̃) ≥ kn
^I

for each
n ∈N
=⇒ lim

n→∞
∧t̃>0M(xn+1, xn, t̃) ≥ lim

n→∞
kn
^I
= 1.

Now, we assume that {xn} is not Cauchy. Then ∃ ϵ̃ ∈ (I) and t̃ > 0 such that for each n ∈ N, ∃ m(n) >
l(n) + 1 ≥ n + 1 such that M(xm(n), xl(n), t̃) ≱ 1 − ϵ̃. Under this assumption, we construct two subsequences
{xm(n)} and {xl(n)} as follows.

Let n = 1 l1 = l(1) and let m1 be the smallest positive integer greater than l1 satisfying M(xm1 , xl1 , t̃) ⩾̸ 1− ϵ̃
and M(xm1−1, xl1 , t̃) ≥ 1− ϵ̃. The subsequent elements of both subsequences are picked recursively as follows.
For each n ∈ N, first take ln = l(n) and choose mn = m(n) > ln be such that M(xmn , xln , t̃) ≱ 1 − ϵ̃ but
M(xmn−1, xln , t̃) ≥ 1 − ϵ̃.

Then for each n and each 0 < s < t̃,we have 1− ϵ̃ ≰M(xmn , xln , t̃) ≥ (M(xmn , xmn−1, s)) ∗I M(xmn−1, xln , t̃− s) ≥
∧t̃>0M(xmn , xmn−1, t̃) ∗I M(xmn−1, xln , t̃ − s),∀0 < s < t̃. By the continuity of M(x, y, ) for each x, y ∈ X and
for each n ∈ N, we have by letting s → 0 that M(xmn , xln , t̃) ≥ (∧t>0M(xmn , xmn−1, t̃)) ∗I M(xmn−1, xln , t̃) ≥
∧t>0M(xmn , xmn−1, t̃) ∗I (1 − ϵ̃).

It follows that, lim sup
n→∞

(M(xmn , xln , t̃) ≥ lim sup
n→∞

( ∧t̃>0M(xmn , xmn−1, t̃)) ∗I (1 − ϵ̃) ≥ lim
n→∞

kmn−1
^I

∗I (1 − ϵ̃) =

1 ∗I (1 − ϵ̃) = 1 − ϵ̃.

Now, for 0 < s < t̃, M(xmn , xln , t̃) ≥M(xmn , xmn+1,
s
2

) ∗I M(xmn+1, xln+1, t̃ − s) ∗I M(xln+1, xln ,
s
2

)

≥M(xmn , xmn+1,
s
2

) ∗I (k̃^IM(xmn , xln , t̃ − s) ∗I M(xln+1, xln ,
s
2

))

≥ ∧t̃>0M(xmn , xmn+1, t̃) ∗I (k̃^IM(xmn , xln , t̃ − s)) ∗I ∧t̃>0M(xln+1, xln , t̃). Taking limit as n tends to ∞, s tends to 0,
the continuity of ∗ and ^ and continuity ofM(xmn , xnl , .) ensure
lim sup

n→∞
M(xmn , xln , t̃) ≥ k^I lim sup

n→∞
M(xmn , xln , t̃). There may be two cases.

Case-1 lim sup
n→∞

M(xmn , xln , t̃) , 1.

Then from above, we have lim sup
n→∞

M(xmn , xln , t̃) > lim sup
n→∞

M(xmn , xln , t̃), a contradiction.

Case-2 lim sup
n→∞

M(xmn , xln , t̃) = 1.

Then there exists a subsequence M(xmni
, xlni
, t̃) > 1 − ϵ̃ for sufficiently large values of i,which is a contradic-

tion.
Therefore in any case we arrive at a contradiction. Thus {xn} is a Cauchy sequence and since (X,M, ∗) is
complete, there exists x ∈ X such that {xn} converges to x, i.e. lim

n
M(xn, x, t̃) = 1 for each t̃ > 0.
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Now, for a fixed t̃ > 0 and for each n ∈ N, we have that M(x,T(x), t̃) ≥ M(x, xn,
t̃
2

) ∗I M(xn,T(x),
t̃
2

) ≥

M(x, xn,
t̃
2

) ∗I (k^IM(xn−1, x,
t̃
2

)).

Taking the limit and using continuity of ∗ and ^,we have, M(x,T(x), t̃) ≥ lim
n→∞

M(x, xn,
t
2

)∗

(k^I limn→∞M(xn−1, x,
t
2

) = 1 ∗ (k^I1) = 1. As t̃ > 0 is arbitrary, we conclude that M(x,Tx, t̃) = 1, for each

t̃ > 0,which implies that T(x) = x. Now we will prove the uniqueness of the fixed point.
Suppose that T(y) = y. Then M(x, y, t̃) =M(T(x),T(y), t̃) ≥ k^IM(x, y, t̃). Since^I is Archimedean, we deduce
that M(x, y, t̃) = 1, for each t̃ > 0,which implies that x = y.

Lemma 4.8. If lim x̃n = x̃ and lim ỹn = ỹ, then M(x, y, t̃ − ϵ) ≤ lim inf M(xn, yn, t̃)
and M(x, y, t̃ + ϵ) ≥ lim sup M(xn, yn, t̃) ∀t > 0 and 0 < ϵ < t̃.

Proof. M(xn, yn, t̃) ≥M(xn, x,
1
2
ϵ) ∗M(x, y, t̃ − ϵ) ∗M(y, yn,

1
2
ϵ).

So, lim inf M(xn, yn, t̃) ≥ 1 ∗M(x, y, t̃ − ϵ) ∗ 1 = M(x, y, t̃ − ϵ̄). Also, M(x, y, t̃ + ϵ) ≥ M(x, xn,
1
2
ϵ) ∗I M(xn, yn, t̃) ∗I

M(yn, y,
1
2
ϵ).

Hence, M(x, y, t̃ + ϵ) ≥ lim sup M(xn, yn, t̃).

Remark 4.9. If M(x, y, .) is continuous then xn → x and yn → y =⇒M(xn, yn, t̃)→M(x, y, t̃).

Theorem 4.10. Let (X,M) be a GIVF metric space and T : X→ X be a mapping satisfying M(Tx,Ty, .) >M(x, y, .)
for x , y ∈ X. If for some x ∈ X, the sequence of iterates Tn(x) has a convergent subsequence Tni (x) converging to
η ∈ X. Then η is the unique fixed point of T and Tn(x) converges to η.

Proof. Suppose x ∈ X and xn = Tn(x), n ∈ N. Clearly xn , xn+1, for if xn = xn+1. Then xn = T(xn), so
that xn is a fixed point of T. If possible let T have two fixed points x and y. Then by the given condition
M(Tx,Ty, .) >M(x, y, .) =⇒M(x, y, .) >M(x, y, .) which is a contradiction.
Also, for m , n xn , xm. Otherwise if xn = xm for m > n (say), then M(xn, xn+1, .) = M(xm, xm+1, .) >
M(xm−1, xm, .) >M(xm−2, xm−1, .) > · · · > · · ·M(xn, xn+1, .),which is a contradiction. Thus for m , n, xn , xm.
Let {xn} have a convergent subsequence {xni } converging to η. Without loss of generality we can assume
that, xni , η for all i ∈N. Then M(T(xni ),T(η), .) >M(xni , η, .), ∀i
=⇒ lim sup

i
M(T(xni ),T(η), t̃) ≥ lim sup

i
M(xni , η, t̃) =M(η, η, t̃) = 1 =⇒ lim sup

i
M(T(xni ),T(η), t̃) = 1.

Similarly we can show that lim inf
i

M(T(xni ),T(η), t̃) = 1. Thus lim sup
i

M(Txni ,Tη, t̃) = lim inf
i

M(Txni ,Tη, t̃) =

1. Therefore, lim T(xni ) = T(η).
If for some i, T(xni ) = T(η) =⇒ T2(xni ) = T2(η). Now for those i for which T(xni ) , T(η), we have
M(T2(xni ),T2(η), t̃) > M(Txni ,T(η), t̃). Then lim inf M(T2(xni ),T2(η), t̃) = 1 =⇒ lim sup M(T2(xni ),T2η, t̃) = 1.
So lim M(T2(xni ),T2(η), t̃) = 1. Therefore, lim T2(xni ) = T2(η).
M(xn1 ,Txn1 , t̃) <M(Txn1 ,T2xn1 , t̃) <M(Txn1+1,T2xn1+1, t̃)
< · · · <M(xn2 ,Txn2 , t̃) <M(Txn2 ,T2xn2 , t̃) =M(xn2+1,Txn2+1, t̃)
< · · · <M(xni ,Txni , t̃) <M(Txni ,T2xni , t̃) <M(xni+1,Txni+1, t̃)
<M(Txni+1,T2xni+1, t̃) ≤ 1 ∀t̃ > 0̃. (If xr = Txr, then xr is a fixed point.)
Now, {M(xni ,Txni , t̃)} and {M(Txni ,T2xni , t̃)} are having the same limit.
Now M(η,Tη, t̃) = lim M(xni ,Txni , t̃) = lim M(Txni ,T2xni , t̃) =M(Tη,T2η, t̃).
If η = Tη then the theorem has been proved otherwise M(Tη,T2η, t̃) > M(η,Tη, t̃) and therefore we
arrive at a contradiction. Thus T has a unique fixed point. Now for n ∈ N,n = ni + r, so that
M(Tn(x), η, t̃) =M(Tni+r(x),Tr(η), t̃) >M(Tni (x), η, t̃). As i→∞,M(Tni (x), η, t̃)→ 1 Hence M(Tn(x), η, t̃)→ 1 as
n→∞, Hence Tn(x) converges to η.
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Corollary 4.11. Let (X, M) be a compact GIVF metric space and suppose T : X → X be a mapping satisfying
M(Tx,Ty, .) >M(x, y, .) for x , y ∈ X. Then T has a unique fixed point.

Proof. The result follows from Theorem 3.15 and Theorem 4.10.

5. Image filtering using GIVF metrics

Before we discuss the main problem let us take some examples of GIVF metrics to be used in this filtering
process.

Example 5.1. Let X , ϕ and ∗I be a continuous induced IV t-norm given by ã ∗I b̃ = [a−.b−, a+.b+], where
ã = [a−, a+] and b̃ = [b−, b+].
Let (X,M1, ∗I) and (X,M2, ∗I) be two GIVF metric spaces. Let M(x, y, t̃) =M1(x, y, t̃) ∗1 M2(x, y, t̃).
Then (X,M, ∗I) is a GIVF metric space. Clearly

(1) M(x, y, t̃) > 0,∀t̃ > 0,∀x, y ∈ X;

(2) M(x, y, t̃) =M(y, x, t̃),∀t̃ > 0,∀x, y ∈ X

(3) M(x, y, t̃) = 1,∀t̃ > 0 iff x = y.

(4) For x, y, z ∈ X and t̃ > 0, s̃ > 0,
M(x, y, t̃) ∗1 M(y, z, s̃) = (M1(x, y, t̃) ∗1 M2(x, y, t̃)) ∗1 (M1(y, z, s̃) ∗1 M2(y, z, s̃))
= (M1(x, y, t̃) ∗1 M1(y, z, s̃)) ∗1 (M2(x, y, t̃) ∗1 M2(y, z, s̃))
≤M1(x, z, t̃ + s̃) ∗1 M2(x, z, t̃ + s̃), since M1 and M2 are GIVF metrics on X.
=M(x, z, t̃ + s̃).

(5) Clearly continuity of M(x, y, .) follows from the continuity of M1(x, y, .) and M2(x, y, .).

(6) limt−→∞M(x, y, t̃) = limt−→∞(M1(x, y, t̃) ∗1 M2(x, y, t̃)
= limt−→∞[M−

1 (x, y, t̃)M−

2 (x, y, t̃),M+
2 (x, y, t̃).M+

2 (x, y, t̃)]
= [1.1, 1.1] = 1.
Hence (X,M, ∗I) is a GIVF metric space.

Example 5.2. Let X = R and ∗I be the continuous induced IV t-norm given by [a, b] ∗1 [c, d] = [a.c, b.d].
Let for x, y ∈ X and t̃ > 0,

M(x, y, t̃) = [
min{x, y} + kt−

max{x, y} + kt−
,

min{x, y} + kt+

max{x, y} + kt+
],where k > 0

The function f (t) =
y + t
x + t

is increasing if x − y > 0. So

min{x, y} + kt−

max{x, y} + kt−
≤

min{x, y} + kt+

max{x, y} + kt+
.

Clearly
(1) M(x, y, t̃) > 0,∀t > 0, x, y ∈ X.

(2) M(x, y, t̃) = 1∀t̃ > 0 iff x = y.

(3) M(x, y, t̃) =M(y, x, t̃),∀t̃ > 0,∀x, y ∈ X.

(4) For the triangle inequality we have to show that
M(x, z, t̃ + s̃) ≥M(x, y, t̃) ∗I M(y, z, s̃).
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i.e.,[
min{x, z} + k(t− + s−)
max{x, z} + k(t− + s−)

,
min{x, z} + k(t+ + s+)
max{x, z} + k(t+ + s+)

]

≥ [
min{x, y} + kt−

max{x, y} + kt−
,

min{x, y} + kt+

max{x, y} + kt+
] ∗ [

min{y, z} + ks−

max{y, z} + ks−
,

min{y, z} + ks+

max{y, z} + ks+
]

= [
(min{x, y} + kt−)(min{y, z} + ks−)
(max{x, y} + kt−)(max{y, z} + ks−)

,
(min{x, y} + kt+)(min{y, z} + ks+)
(max{x, y} + kt+)(max{y, z} + ks+)

].

Firstly we show that
min{x, z} + k(t− + s−)
max{x, z} + (t− + s−)

≥
(min{x, y} + kt−)(min{y, z} + ks−)
(max{x, y} + kt−)(max{y, z} + ks−)

..................(∗)

Let x ≤ z. Then we have the following cases:
Case 1: x ≤ y ≤ z; Case 2: y ≤ x ≤ z; Case 3: x ≤ z ≤ y.
Case 1: x ≤ y ≤ z
Then (∗) becomes
x + kt−

y + kt−
.
y + ks−

z + ks−
≤

x + k(t− + s−)
z + k(t− + s−)

Now R.H.S.
x + k(t− + s−)
z + k(t− + s−)

=
x + k(t− + s−)
y + k(t− + s−)

.
y + k(t− + s−)
z + k(t− + s−)

≥
x + kt−

y + kt−
.
y + ks−

z + ks−
(∵ x ≤ y ≤ z)

= L. H. S.
Case 2: y ≤ x ≤ z.
Then (∗) becomes
y + kt−

x + kt−
.
y + ks−

z + ks−
≤

x + k(t− + s−)
z + k(t− + s−)

.

Now R. H. S.

=
x + k(t− + s−)
z + k(t− + s−)

=
x + k(t− + s−)
x + k(t− + s−)

.
x + k(t− + s−)
z + k(t− + s−)

≥
y + k(t− + s−)
x + k(t− + s−)

.
y + k(t− + s−)
z + k(t− + s−)

(∵ y ≤ x ≤ z)

≥
y + kt−

x + kt−
.
y + ks−

z + ks−
(∵ y ≤ x ≤ z)

= L. H. S.
Similarly Case 3 can be dealt with. Replacing t− by t+ and s− by s+ we can prove the other relevant inequal-
ities. Hence triangle inequality holds.

(5) As t̃n → t̃ iff t−n → t− and t+n → t+, continuity of M(x, y, .) can be easily verified.

(6) limt−→∞M(x, y, t) = [limt−→∞
min{x, y} + kt−

max{x, y} + kt−
, limt−→∞

min{x, y} + kt+

max{x, y} + kt+
]

= 1.

Hence (X,M, ∗I) is a GIVF metric space.

Scheme of image processing
For every pixel P select a 3×3 window with P(R,G,B, x, y),where R,G,B are the color values of the pixel

and (x, y) are the Euclidean coordinates of the pixel. Let Fi,F j be two pixels with Fi = (F1
i ,F

2
i ,F

3
i ,F

4
i ,F

5
i ) and

F j = (F1
j ,F

2
j ,F

3
j ,F

4
j ,F

5
j ).

Consider the GIVF metrics R and S defined by

R(Fi,F j, t̃) =
∏3

l=1[
min{Fl

i,F
l
j} + kt−

max{Fl
i,F

l
j} + kt−

,
min{Fl

i,F
l
j} + kt+

max{Fl
i,F

l
j} + kt+

]
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(Here
∏

denotes IV-product t-norm ∗I)

and S(Fi,F j, t̃) = [
t−

t− + d(Fi,F j)
,

t+

t+ + d(Fi,F j)
],

where d(Fi,F j) denotes the Euclidean distance of the (x, y) coordinates of Fi,F j.We fix a suitable value of k
and calculate
C(Fi,F j, t̃) = R(Fi,F j, t̃) ∗I S(Fi,F j, t̃).
For each value of Fk in the filter window, an accumulated measure Ak =

∑
j∈W, j,k C(Fk,F j, t) to all other

vectors in the window is to be calculated. The interval values of Aks are to be approximated by taking mid
values of the intervals and then ordered in the descending sequence. Then the filter output will be the
vector F0 corresponding to the lowest rank in the ordered sequence Ak.

6. Conclusion

In this paper a definition of generalized interval-valued fuzzy metric space is introduced. Some of its
topological properties such as Hausdorffness, first countability etc. are studied. Banach and Edelstein fixed
point theorems are extended in this setting. Image filtering process using this GIVF metric is also studied.
There is a further scope of studying boundedness, total boundedness, completeness and compactness,
Baire’s category theorem etc.in this setting. There is also a scope for applying this GIVF metric in decision
making problems.
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