Filomat 39:2 (2025), 601–615 https://doi.org/10.2298/FIL2502601A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

New triangular *q*–Fibonacci matrix

Koray Ibrahim Atabey^{a,*}, Muhmmed Çınar^b, Mikail Et^c

^a Muş Nizamülmülk Girl Anatolia Imam Hatip High School, 49250, Muş, Turkey ^b Muş Alparslan University, Department of Mathematics, 49250 Muş, Turkey ^c Firat University, Department of Mathematics, 23119 Elazig, Turkey

Abstract. In this study, we construct a new triangular *q*-analogue of the *q*-Fibonacci matrix $\tilde{f}_q = (f_{nk}(q))$ defined by

$$f_{nk}(q) = \begin{cases} \frac{q^k f_k(q)}{f_{n+2}(q) - 1} & , 1 \le k \le n\\ 0 & , \text{otherwise} \end{cases}$$

After, we use the analogue to define the sequence spaces $c(\tilde{f}_q)$, $c_0(\tilde{f}_q)$, $\ell_p(\tilde{f}_q)$, $\ell_p(\tilde{f}_q)$ $(1 \le p < \infty)$. Then, we provide some inclusion relations for these spaces and examine a few topological characteristics. Furthermore, we construct a basis for the space $\ell_p(\tilde{f}_q)$, calculate $\alpha -$, $\beta -$, γ -duals of the same space, characterize certain matrix classes, and look at some geometric properties.

1. Introduction, definitions and preliminaries

Recent years have seen a surge in interest in q-calculus, which is particularly prevalent in combinatory analysis, hypergeometric series, partitioning theory, continuous fractions and operator theory.

Specifically, these *q*-generalizations usually enumerate beneficial characteristics of finite dimensional vector spaces over a finite field of order *q*. This is the reason *q* is used so often instead of *x*. Polynomials that take the value of the classical number are all that the *q*-generalizations are when q = 1.

Since Euler, Cauchy, Jacobi, and Abel's time, the *q*-series has been in use. The well-known identities of Rogers and Ramanujan, as well as their proof, employed this series. In 1917, Schur [34], who was I.J. Schoenberg's supervisor and one of the founders of the statistical convergence, independently and uninformedly proved these identities. In 1974, Carlitz [8] provided a detailed definition of *q*–Fibonacci and *q*–Lucas numbers using *q*–binomial coefficients. Researchers like Andrews [2], Hirschhorn [20], Cigler [9], Berndt [7], Pan [32], Aytaç [4], Kac and Cheung [23] have all worked on this topic.

Received: 30 March 2024; Revised: 16 September 2024; Accepted: 12 October 2024

²⁰²⁰ Mathematics Subject Classification. Primary 40C05; Secondary 42B08.

Keywords. q-Fibonacci numbers, q-analogue, dual spaces, matrix transform, Banach-Saks property

Communicated by Ljubjša D. R. Kočinac

^{*} Corresponding author: Koray Ibrahim Atabey

Email addresses: korayatabey7@gmail.com (Koray Ibrahim Atabey), muhammedcinar23@gmail.com (Muhmmed Çınar), mikailet68@gmail.com (Mikail Et)

ORCID iDs: https://orcid.org/0000-0002-5800-7155 (Koray Ibrahim Atabey), https://orcid.org/0000-0002-0958-0705 (Muhmmed Çınar), https://orcid.org/0000-0001-8292-7819 (Mikail Et)

First let us review some notation that will be used in the sequel when we go to work. If *k* is non-negative, then

$$[k]_q = \begin{cases} k , q = 1 \\ \frac{1 - q^k}{1 - q} = 1 + q + q^2 + \dots + q^{k-1} , q \in \mathbb{R}^+ - \{1\} \end{cases}$$

defines the *q*-integer of that value. *q*-factorial and *q*-combination are given as

$$[k]! = \begin{cases} [1][2]...[k] , n > 0 \\ 1 , k = 0 \end{cases} \text{ and } \begin{bmatrix} k \\ j \end{bmatrix} = \frac{[k]!}{[j]![k - j]!}$$

respectively. With q, the two Pascal rules are specified as

$$\begin{bmatrix} k\\ j \end{bmatrix} = q^{k-j} \begin{bmatrix} k-1\\ j-1 \end{bmatrix} + \begin{bmatrix} k-1\\ j \end{bmatrix} \text{ and } \begin{bmatrix} k\\ j \end{bmatrix} = \begin{bmatrix} k-1\\ j-1 \end{bmatrix} + q^j \begin{bmatrix} k-1\\ j \end{bmatrix},$$

where $0 \le j \le k - 1$.

The (f_n) Fibonacci sequence was defined by Leonardo Fibonacci in Liber Abaci in 1202 as $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$.

Schur [34] originally defined the q-Fibonacci numbers (polynomials) in 1917 as

$$f_n(q) = \begin{cases} 0 & , n = 0\\ 1 & , n = 1\\ f_{n-1}(q) + q^{n-2} f_{n-2}(q) & , n \ge 2 \end{cases}$$

q-Fibonacci numbers were obtained by Carlitz [8] with the q-binomial coefficient such that:

$$f_{n+1}(q) = \sum_{2k \le n} q^{k^2} \binom{n-k}{k}.$$

The expression $f_n(q)$ for q-Fibonacci numbers is given by Andrews [2]:

$$\sum_{k=1}^{n} q^k f_k(q) = f_{n+2}(q) - 1.$$

The *q*–Fibonacci numbers become the ordinary Fibonacci sequence of numbers when $q \rightarrow 1$.

Let the set of all sequence spaces be represented by ω . The subspaces of ω that are ℓ_{∞} , c, c_0 , and ℓ_p are characterized as bounded, convergent, null and p-absolutely summable sequence space, respectively. The spaces c_0 , c, ℓ_{∞} are Banach spaces for $k \in \mathbb{N}$ under normed by

$$\|u\|_{\infty} = \sup_{k \in \mathbb{N}} |u_k|$$

and the space ℓ_p ($1 \le p < \infty$) is Banach space normed by

$$||u||_p = \left(\sum_k |u_k|^p\right)^{\frac{1}{p}}.$$

Moreover, we designate the spaces of all absolutely convergent series, convergent series, bounded series, and p-bounded variation, respectively, by the notations ℓ_1 , *cs*, *bs*, and bv_p .

If a sequence space *U* is a complete linear metric space with continuous coordinates $p_n : U \to \mathbb{R}$ ($n \in \mathbb{N}$), where $p_n(x) = x_n$ for every $x = (x_k) \in U$ and every $n \in \mathbb{N}$, then the sequence space is classified as an

FK–space. Specifically, a *BK*–space is a Banach space with continuous coordinates, which is equivalent to a normed *FK*– space.

Let $U, V \subset \omega$ and $B = (b_{nk})$ is a real infinite matrix. The matrix *B* defines a matrix transformation from *U* to *V* if for every sequence $u \in U$,

$$Bu = (B_n(u)) = \left(\sum_{k=1}^{\infty} b_{nk} u_k\right) \in U$$

for each $n \in \mathbb{N}$. (*U*, *V*) represents the family of all matrices that map from *U* to *V*.

$$U_B = \{u \in \omega : Bu \in U\} \tag{1}$$

is a sequence space that defines the *B*'s matrix domain U_B in a sequence space *U*.

Moreover, the sequence space U_B is a BK-space normed by $||u||_{U_B} = ||Bu||_U$ if B is a triangular matrix and U is a BK-space.

Several authors have utilized *q*-numbers in summability theory, including Çınar and Et [10], Demiriz and Şahin [11], Yaying et al. [37–39], Selmanogullari et al. [35], Aktuğlu and Bekar [1], Mursaleen et al. [22], Bekar [6], Atabey et al. [3].

2. Main results

Using a new triangular q-analogue of the q-Fibonacci matrix with q-Fibonacci numbers for q > 0, we present the sequence spaces $c_0(\tilde{f_q}), c(\tilde{f_q}), \ell_{\infty}(\tilde{f_q})$ and $\ell_p(\tilde{f_q})$ ($1 \le p < \infty$) in this section. After that, a Schauder basis for $\ell_p(\tilde{f_q})$ will be constructed and some inclusion relations will be shown.

Given a *n*th Fibonacci number $f_n(q)$ for $n \in \mathbb{N}$ and q > 0,

$$\tilde{f_q} = (f_{nk}(q)) = \begin{cases} \frac{q^k f_k(q)}{f_{n+2}(q) - 1} & , 1 \le k \le n\\ 0 & , \text{otherwise} \end{cases}$$

$$= \begin{bmatrix} \frac{qf_1(q)}{f_3(q)-1} & 0 & 0 & 0 & 0 & 0 & \cdots \\ \frac{qf_1(q)}{f_4(q)-1} & \frac{q^2 f_2(q)}{f_4(q)-1} & 0 & 0 & 0 & \cdots \\ \frac{qf_1(q)}{f_5(q)-1} & \frac{q^2 f_2(q)}{f_5(q)-1} & \frac{q^3 f_3(q)}{f_5(q)-1} & 0 & 0 & \cdots \\ \frac{qf_1(q)}{f_6(q)-1} & \frac{q^2 f_2(q)}{f_6(q)-1} & \frac{q^3 f_3(q)}{f_6(q)-1} & \frac{q^4 f_4(q)}{f_6(q)-1} & 0 & 0 & \cdots \\ \frac{qf_1(q)}{f_6(q)-1} & \frac{q^2 f_2(q)}{f_6(q)-1} & \frac{q^3 f_3(q)}{f_6(q)-1} & \frac{q^4 f_4(q)}{f_6(q)-1} & \frac{q^5 f_5(q)}{f_7(q)-1} & 0 & \cdots \\ \frac{qf_1(q)}{f_7(q)-1} & \frac{q^2 f_2(q)}{f_7(q)-1} & \frac{q^3 f_3(q)}{f_7(q)-1} & \frac{q^4 f_4(q)}{f_7(q)-1} & \frac{q^5 f_5(q)}{f_8(q)-1} & 0 & \cdots \\ \frac{qf_1(q)}{f_8(q)-1} & \frac{q^2 f_2(q)}{f_8(q)-1} & \frac{q^3 f_3(q)}{f_8(q)-1} & \frac{q^4 f_4(q)}{f_8(q)-1} & \frac{q^5 f_5(q)}{f_8(q)-1} & \frac{q^6 f_6(q)}{f_8(q)-1} & \cdots \\ \vdots & \ddots \end{bmatrix}$$

defines a new triangular *q*-analogue of the *q*-Fibonacci matrix.

For $n \in \mathbb{N}$, the matrix transformation $y_n = (\tilde{f}_q)_n(x)$ is denoted by

$$y_n = (\tilde{f}_q)_n(x) = \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^n q^k f_k(q) x_k$$
⁽²⁾

and the sequence spaces $c_0(\tilde{f_q})$, $c(\tilde{f_q})$, $\ell_{\infty}(\tilde{f_q})$ and $\ell_p(\tilde{f_q})$ $(1 \le p < \infty)$ are defined by

$$\begin{split} c_0(\tilde{f_q}) &= \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} (\tilde{f_q})_n(x) = 0 \right\}, \\ c(\tilde{f_q}) &= \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} (\tilde{f_q})_n(x) \text{ exists} \right\}, \\ \ell_\infty(\tilde{f_q}) &= \left\{ x = (x_k) \in \omega : \sup_{n \in \mathbb{N}} \left| \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^n q^k f_k(q) x_k \right| < \infty \right\}, \\ \ell_p(\tilde{f_q}) &= \left\{ x = (x_k) \in \omega : \sum_n \left| \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^n q^k f_k(q) x_k \right|^p < \infty \right\}. \end{split}$$

The sequence spaces $\ell_p(\tilde{f_q})$, $\ell_{\infty}(\tilde{f_q})$, $c_0(\tilde{f_q})$ and $c(\tilde{f_q})$ can be redefined by

$$\ell_{p}(\tilde{f_{q}}) = (\ell_{p})_{\tilde{f_{q}}} (1 \le p < \infty), \ \ell_{\infty}(\tilde{f_{q}}) = (\ell_{\infty})_{\tilde{f_{q}}},$$

$$c_{0}(\tilde{f_{q}}) = (c_{0})_{\tilde{f_{q}}} \text{ and } c(\tilde{f_{q}}) = (c)_{\tilde{f_{q}}}.$$
(3)
(4)

respectively, when (1) notation is considered.

Theorem 2.1. The space $\ell_p(\tilde{f_q})$ is a BK–space normed by

$$\|(\tilde{f_q})_n(x)\|_{\ell_p} = \|x\|_{\ell_p(\tilde{f_q})} = \left(\sum_n \left|(\tilde{f_q})_n(x)\right|^p\right)^{\frac{1}{p}}, \quad (1 \le p < \infty)$$

and the spaces $U(\tilde{f}_q)$ are BK–spaces normed by

$$\|(\tilde{f}_{q})_{n}(x)\|_{U} = \|x\|_{U(\tilde{f}_{q})} = \sup_{n \in \mathbb{N}} |(\tilde{f}_{q})_{n}(x)|,$$

where $U \in \{\ell_{\infty}, c, c_0\}$.

Proof. The matrix \tilde{f}_q is a triangle, and ℓ_{∞} and ℓ_p are BK-spaces in terms of their natural norms, because (3) and (4) hold; Theorem 4.3.12 of [40, p. 63] states that the spaces $\ell_p(\tilde{f}_q)$ and $\ell_{\infty}(\tilde{f}_q)$ are BK-spaces with the given norms, where $(1 \le p < \infty)$.

The spaces $c_0(\tilde{f}_q)$ and $c(\tilde{f}_q)$ are *BK*-spaces with the stated norms, as per [40, p. 61] Theorem 4.3.2

Theorem 2.2. The space $\ell_p(\tilde{f_q})$ $(1 \le p \le \infty)$ is linearly isomorphic to the ℓ_p .

Proof. To prove that $S : \ell_p(\tilde{f_q}) \to \ell_p$, $(x \to y = Sx = \tilde{f_q}x \in \ell_p)$, is a linear and bijection transformation for $(1 \le p \le \infty)$ is sufficient.

S is obviously linear. In addition, *S* is implied to be injective as it is evident that x = 0 whenever Sx = 0. Let us get $y = (y_n) \in \ell_p$ to show that *S* is surjective. We have

$$y_n = \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^n q^k f_k(q) x_k$$

and so

$$x_k = \frac{f_{k+2}(q) - 1}{q^k f_k(q)} y_k - \frac{f_{k+1}(q) - 1}{q^k f_k(q)} y_{k-1}.$$

604

For $(1 \le p < \infty)$ we consider

$$\begin{aligned} ||x||_{\ell_{p}(\tilde{f_{q}})} &= \left(\sum_{n} \left| (\tilde{f_{q}})_{n}(x) \right|^{p} \right)^{\frac{1}{p}} = \left(\sum_{n} \left| \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) x_{k} \right|^{p} \right)^{\frac{1}{p}} \\ &= \left(\sum_{n} \left| \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) \left(\frac{f_{k+2}(q) - 1}{q^{k} f_{k}(q)} y_{k} - \frac{f_{k+1}(q) - 1}{q^{k} f_{k}(q)} y_{k-1} \right) \right|^{p} \right)^{\frac{1}{p}} \\ &= \left(\sum_{n} \left| y_{n} \right|^{p} \right)^{\frac{1}{p}} = ||y||_{p} < \infty \end{aligned}$$

and for $p = \infty$

$$\|x\|_{\ell_{\infty}(\tilde{f}_q)} = \sup_{n \in \mathbb{N}} \left| (\tilde{f}_q)_n(x) \right| = \|y\|_{\infty} < \infty.$$

The proof is now complete. \Box

Theorem 2.3. The spaces $c_0(\tilde{f_q})$ and $c(\tilde{f_q})$ are linearly isomorphic to the spaces c_0 and c, respectively.

Proof. A similar method may be used to prove the theorem using Theorem 2.2. \Box

Theorem 2.4. The inclusions $c \subset c(\tilde{f}_q)$ and $c_0 \subset c_0(\tilde{f}_q)$ strictly hold for $q \ge 1$ and 0 < q < 1, respectively.

Proof. For any real number *l* and each $q \ge 1$, let us get $x \in c$, meaning that $x \to l$. The method \tilde{f}_q is regular since the matrix \tilde{f}_q satisfies the Silverman-Toeplitz criterias;

$$\begin{split} \sup_{n \in \mathbb{N}} \sum_{k} \left| \tilde{f}_{nk}(q) \right| &= \sup_{n \in \mathbb{N}} \left(\left| \frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) \right| \right) \le 1 < \infty \\ \lim_{n \to \infty} \tilde{f}_{nk}(q) &= 0, \\ \lim_{n \to \infty} \sum_{k} \tilde{f}_{nk}(q) &= \lim_{n \to \infty} \left(\frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) \right) = 1. \end{split}$$

Then we can see that $\tilde{f}_q x \to l$. So $x \in c(\tilde{f}_q)$. In order to prove the $c_0 \subset c_0(\tilde{f}_q)$, l = 0 is necessary.

Let us choose $x = (x_k) = \left(\frac{(-1)^k}{q^k f_k(q)}\right)$ to prove the strict of the inclusions for 0 < q < 1. This sequence is obviously divergent. Therefore, $x \notin c$ and $x \notin c_0$, but

$$\lim_{n \to \infty} \left(\frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) x_{k} \right)$$

=
$$\lim_{n \to \infty} \left(\frac{1}{f_{n+2}(q) - 1} \sum_{k=1}^{n} q^{k} f_{k}(q) \left(\frac{(-1)^{k}}{q^{k} f_{k}(q)} \right) \right) = 0 < \infty.$$

This indicates that $x \in c(\tilde{f_q})$ and $x \in c_0(\tilde{f_q})$. Consequently, $c_0 \subset c_0(\tilde{f_q})$ and $c \subset c(\tilde{f_q})$ are strict inclusions. \Box

Theorem 2.5. The inclusion $\ell_p \subset \ell_p(\tilde{f_q})$ holds for $q \ge 1$ and the inclusion is strict for q < 1, where $1 \le p \le \infty$.

Proof. Proving a number K > 0' s existence is sufficient to demonstrate that, for every $x \in \ell_p$, $||x||_{\ell_p(\tilde{f}_q)} \le K||x||_p$. For $(1 and <math>q \ge 1$, let us get $x \in \ell_p$. Applying From Hölder's inequality for $\forall n \in \mathbb{N}$, we possess

$$\begin{split} \sum_{n=1}^{\infty} \left| (\tilde{f_q})_n(x) \right|^p &= \sum_{n=1}^{\infty} \left| \sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} x_k \right|^p \\ &\leq \sum_{n=1}^{\infty} \Big(\sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} |x_k|^p \Big) \Big(\sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} \Big)^{p-1} \\ &\leq \sum_{n=1}^{\infty} \Big(\sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} |x_k|^p \Big) \Big(\sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} \Big)^{p-1} \\ &= \sum_{n=1}^{\infty} \Big(\sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} |x_k|^p \Big) \\ &= \sum_{k=1}^{\infty} |x_k|^p \left(q^k f_k(q) \sum_{n=k}^{\infty} \frac{1}{f_{n+2}(q) - 1} \right). \end{split}$$

So this means

$$\|x\|_{\ell_p(\tilde{f}_o)} \le K \|x\|_p,$$

where $K = \sup_{k \in \mathbb{N}} \left(\sum_{n=k}^{\infty} \frac{q^k f_k(q)}{f_{n+2}(q) - 1} \right)$. Also for $p = \infty$, we take $x_k \in \ell_{\infty}$. Then, for all $k \in \mathbb{N}$, there exists a constant K > 0 such that $|x_k| \le K$. Therefore, using the triangle inequality

$$|(\tilde{f}_q)_n(x)| \le \sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} |x_k| \le \sum_{k=1}^n \frac{q^k f_k(q)}{f_{n+2}(q) - 1} K = K.$$

So $x \in \ell_p(\tilde{f_q})$.

Likewise, we skip the details because it is easy to prove the inequality (5) for p = 1. Consequently, the inclusion $\ell_p \subset \ell_p(\tilde{f_q})$ holds for $1 \le p \le \infty$. \Box

We give the following two theorems without proof.

Theorem 2.6. The $\ell_p(\tilde{f_q}) \subset \ell_s(\tilde{f_q})$, if $1 \le p < s$.

Theorem 2.7. For q > 0, the inclusion $c_0(\tilde{f}_q) \subset c(\tilde{f}_q)$ is strict.

Theorem 2.8. For q > 0, the inclusion $\ell_p(\tilde{f}_q) \subset \ell_{\infty}(\tilde{f}_q)$ is strict.

Proof. Let us take $x = (x_n) \in \ell_p(\tilde{f_q})$. Then we have $\tilde{f_q}x \in \ell_p$. Since $\ell_p \subset \ell_\infty$, we can conclude $\tilde{f_q}x \in \ell_\infty$. So $x = (x_n) \in \ell_\infty(\tilde{f_q})$ which means $\ell_p(\tilde{f_q}) \subset \ell_\infty(\tilde{f_q})$. The sequence $x = (x_k) = (1^k)$ be examined for the inclusion's strict. Since

$$\sup_{n\in\mathbb{N}}\left|\sum_{k=1}^{n}\frac{q^{k}f_{k}(q)}{f_{n+2}(q)-1}(1^{k})\right|=1<\infty,$$

we have $x \in \ell_{\infty}(\tilde{f_q})$. But since

$$\sum_{n} \left| \sum_{k=1}^{n} \frac{q^{k} f_{k}(q)}{f_{n+2}(q) - 1} (1^{k}) \right|^{p} = \sum_{n} |1|^{p} \to \infty$$

we have $x \notin \ell_p(\tilde{f_q})$. \Box

(5)

Theorem 2.9. The space $\ell_p(\tilde{f_q})$ is not a Hilbert space, where $p \in [1, \infty] - \{2\}$.

Proof. We use the sequences

$$v = (v_n) = \left(\frac{f_3(q) - 1}{qf_1(q)}, \frac{-f_3(q) + f_4(q)}{q^2 f_2(q)}, \frac{-f_4(q) + 1}{q^3 f_3(q)}, 0, 0, \ldots\right)$$

and

$$u = (u_n) = \left(\frac{f_3(q) - 1}{qf_1(q)}, \frac{-f_3(q) - f_4(q) + 2}{q^2 f_2(q)}, \frac{f_4(q) - 1}{q^3 f_3(q)}, 0, 0, \ldots\right)$$

for proof. The f_{q} transformations of these sequences are as follows, respectively:

 $\tilde{f}_q v = (1, 1, 0, 0, \ldots)$ and $\tilde{f}_q u = (1, -1, 0, 0, \ldots)$.

Thus, $\tilde{f}_q(v+u) = (2, 0, 0, 0, ...)$ and $\tilde{f}_q(v-u) = (0, 2, 0, 0, ...)$ are obtained. Hence, the expression for $p \neq 2$ that results is as follows

$$\|v+u\|_{\ell_p(\tilde{f_q})}^2 + \|v-u\|_{\ell_p(\tilde{f_q})}^2 = 8 \neq 2^{2+\frac{2}{p}} = 2\left(\|v\|_{\ell_p(\tilde{f_q})}^2 + \|u\|_{\ell_p(\tilde{f_q})}^2\right)$$

This implies that the parallelogram equality cannot be satisfied by the norm of the space $\ell_p(\tilde{f}_q)$. \Box

Theorem 2.10. The space $\ell_p(\tilde{f_q})$ is not absolute type, where $1 \le p \le \infty$.

Proof. To show that it is not an absolute type, let us take a sequence defined by x = (1, -1, 0, 0, ...). Next, we compute transformations $\tilde{f}_q u$ and $\tilde{f}_q |u|$ as the following:

$$\tilde{f}_{q}u = \left(\frac{qf_{1}(q)}{f_{3}(q) - 1}, \frac{-q^{2}f_{2}(q) + qf_{1}(q)}{f_{4}(q) - 1}, \frac{-q^{2}f_{2}(q) + qf_{1}(q)}{f_{5}(q) - 1}, \dots\right)$$

and

 $\tilde{f_q}|u| = \left(\frac{qf_1(q)}{f_3(q) - 1}, \frac{q^2f_2(q) + qf_1(q)}{f_4(q) - 1}, \frac{q^2f_2(q) + qf_1(q)}{f_5(q) - 1}, \ldots\right),$ where $|u| = |u_n|$. Since $||u||_{\ell_p(\tilde{f_q})} \neq |||u|||_{\ell_p(\tilde{f_q})}$, the proof is finished. \Box

For $\ell_p(\tilde{f_q})$ $(1 \le p < \infty)$, we now provide a basis.

Theorem 2.11. For $1 \le p < \infty$ and each fixed $k \in \mathbb{N}$, define a sequence $\xi^{(k)} \in \ell_p(\tilde{f}_q)$ as

$$(\xi^{(k)})_n = \begin{cases} \frac{(-1)^{n-k} f_{k+2}(q) - 1}{q^n f_n(q)} , n-1 \le k \le n \\ 0 , otherwise \end{cases} (n \in \mathbb{N}).$$
(6)

Later, $\{\xi^{(k)}\}_{k\in\mathbb{N}}$ *is a Schauder basis for the space* $\ell_p(\tilde{f}_q)$ *and each* $u \in \ell_p(\tilde{f}_q)$ *has a unique representation of the form*

$$u = \sum_{k} (\tilde{f}_{\tilde{q}})_k(u)\xi^{(k)}$$
⁽⁷⁾

for each $k \in \mathbb{N}$.

Proof. Let us consider $1 \le p < \infty$. Afterward, it is clear by (6) that $(\tilde{f}_q)(\xi^{(k)}) = e^{(k)} \in \ell_p$ and hence $\xi^{(k)} \in \ell_p(\tilde{f}_q)$. Let us take $u \in \ell_p(\tilde{f}_q)$ and for each non-negative integer *m* and all $k \in \mathbb{N}$ we put

$$u^{(m)} = \sum_{k} (\tilde{f}_q)_k(u) \xi^{(k)}.$$

Then we can obtain

$$\tilde{f}_q(u^{(m)}) = \sum_{k=0}^m (\tilde{f}_q)_k(u)(\tilde{f}_q)(\xi^{(k)}) = \sum_{k=0}^m (\tilde{f}_q)_k(u)e^{(k)}$$

and then

$$(\tilde{f}_{q})_{n}(u-u^{(m)}) = \begin{cases} 0 & , (0 \le n \le m) \\ (\tilde{f}_{q})_{n}(x) & , (n > m) \end{cases} \quad (n, m \in \mathbb{N}).$$
(8)

For any given $\varepsilon > 0$, there is a $m_0 \in \mathbb{N}$ such that

$$\sum_{k=m_0+1}^{\infty} \left| (\tilde{f}_{\tilde{q}})_n(u) \right|^p = \left(\frac{\varepsilon}{2} \right)^p.$$

As a result, for every $m > m_0$, we acquire

$$\begin{split} \|u - u^{(m)}\|_{\ell_p(\tilde{f_q})} &= \left(\sum_{k=m+1}^{\infty} \left| (\tilde{f_q})_n(u) \right|^p \right)^{\frac{1}{p}} \\ &\leq \left(\sum_{k=m_0+1}^{\infty} \left| (\tilde{f_q})_n(u) \right|^p \right)^{\frac{1}{p}} \leq \frac{\varepsilon}{2} < \varepsilon \end{split}$$

demonstrating that $\lim_{m\to\infty} \|u - u^{(m)}\|_{\ell_p(\tilde{f}_q)} = 0$ and as a result, *u* can be stated as in (7).

To demonstrate the uniqueness of the expression, we assume the existence of another form (7), similar to

$$u = \sum_{k} (\tilde{g}_q)_k(u) \xi^{(k)}.$$

By using the continuous transform *S*, we have proved its isomorphism in Theorem 2.2, the equation that follows may be written as

$$(\tilde{f_q})_n(u) = \sum_k (\tilde{g_q})_k(u)(\tilde{f_q})_n(\xi^{(k)}) = \sum_k (\tilde{g_q})_k(u)\delta_{nk} = (\tilde{g_q})_n(u).$$

This proves that the form (7) is unique. This concludes the proof. \Box

3. $\alpha - \beta - \gamma - \beta$ duals of the space $\ell_p(\tilde{f}_q)$

The α -, β -, γ - duals of the space $\ell_p(\tilde{f_q})$ are given in this section. Since p = 1 can be demonstrated by analogy, we will focus on the case 1 . We serve the lemmas in Stieglitz and Tietz [36] to prove Theorem 3.5 and Theorem 3.6. Many researchers have examined sequence spaces, dual spaces, and matrix transforms utilizing the domain of certain matrices, such as [5, 13, 14, 17, 18, 25–28].

Take note that $(p^{-1} + r^{-1}) = 1$ for (1 and that*F* $represents the family of all finite subsets of <math>\mathbb{N}$.

Lemma 3.1. $B = (b_{nk}) \in (\ell_p, \ell_1) \Leftrightarrow$

$$\sup_{K\in F}\sum_{k}\left|\sum_{n\in K}b_{nk}\right|^{r}<\infty.$$

Lemma 3.2. $B = (b_{nk}) \in (\ell_p, c) \Leftrightarrow$

For $(\forall k \in \mathbb{N}) \lim_{n \to \infty} b_{nk} \text{ exists}$ (9)

$$\sup_{n\in\mathbb{N}}\sum_{k}|b_{nk}|^{r}<\infty.$$
⁽¹⁰⁾

Lemma 3.3. $B = (b_{nk}) \in (\ell_{\infty}, c) \Leftrightarrow (9)$ holds and

$$\lim_{n \to \infty} \sum_{k} |b_{nk}| = \sum_{k} \left| \lim_{n \to \infty} b_{nk} \right|.$$
(11)

Lemma 3.4. $B = (b_{nk}) \in (\ell_p, \ell_\infty) \Leftrightarrow (10)$ holds with (1 .

Theorem 3.5. *The set*

$$D_1(q) = \left\{ b = (b_k) \in \omega : \sup_{K \in F} \sum_k \left| \sum_{n \in K} \frac{(-1)^{n-k} f_{k+2}(q) - 1}{q^n f_n(q)} b_n \right|^r < \infty \right\}$$

is the α -dual of the space $\ell_p(\tilde{f_q})$, where 1 .

Proof. For $1 and any sequence <math>b = (b_n) \in \omega$, let us define a matrix *G* by

$$G = (g_{nk}) = \begin{cases} \frac{(-1)^{n-k} f_{k+2}(q) - 1}{q^n f_n(q)} b_n & , n-1 \le k \le n \\ 0 & , otherwise \end{cases}$$

Furthermore, for each $x = (x_n) \in \omega$, we get $y = \tilde{f}_q x$. After it tracks by (2)

$$b_n x_n = \sum_{k=n-1}^n \frac{(-1)^{n-k} f_{k+2}(q) - 1}{q^n f_n(q)} b_n y_k = G_n(y) \quad (n \in \mathbb{N}).$$
(12)

.

Because of (12), we obtain that $bx = (b_n x_n) \in \ell_1$ whenever $x \in \ell_p(\tilde{f_q})$ if and only if $Gy \in \ell_1$ whenever $y \in \ell_p$. We can see from Lemma 3.1 that

$$\sup_{K\in F}\sum_{k}\left|\sum_{n\in K}\frac{(-1)^{n-k}f_{k+2}(q)-1}{q^{n}f_{n}(q)}b_{n}\right|^{r}<\infty$$

and so $\left(\ell_p(\tilde{f_q})\right)^{\alpha} = D_1(q).$

Theorem 3.6. Define the following sets $D_2(q)$, $D_3(q)$, $D_4(q)$ as:

$$D_{2}(q) = \left\{ b = (b_{k}) \in \omega : \sum_{j=k}^{\infty} \frac{(-1)^{j-k} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{j} \quad exists, \forall k \in \mathbb{N} \right\},$$

$$D_{3}(q) = \left\{ b = (b_{k}) \in \omega : \sup_{n \in \mathbb{N}} \sum_{k=1}^{n} \left| \sum_{j=n-1}^{n} \frac{(-1)^{j-k} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{j} \right|^{r} < \infty \right\},$$

$$D_{4}(q) = \left\{ b = (b_{k}) \in \omega : \lim_{n \to \infty} \sum_{k=1}^{n} \left| \sum_{j=n-1}^{n} \frac{(-1)^{j-k} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{j} \right| \right\}$$

$$= \sum_{k} \left| \sum_{j=k}^{\infty} \frac{(-1)^{j-k} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{j} \right| < \infty \right\}.$$

Then we have

a)
$$\left(\ell_p(\tilde{f_q})\right)^{\beta} = D_2(q) \cap D_3(q)$$
 and
b) $\left(\ell_{\infty}(\tilde{f_q})\right)^{\beta} = D_2(q) \cap D_4(q)$

for 1 .

Proof. Let us get $b = (b_k) \in \omega$ and look at the equality

$$\sum_{k=1}^{n} b_k x_k = \sum_{k=1}^{n} b_k \left(\sum_{j=n-1}^{n} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^j f_j(q)} y_j \right)$$
$$= \sum_{k=1}^{n} \left(\sum_{j=n-1}^{n} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^j f_j(q)} b_j \right) y_k = D_n(y),$$
(13)

where $D = (d_{nk})$ is determined by

$$d_{nk} = \begin{cases} \sum_{j=n-1}^{n} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{j} &, n-1 \le k \le n \\ 0 &, otherwise \end{cases}$$

After, we deduce from Lemma 3.2 using (2) that $Dy \in c$ whenever $y = (y_k) \in \ell_p$ if and only if $bx = (b_k x_k) \in cs$ whenever $x \in \ell_p(\tilde{f_q})$. Therefore, $(b_k) \in (\ell_p(\tilde{f_q}))^{\beta}$ if and only if $(b_k) \in D_2(q)$ and $(b_k) \in D_3(q)$ are defined by (9) and (10), respectively. Consequently $(\ell_p(\tilde{f_q}))^{\beta} = D_2(q) \cap D_3(q)$.

An equivalent proof can be formulated when $p = \infty$ by utilizing Lemma 3.3 in place of Lemma 3.2 through analogous approaches.

Theorem 3.7. $\left(\ell_p(\tilde{f_q})\right)^{\gamma} = D_3(q), \text{ for } 1 .$

Proof. One may utilize (13) to produce the proof by using Lemma 3.4. \Box

4. Matrix transformations associated with the space $\ell_p(\tilde{f_q})$

The matrix classes $(\ell_p(\tilde{f_q}), U)$ are characterized in this section, where $1 and <math>U \in \{\ell_{\infty}, \ell_1, c, c_0\}$. We utilize

$$\tilde{b}_{nk} = \sum_{j=k-1}^{k} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^j f_j(q)} b_{nj}$$

in order to achieve brevity.

The following lemma forms the basis of our findings.

Lemma 4.1. (see [29], Theorem 4.1)) Let μ be an arbitrary subset of ω , U a triangular matrix, V its inverse, and λ a FK-space. Define $H^{(n)} = (h_{nk}^{(n)})$ and $H = (h_{nk})$ by

$$H^{(n)} = h_{mk}^{(n)} = \begin{cases} \sum_{j=k}^{m} b_{nj} v_{jk} &, 1 \le k \le m \\ 0 &, k > m \end{cases}, \qquad H = (h_{nk}) = \sum_{j=k}^{\infty} b_{nj} v_{jk},$$

respectively. Thus we obtain $H^{(n)} = (h_{mk}^{(n)}) \in (\lambda, c)$ and $H = (h_{nk}) \in (\lambda, \mu)$ if and only if $B = (b_{nk}) \in (\lambda_U, \mu)$ (see Theorem 4.1 of [29]).

610

611

The following conditions are now listed:

$$\sup_{m \in \mathbb{N}} \sum_{k=1}^{m} \left| \sum_{j=m-1}^{m} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{nj} \right|^{r} < \infty,$$
(14)

$$\lim_{m \to \infty} \sum_{j=m-1}^{m} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{nj} = \tilde{b}_{nk}, \qquad \forall n, k \in \mathbb{N},$$
(15)

$$\lim_{m \to \infty} \sum_{k=1}^{m} \left| \sum_{j=m-1}^{m} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{nj} \right| = \sum_{k} |\tilde{b}_{nk}| \qquad \forall n \in \mathbb{N},$$
(16)

$$\sup_{m \in \mathbb{N}} \sum_{k} |\tilde{b}_{nk}|^r < \infty, \tag{17}$$

$$\sup_{N\in F} \sum_{k} \left| \sum_{n\in\mathbb{N}} \tilde{b}_{nk} \right| < \infty, \tag{18}$$

$$\lim_{n \to \infty} \tilde{b}_{nk} = \tilde{\alpha}_k; \quad k \in \mathbb{N},$$
(19)

$$\lim_{n \to \infty} \sum_{k} |\tilde{b}_{nk}| = \sum_{k} |\tilde{\alpha}_{k}|, \tag{20}$$

$$\lim_{n \to \infty} \sum_{k} \tilde{b}_{nk} = 0, \tag{21}$$

$$\sup_{n,k\in\mathbb{N}}|\tilde{b}_{nk}|<\infty,\tag{22}$$

$$\sup_{k,m\in\mathbb{N}} \left| \sum_{j=m-1}^{m} \frac{(-1)^{k+1} f_{k+2}(q) - 1}{q^{j} f_{j}(q)} b_{nj} \right| < \infty,$$
(23)

$$\sup_{k\in\mathbb{N}}\sum_{n}|\tilde{b}_{nk}|<\infty,$$
(24)

$$\sup_{N,K\in F} \left| \sum_{n\in \mathbb{N}} \sum_{k\in K} \tilde{b}_{nk} \right| < \infty.$$
(25)

Thus, utilizing Lemma 4.1 and the findings in [36], we may deduce the following results from the given conditions.

Theorem 4.2.

a) $B = (b_{nk}) \in (\ell_1(\tilde{f_q}), \ell_\infty) \Leftrightarrow (15), (22) \text{ and } (23) \text{ hold.}$ b) $B = (b_{nk}) \in (\ell_1(\tilde{f_q}), c) \Leftrightarrow (15), (19), (22) \text{ and } (23) \text{ hold.}$ c) $B = (b_{nk}) \in (\ell_1(\tilde{f_q}), c_0) \Leftrightarrow (15), \text{ with } \tilde{\alpha}_k = 0, (19), (22) \text{ and } (23) \text{ hold.}$ d) $B = (b_{nk}) \in (\ell_1(\tilde{f_q}), \ell_1) \Leftrightarrow (15), (23) \text{ and } (24) \text{ hold.}$

Theorem 4.3. *For* 1*,*

- a) $B = (b_{nk}) \in (\ell_p(\tilde{f_q}), \ell_\infty) \Leftrightarrow (14), (15) \text{ and } (17) \text{ hold.}$ b) $B = (b_{nk}) \in (\ell_p(\tilde{f_q}), c) \Leftrightarrow (14), (15), (17) \text{ and } (19) \text{ hold.}$ c) $B = (b_{nk}) \in (\ell_p(\tilde{f_q}), c_0) \Leftrightarrow (14), (15), (17) \text{ and with } \tilde{\alpha}_k = 0 \text{ (19) hold.}$
- d) $B = (b_{nk}) \in \left(\ell_p(\tilde{f_q}), \ell_1\right) \Leftrightarrow (14), (15) \ and \ (18) \ hold.$

Theorem 4.4.

- a) $B = (b_{nk}) \in \left(\ell_{\infty}(\tilde{f}_q), \ell_{\infty}\right) \Leftrightarrow (15), (16) \text{ and in case } r = 1 (17) \text{ hold.}$
- b) $B = (b_{nk}) \in \left(\ell_{\infty}(\tilde{f_q}), c\right) \Leftrightarrow (15), (16), (19) and (20) hold.$
- c) $B = (b_{nk}) \in \left(\ell_{\infty}(\tilde{f}_q), c_0\right) \Leftrightarrow (15), (16) \text{ and } (21) \text{ hold.}$
- d) $B = (b_{nk}) \in \left(\ell_{\infty}(\tilde{f}_q), \ell_1\right) \Leftrightarrow (15), (16) \text{ and } (25) \text{ hold.}$

5. Certain geometric properties of the space $\ell_p(\tilde{f}_q)$

One of the most significant properties in functional analysis is the geometric property of Banach spaces. We look at [12, 15, 16, 19, 21, 24, 30, 33] for more details.

Certain geometric properties of the space $\ell_p(\tilde{f}_q)$ (1 are given in this section.

If every bounded sequence (b_n) in U enables a subsequence (s_n) such that the sequence $\{t_k(s)\}$ is convergent in the norm in U, then U is said to satisfy the Banach-Saks property (see [21]), where

$$\{t_k(s)\} = \frac{1}{k+1}(s_0 + s_1 + \ldots + s_k) \quad (k \in \mathbb{N}).$$
(26)

A Banach space *U* has the weak Banach-Saks property for given any weakly null sequence $(b_n) \subset U$ if there exists a subsequence (s_n) of (b_n) such that the $\{t_k(s)\}$ is strongly convergent to zero.

According to García-Falset in [15], the coefficient is as follows:

$$R(U) = \sup\left\{\liminf_{n \to \infty} \|b_n - b\| : (b_n) \subset B(U), b_n \xrightarrow{w} b, b \in B(U)\right\},\tag{27}$$

where the unit ball of *U* is indicated by B(U).

Remark 5.1. A Banach space U possesses the weak fixed point property for R(U) < 2 [16].

For $\forall n \in \mathbb{N}$, some M > 0 and $1 , if every weakly null sequence <math>(b_k)$ possesses a subsequence (b_{k_l}) such that

$$\left\|\sum_{l=1}^{n} b_{k_l}\right\| < M n^{1/p},\tag{28}$$

a Banach space possesses the Banach-Saks type p or the property $(BS)_p$ (see [30]).

With $1 , we can now get the following results from the geometric properties of the space <math>\ell_p(\tilde{f_q})$.

Theorem 5.2. The space $\ell_p(\tilde{f_q})$ (1 possesses the Banach-Saks type <math>p.

Proof. We take (ε_n) sequence such that $(\varepsilon_n) > 0$ for every $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \varepsilon_n \leq \frac{1}{2}$, and moreover we take a weakly null sequence (b_n) in $B(\ell_p(\tilde{f_q}))$. Set $s_0 = b_0 = 0$ and $s_1 = b_{n_1} = b_1$. After, there is a $u_1 \in \mathbb{N}$ such that

$$\left\|\sum_{i=u_1+1}^{\infty} s_1(i)e^{(i)}\right\|_{\ell_p(\tilde{f}_q)} < \varepsilon_1.$$
⁽²⁹⁾

There is an $n_2 \in \mathbb{N}$ such that

$$\left\|\sum_{i=1}^{u_1} b_n(i)e^{(i)}\right\|_{\ell_p(\tilde{f}_q)} < \varepsilon_1$$
(30)

when $n \ge n_2$, because (b_n) is a weakly null sequence implies $b_n \to 0$ coordinatewise. Set $s_2 = b_{n_2}$. Then there is an $u_2 > u_1$ such that

$$\left\|\sum_{i=u_2+1}^{\infty} s_2(i)e^{(i)}\right\|_{\ell_p(\tilde{f}_q)} < \varepsilon_2.$$
(31)

Considering that $b_n \rightarrow 0$ coordinatwise, there is an such that $n_3 > n_2$

$$\left\|\sum_{i=1}^{u_2} b_n(i)e^{(i)}\right\|_{\ell_p(\tilde{f_q})} < \varepsilon_2,$$
(32)

when $n \ge n_3$.

Two increasing subsequences, (u_i) and (n_i) , could be obtained when we continue in this way, such that

$$\left\|\sum_{i=1}^{u_j} b_n(i) e^{(i)}\right\|_{\ell_p(\tilde{f}_q)} < \varepsilon_j, \tag{33}$$

for each $n \ge n_{j+1}$ and

$$\left\|\sum_{i=u_j+1}^{\infty} s_j(i) e^{(i)}\right\|_{\ell_p(\tilde{f}_q)} < \varepsilon_j.$$
(34)

where $s_j = b_{n_j}$. Thus,

$$\begin{split} \left\|\sum_{j=1}^{n} s_{j}\right\|_{\ell_{p}(\tilde{f}_{q})} &= \left\|\sum_{j=1}^{n} \left(\sum_{i=1}^{u_{j-1}} s_{j}(i)e^{(i)} + \sum_{i=u_{j-1}+1}^{u_{j}} s_{j}(i)e^{(i)} + \sum_{i=u_{j}+1}^{\infty} s_{j}(i)e^{(i)}\right)\right\|_{\ell_{p}(\tilde{f}_{q})} \\ &\leq \left\|\sum_{j=1}^{n} \left(\sum_{i=u_{j-1}+1}^{u_{j}} s_{j}(i)e^{(i)}\right)\right\|_{\ell_{p}(\tilde{f}_{q})} + 2\sum_{j=1}^{n} \varepsilon_{j}. \end{split}$$

Alternatively, we can see that $||x||_{\ell_p(\tilde{f_q})} \leq 1$. Hence, we have that

$$\begin{split} & \left\|\sum_{j=1}^{n} \left(\sum_{i=u_{j-1}+1}^{u_{j}} s_{j}(i) e^{(i)}\right)\right\|_{\ell_{p}(\tilde{f}_{q})}^{p} = \\ & = \sum_{j=1}^{n} \sum_{i=u_{j-1}+1}^{u_{j}} \left|\sum_{k=1}^{i} \frac{q^{k} f_{k}(q)}{f_{k+2}(q) - 1} s_{j}(k)\right|^{p} \\ & \leq \sum_{j=1}^{n} \sum_{i=1}^{\infty} \left|\sum_{k=1}^{i} \frac{q^{k} f_{k}(q)}{f_{k+2}(q) - 1} s_{j}(k)\right|^{p} \le n. \end{split}$$

Thus, it may be obtained that

$$\left\|\sum_{j=1}^{n} \left(\sum_{i=u_{j-1}+1}^{u_{j}} s_{j}(i) e^{(i)}\right)\right\|_{\ell_{p}(\tilde{f}_{q})} \leq n^{\frac{1}{p}}.$$

Making use of the knowledge that $1 \le n^{\frac{1}{p}}$ for all $n \in \mathbb{N}$ and 1 , we possess

$$\left\|\sum_{j=1}^n s_j\right\|_{\ell_p(\tilde{f_q})} \le n^{\frac{1}{p}} + 1 \le 2n^{\frac{1}{p}}$$

As a consequence, the space $\ell_v(\tilde{f_a})$ possesses the Banach-Saks type *p*. This ends the proof. \Box

Remark 5.3. Because the space $\ell_p(\tilde{f_q})$ is linearly isomorphic to ℓ_p , $R(\ell_p(\tilde{f_q})) = R(\ell_p) = 2^{\frac{1}{p}}$.

Remarks 5.1 and Remarks 5.3 lead us to the following theorem.

Theorem 5.4. The space $\ell_{v}(\tilde{f}_{q})$ (1 possesses the weak fixed point property.

6. Conclusion

The new triangle matrix with q-Fibonacci numbers is utilized in this article to define the sequence spaces $c_0(\tilde{f_q}), c(\tilde{f_q}), \ell_{\infty}(\tilde{f_q})$ and $\ell_p(\tilde{f_q})$ ($1 \le p < \infty$). The variety of q has a major impact on the inclusion links between these spaces. Then, we looked at the topological and certain geometric properties of the space $\ell_p(\tilde{f_q})$.

The *q*–Fibonacci numbers, which play a significant role in algebra, were moved to the area of sequence spaces and summability, which is an invention.

Acknowledgements

This paper have been presented the 6th International HYBRID Conference on Mathematical Advances and Applications.

References

- [1] H. Aktuğlu, Ş. Bekar, On q-Cesàro matrix and q-statistical convergence, J. Comput. Appl. Math. 235 (2011), 4717-4723.
- [2] G. E. Andrews, Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart. 42 (2004), 3-19.
- [3] K. I. Atabey, M. Çınar, M. Et, q-Fibonacci sequence spaces and related matrix transformations, J. Appl. Math. Comput. 69 (2023), 2135–2154.
- [4] P. Aytaç, Some Arithmetic Properties of q-Fibonacci Numbers, Master thesis, Akdeniz University (2018).
- [5] F. Başar, H. Dutta, Summable Spaces and their Duals, Matrix Transformations and Geometric Properties, CRC Press (2020).
- [6] Ş. Bekar, q- Matrix summability methods, PhD Thesis, Eastern Mediterranean University (EMU) (2011).
- [7] B. C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989.
- [8] L. Carlitz, Fibonacci notes 3: q–Fibonacci numbers, 1974.
- [9] J. Cigler, *Elementare q-identiten*, Publ. Inst. Math. (1982), 23-57.
- [10] M. Çinar, M. Et, q-Double Cesaro matrices and q-statistical convergence of double sequences, Nat. Acad. Sci. Letters 43 (2020), 73–76.
- [11] S. Demiriz, A. Şahin, q–Cesàro sequence spaces derived by q–analogues, Adv. Math. 5 (2016), 97–110.
- [12] J. Diestel, Sequences and series in Banach spaces (Vol. 92), Springer Science and Business Media, 2012.
- [13] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377–386.
- [14] M. Et, A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc. 23 (2000), 25–32.
- [15] J. Garcia-Falset, Stability and fixed points for nonexpansive mappings, Houst. J. Math. 20 (1994), 495-506.
- [16] J. Garcia-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl. 215 (1997), 532–542.
- [17] F. Gokçe, M. A. Sarigol, Series spaces derived from absolute Fibonacci summability and matrix transformations, Boll. Unione Mat. Italiana 13 (2020), 29–38.
- [18] F. Gokçe, M. A. Sarigol, Some matrix and compact operators of the absolute Fibonacci series spaces, Kragujevac J. Math. 44 (2020), 273–286.
- [19] H. Hudzik, V. Karakaya, M. Mursaleen, N. Šimsek, Banach-Saks type and Gurarifil modulus of convexity of some Banach sequence spaces, Abst. Appl. Anal. (2014).
- [20] M. D. Hirschhorn, Partitions and Ramanujan's continued fraction, Duke Math. J. 39 (1972), 789–791.
- [21] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} , Nonlinear Anal. Theory, Methods Appl. 65 (2006), 707–717.

- [22] M. Mursaleen, S. Tabassum, R. Fatma, On q-statistical summability method and its properties, Iranian J. Sci. Techn. Transactions A: Science 46 (2022), 455–460.
- [23] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
- [24] A. Kananthai, M. Musarleen, W. Sanhan, S. Suantai, On property (H) and rotundity of difference sequence spaces, J. Nonlinear Convex Anal. 3 (2002), 401–410.
- [25] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications, 2013(1) (2013), 1-15.
- [26] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilin. Algebra 64 (2016), 2208[-2223.
- [27] M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl. 498 (2021), 124925.
- [28] V. A. Khan, U. Tuba, On paranormed Ideal convergent sequence spaces defined by Jordan totient function, J. Ineq. Appl. 2021 (2021), 1–16.
- [29] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), 1299–1309.
- [30] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. 59 (1992), 562[-565
- [31] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.
- [32] H. Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discrete Math. 306 (2006), 2118–2127.
- [33] E. Savaş, V. Karakaya, N. Şimşek, Some $\ell(p)$ -type new sequence spaces and their geometric properties, Abstr. Appl. Anal. (2009), 1–12.
- [34] I. Schur, Ein Beitrag zur Additiven Zahlentheorie, Sitzungsber., Akad. Wissensch. Berlin, Phys., Math. Klasse, (1917), 302–321.
- [35] T. Selmanoğulları, E. Savaş, B.E. Rhoades, On q-Hausdorff matrices, Taiwanese J. Math. 15 (2011), 2429-2437.
- [36] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenrä umen eine Ergebnisübersicht, Math. Z. 154 (1977), 1–16.
- [37] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesàro matrix in ℓ_p space and the associated operator ideal, J. Math. Anal. Appl. **493** (2021), 1–17.
- [38] T. Yaying, B. Hazarika, M. Mursaleen, On generalized (p,q)-Euler matrix and associated sequence spaces, J. Function Spaces 1(2021), 8899960.
- [39] T. Yaying, B. Hazarika, B. Chandra Tripathy, M. Mursaleen, The spectrum of second order quantum difference operator, Symmetry 14 (2022), 557.
- [40] A. Wilansky, Summability Through Functional Analysis, Elsevier, 2000.