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Abstract. Motivated by the knowledge of the existence of continuous solutions of a certain fractional
boundary value problem with integral boundary conditions, we present in here –in a unified manner– new
sufficient conditions to conclude the existence and uniqueness of continuously differentiable solutions to
this fractional boundary value problem and analyse its stability in the sense of Ulam-Hyers and Ulam-
Hyers-Rassias. After presenting the main conclusions, two illustrative examples are provided to verify the
effectiveness of the proposed theoretical results.

1. Introduction

In recent years we have witnessed a great growth in the investigation of different types of properties
related to fractional differential equations and fractional integral equations (see [1–7, 24, 25, 27, 30, 34, 39]).
Much of this development and interest comes directly from different applications where such equations,
with this fractional characteristic, play a decisive role. In fact, fractional order derivatives and fractional
integration have proven to be able to closely interpret real-life events that can fall under diverse disciplines
such as physics, chemistry, mechanics, biology, engineering, etc. (cf., for example, [20, 22, 25, 28, 30, 34, 35]).

Although the origin of fractional calculus is known to date back to 1695, when Leibniz wrote his famous
reply letter to L’Hôpital suggesting the possibility to consider a derivative of fractional order, it was not
until later that Lacroix (in 1819) introduced the fractional derivative (based on the expression for the nth
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derivative of the power function). Today, the most used fractional derivatives are certainly the Riemann-
Liouville and Caputo fractional derivatives, which play an immodest role in the fractional order differential
equations area.

In any case, in addition to the definitions in the Riemann-Liouville and Caputo sense, there is also a huge
variety of other possibilities for fractional derivatives that have already been introduced and used, such
as Grünwald-Letnikov, Caputo-Hadamard, Caputo-Fabrizio, Losada-Nieto, Weyl, Marchaud, Hadamard,
Chen, Davidson-Essex, Canavati, Jumarie, Hilfer, Katugampola, Hilfer-Katugampola, Atangana-Baleanu
Caputo, Atangana-Baleanu Riemann-Liouville, Sun-Hao-Zhang-Baleanu, Yang et al, or even global gener-
alisations such as Ψ-Caputo and Ψ-Hilfer. It should be noted that, as a rule, for the most typical function
spaces to be considered in the domains of the corresponding fractional derivative operators, fractional
derivation does not satisfy the additive property in its derivative orders when there are successive com-
positions of the fractional derivative operator (with different non-integer positive derivative orders). That
is, there is no index law property [26], or there is no semigroup property for these fractional derivative
operators (at least when some restrictive conditions or the so-called ”strict sense criterion” are not consid-
ered, cf. [36]). This last circumstance has led to a certain criticism of these fractional derivative operators.
However, it is also recognised that sometimes not satisfying the property of the index law opens the door
to modelling real phenomena in a more appropriate way and therefore increases the usefulness of these
operators in applying mathematics to real-life phenomena. This inherent circumstance in modelling phe-
nomena is undoubtedly one of the reasons why fractional calculus continues to be widely applied and the
reason for multiple different definitions, with different nuances in the properties of the derivative opera-
tors that are considered in each application. In our case, we chose to work with the Riemann-Liouville
case only from a perspective of continuity in relation to work already considered on the same problem.
Therefore, there was no crucial motivation here to choose this or avoid another type of fractional operator.
Comparisons between the various definitions of fractional derivative operators are now well-known and
enable appropriate choices to be made, particularly when the main concern is real-life problems and their
modelling (see, for example, [33, 36] and the references cited there).

As a rule, it is rare to find an explicit exact solution of a differential equation (or integral equation) of
fractional order. In this way, it is very important to have additional knowledge about approximate solutions
and, in particular, about different types of eventual stabilities that those equations may present. That is
why recently several methods and problems are being analyzed for additional information in that way (see,
for example, [8, 11–19, 23, 29, 31, 37, 38, 40] and the references contained therein).

In this work we will be especially concerned with the study of Ulam-Hyers and Ulam-Hyers-Rassias
stabilities [9, 21, 32] for a given fractional boundary value problem (FBVP), involving nonlinear conditions
and incorporating integral boundary conditions. Such a problem will be Ulam-Hyers stable if, for each
solution of the fractional problem, there is an approximate solution of the problem in question that ap-
proaches it (in an appropriate defined distance). It should be noted that Ulam formulated the stability of a
functional equation, which was later solved by Hyers [21] using an additive function defined on a Banach
space. This result led Aoki [9] and Rassias [32] to study and generalize the concept of stability, establishing
what is currently more commonly called Ulam-Hyers-Rassias stability.

Motivated by the above, the main goal of this paper is to investigate a condition not only to the existence
but also to the uniqueness of continuously differentiable solutions to the problem in question, and that
will be also a sufficient condition to ensure its stabilities of Ulam-Hyers and Ulam-Hyers-Rassias types.
This will be mainly based on a certain iterative scheme and a consequent convergence within a fixed point
method.

The paper is organized such that in the next section we will formulate the problem in mathematical
terms and recall the background materials and preliminaries. In Section 3, focused on the aforementioned
method, we investigate the existence and uniqueness of a continuously differentiable solution. Further on,
in Section 4, an appropriate deduction is performed to derive the Ulam-Hyers and the Ulam-Hyers-Rassias
stabilities of the problem under study for the same conditions exhibited in Section 3. The paper ends with
two concrete examples to illustrate the results obtained and a brief conclusion on the work carried out, as
well as additional considerations on future possibilities.
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2. Formulation of the Problem and Background Material

In this paper we will analyse different types of stabilities for the following fractional boundary value
problem (FBVP) with nonlinear integral conditions

CDαy(t) = f (t, y(t)), t ∈ J = [0, b]

y(0) − y′(0) =
∫ b

0
1(s, y(s))ds

y(b) + y′(b) =
∫ b

0
h(s, y(s))ds

(2.1)

where α ∈ (1, 2) is the fractional order of differentiation, CDα denotes the Caputo fractional derivative
operator, b ∈ R+ and f , 1, h : J × E → E are given E-valued functions, for some Banach space E endowed
with a norm ∥ · ∥E.

We must clarify that the existence of solutions of the FBVP (2.1) was already analysed in [12] for the
case of E = R and considering fixed point arguments based on operators that act on the solutions of the
FBVP (2.1) when considering as a domain the space C(J) of all real-valued continuous functions defined on
J, endowed with the supremum norm. The existence of continuous solutions of the FBVP (2.1) was also
studied in [11], now in the more general case of an abstract Banach space (E, ∥.∥E), using mainly techniques
associated with measures of noncompactness and a Mönch type fixed point argument, by considering an
operator N that acts on the solutions of the FBVP (2.1) in the framework of the following spaces

N : C(J,E)→ C(J,E)

where C(J,E) denotes the space of E-valued continuous functions, defined on J = [0, b], endowed with the
supremum norm

∥y∥C(J,E) := sup
t∈[0,b]

∥y(t)∥E.

As already mentioned in general terms, the aim of this work is to obtain sufficient conditions to guarantee
the stability of the Ulam-Hyers type and the Ulam-Hyers-Rassias type for the FBVP (2.1) and to consider
C1(J,E) as the natural space of solutions to the FBVP (2.1) for which we should guarantee their existence
and uniqueness.

Here, C1(J,E) denotes the space of all E-valued continuous functions whose first derivative is also
continuous, defined on J = [0, b], and endowed with the (natural) norm

∥y∥C1(J,E) := sup
t∈[0,b]

∥y(t)∥E + sup
t∈[0,b]

∥y′(t)∥E.

In this work, we will often use the well-known Euler Gamma function given by Γ(α) =
∫
∞

0 tα−1e−tdt,
α > 0.

We will now recall and introduce several definitions that we will be using in the next sections.

Definition 2.1. [25] For a continuous function y, given on the interval (0,∞), the Caputo fractional derivative of
order α ∈ R+, is defined by

CD
α

y(t) =
1

Γ(n − α)

∫ t

0

y(n)(s)
(t − s)α−n+1 ds,

provided the right-hand side is pointwise defined on (0,∞), where n ∈N is such that n = [α] + 1 and [α] denotes the
integer part of α.

Definition 2.2. [10] Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski measure of
noncompactness is the map γ : ΩE → [0,∞] defined by

γ(B) = inf
{
ε > 0 : B ⊂ ΩE can be covered with a finite number of sets of diameter not greater than ε

}
.
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Definition 2.3. (i) We say that the FBVP (2.1) has the Ulam-Hyers stability if for each function y satisfying

y(0) − y′(0) =
∫ b

0
1(s, y(s))ds

y(b) + y′(b) =
∫ b

0
h(s, y(s))ds

and ∥∥∥CD
α

y(t) − f (t, y(t))
∥∥∥

E ≤ θ, t ∈ J, θ ≥ 0, (2.2)

there is a solution y0 of the FBVP (2.1) and a constant C > 0 (independent of y and y0) such that∥∥∥y(t) − y0(t)
∥∥∥

E ≤ Cθ, t ∈ J. (2.3)

(ii) If instead of θ in (2.2) and (2.3), we have a nonnegative function σ (defined on J), then we say that the FBVP
(2.1) is Ulam-Hyers-Rassias stable.

3. Existence and Uniqueness of Solution

From [12] and [11], we already know that the FBVP (2.1) is equivalent to the integral equation

y(t) =
(
Ty

)
(t), (3.1)

where(
Ty

)
(t) = Py(t) +

∫ b

0
G(t, s) f (s, y(s))ds, (3.2)

with

Py(t) = A(t)
∫ b

0
1(s, y(s))ds + B(t)

∫ b

0
h(s, y(s))ds,

A(t) =
b + 1 − t

b + 2
,

B(t) =
t + 1
b + 2

,

G(t, s) =


(t−s)α−1

Γ(α) −
(1+t)(b−s)α−1

(b+2)Γ(α) −
(1+t)(b−s)α−2

(b+2)Γ(α−1) , 0 ≤ s ≤ t

−
(1+t)(b−s)α−1

(b+2)Γ(α) −
(1+t)(b−s)α−2

(b+2)Γ(α−1) , t ≤ s ≤ b
. (3.3)

It is important to remark that due the presence of the monomial (b − s)α−2 (and the range of values of
α ∈ (1, 2)), in (3.3), we can not guarantee the boundedness of G.

Anyway, when considering

t 7→
∫ b

0
|G(t, s)| ds

we are facing a continuous function on J = [0, b], and so bounded. In view of this, we shall use the notation

G̃ = sup
t∈[0,b]

∫ b

0
|G(t, s)| ds. (3.4)

As pointed out before, using mainly the Kuratowski measure of noncompactness γ as a map

γ : ΩE → [0,∞]

(for bounded subsets ΩE of E), cf. [10] and [11], the authors of the last paper obtained the following
conditions (as sufficient conditions) to ensure the existence of solutions of FBVP (2.1):
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(C1) The maps f , 1, h : [0, b] × E→ E are Carathéodory.

(C2) There are elements p f , p1, ph in L∞ ([0, b],R+) so that∥∥∥ f (t, y)
∥∥∥

E ≤ p f (t)∥y∥E (a.e. t ∈ [0, b] and for each y ∈ E),∥∥∥1(t, y)
∥∥∥

E ≤ p1(t)∥y∥E (a.e. t ∈ [0, b] and for each y ∈ E),∥∥∥h(t, y)
∥∥∥

E ≤ ph(t)∥y∥E (a.e. t ∈ [0, b] and for each y ∈ E).

(C3) For each bounded set B ∈ ΩE ⊂ E and almost each t ∈ [0, b], it holds

lim
k→0+

γ(w(Jt,k × B)) ≤ pw(t).γ(B)

for w = f , 1, h, and Jt,k = [t − k, t] ∩ [0, b].

(C4) b(b+1)
b+2

(∥∥∥p1
∥∥∥

L∞ +
∥∥∥ph

∥∥∥
L∞

)
+ G̃

∥∥∥p f

∥∥∥
L∞ < 1.

Using a different method, we will now obtain other sufficient conditions that ensure the existence and
the uniqueness of C1 ([0, b],E) solutions for the FBVP (2.1).

Theorem 3.1. If f , 1 and h satisfy the Lipschitz conditions∥∥∥1(s, y1(s)) − 1(s, y0(s))
∥∥∥

E ≤ L1
∥∥∥y1(s) − y0(s)

∥∥∥
E , s ∈ [0, b], (3.5)∥∥∥h(s, y1(s)) − h(s, y0(s))

∥∥∥
E ≤ Lh

∥∥∥y1(s) − y0(s)
∥∥∥

E , s ∈ [0, b], (3.6)∥∥∥ f (s, y1(s)) − f (s, y0(s))
∥∥∥

E ≤ L f

∥∥∥y1(s) − y0(s)
∥∥∥

E , s ∈ [0, b], (3.7)

for some constants L1, Lh and L f , and

C :=
b(b + 1)

b + 2

(
L1 + Lh

)
+ G̃L f < 1, (3.8)

then the FBVP (2.1) admits one and only one solution y ∈ C1 ([0, b],E).

Proof. Having in mind (3.1), we will introduce an iterative scheme defined by

yn+1(t) =
(
Tyn

)
(t), (3.9)

for T defined in (3.2), and will evaluate ∥yn+1(t) − yn(t)∥E in the following way:

∥yn+1(t) − yn(t)∥E =

∥∥∥∥∥∥A(t)
∫ b

0
1(s, yn(s))ds + B(t)

∫ b

0
h(s, yn(s))ds

+

∫ b

0
G(t, s) f (s, yn(s))ds − A(t)

∫ b

0
1(s, yn−1(s))ds

−B(t)
∫ b

0
h(s, yn−1(s))ds −

∫ b

0
G(t, s) f (s, yn−1(s))ds

∥∥∥∥∥∥
E

≤
b + 1
b + 2

L1

∫ b

0
∥yn(s) − yn−1(s)∥Eds

+
b + 1
b + 2

Lh

∫ b

0
∥yn(s) − yn−1(s)∥Eds

+G̃ sup
t∈[0,b]

∥yn(t) − yn−1(t)∥E L f

≤ C sup
t∈[0,b]

∥yn(t) − yn−1(t)∥E, (3.10)
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with C = b(b+1)
b+2

(
L1 + Lh

)
+ G̃L f .

Hence,

∥yn+1(t) − yn(t)∥E ≤ C sup
t∈[0,b]

∥yn(t) − yn−1(t)∥E

≤ C
2 sup

t∈[0,b]
∥yn−1(t) − yn−2(t)∥E

...

≤ C
n sup

t∈[0,b]
∥
(
Ty1

)
(t) − y1(t)∥E.

We will now use the generalized Weierstrass M-test for the Banach space (E, ∥ · ∥E): If a sequence
of positive constants M1,M2,M3, . . . can be found such that in the interval J we have (a) ∥un(t)∥E ≤ Mn,
n = 1, 2, 3, . . ., and (b)

∑
∞

n=1 Mn converges, then
∑
∞

n=1 un(t) is uniformly and absolutely convergent in the
interval.

Considering our sequence (yn)n∈N, in (3.9), in the framework of the Banach space C1 ([0, b],E), and having
in mind (3.8), by using the generalized Weierstrass M-test (for elements with images on the Banach space
E), we have that

∞∑
n=1

(
yn+1(t) − yn(t)

)
is absolutely and uniformly convergent on [0, b].

Since yn can be written as

yn(t) = y1(t) +
n−1∑
k=1

(
yk+1(t) − yk(t)

)
,

there exists a unique solution y ∈ C1 ([0, b],E) such that

lim
n→∞

yn = y.

Moreover, taking the limit on both sides of (3.9), we observe that the limit function y is the unique solution
y ∈ C1 ([0, b],E) such that Ty = y.

4. Ulam-Hyers and Ulam-Hyers-Rassias Stabilities

We are now in a position to derive the main goal of this work and identify sufficient conditions so that
the FBVP (2.1) will admit the above mentioned types of stability.

Theorem 4.1. If f , 1 and h satisfy (3.5)-(3.7), and (3.8) holds true, then the FBVP (2.1) has the Ulam-Hyers stability
(in the sense of Definition 2.3 (i)).

Proof. Let us consider a function y satisfying

y(0) − y′(0) =
∫ b

0
1(s, y(s))ds

y(b) + y′(b) =
∫ b

0
h(s, y(s))ds

and ∥∥∥CD
α

y(t) − f (t, y(t))
∥∥∥

E ≤ θ, t ∈ [0, b], θ ≥ 0.
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This means that∥∥∥(Ty
)

(t) − y(t)
∥∥∥

E ≤ θ, t ∈ [0, b].

Under the conditions of the present theorem, we already know from Theorem 3.1 that

y0(t) = lim
n→∞

(
Tny

)
(t)

is the exact solution of Ty = y. Moreover, Tny converges uniformly to y0, as n → ∞. Therefore, there is a
natural k such that∥∥∥∥(Tky

)
(t) − y0(t)

∥∥∥∥
E
≤ θ, t ∈ [0, b].

As a consequence, we obtain for any t ∈ [0, b],∥∥∥y(t) − y0(t)
∥∥∥

E ≤

∥∥∥∥y(t) −
(
Tky

)
(t)

∥∥∥∥
E
+

∥∥∥∥(Tky
)

(t) − y0(t)
∥∥∥∥

E

≤

∥∥∥y(t) −
(
Ty

)
(t)

∥∥∥
E +

∥∥∥∥(Ty
)

(t) −
(
T2y

)
(t)

∥∥∥∥
E
+ · · ·

· · · +
∥∥∥∥(Tk−1y

)
(t) −

(
Tky

)
(t)

∥∥∥∥
E
+

∥∥∥∥(Tky
)

(t) − y0(t)
∥∥∥∥

E

≤ sup
t∈[0,b]

∥∥∥y(t) −
(
Ty

)
(t)

∥∥∥
E + C sup

t∈[0,b]

∥∥∥y(t) −
(
Ty

)
(t)

∥∥∥
E + · · ·

· · · + Ck−1 sup
t∈[0,b]

∥∥∥y(t) −
(
Ty

)
(t)

∥∥∥
E + θ

≤ (1 + C + C2 + · · · + Ck−1)θ + θ

≤
θ

1 − C
+ θ

=
2 − C
1 − C

θ.

Theorem 4.2. If f , 1 and h satisfy (3.5)-(3.7), and (3.8) holds true, then the FBVP (2.1) has the Ulam-Hyers-Rassias
stability (in the sense of Definition 2.3 (ii)).

Proof. Let us now take y so that∥∥∥(Ty
)

(t) − y(t)
∥∥∥

E ≤ σ(t), t ∈ [0, b],

for a nonnegative function σ (defined on J = [0, b]), and let us also consider y0 to be the solution of the FBVP
(2.1).

It is clear that∥∥∥y(t) − y0(t)
∥∥∥

E ≤

∥∥∥y(t) −
(
Ty

)
(t)

∥∥∥
E +

∥∥∥(Ty
)

(t) − y0(t)
∥∥∥

E

≤ σ(t) +
∥∥∥(Ty

)
(t) − y0(t)

∥∥∥
E , t ∈ [0, b]. (4.1)

Now, using the same argument as in (3.10), we realize that∥∥∥(Ty
)

(t) − y0(t)
∥∥∥

E =
∥∥∥(Ty

)
(t) −

(
Ty0

)
(t)

∥∥∥
E

≤ C sup
t∈[0,b]

∥∥∥y(t) − y0(t)
∥∥∥

E . (4.2)

Thus, from (4.1) and (4.2), we conclude that∥∥∥y(t) − y0(t)
∥∥∥

E ≤ σ(t) + C sup
t∈[0,b]

∥∥∥y(t) − y0(t)
∥∥∥

E .



L. P. Castro, A. M. Simões / Filomat 39:2 (2025), 617–628 624

Therefore,

(1 − C) sup
t∈[0,b]

∥∥∥y(t) − y0(t)
∥∥∥

E ≤ σ(t),

and so∥∥∥y(t) − y0(t)
∥∥∥

E ≤
1

1 − C
σ(t), t ∈ [0, b].

5. Examples

In this section we will exemplify the previous theory by analysing that the conditions of the above
theorems are satisfied in some chosen fractional differential boundary value problems (that belong to the
above analysed class of problems).

5.1. First Example

We will first consider the concrete case taken in [12] in order to study there the existence of a solution to
a particularization of the general problem mentioned above. Namely, let us analyse

CDαy(t) = e−t
|y(t)|

(9+et)(1+|y(t)|) , t ∈ J = [0, 1], 1 < α < 2,

y(0) − y′(0) =
∞∑

i=0

ci · y(ti),

y(1) + y′(1) =
∞∑
j=0

d j · y(̃ti),

(5.1)

for some ci, d j ∈ R+ (i, j = 0, 1, . . .) so that
∞∑

i=0

ci < ∞ and
∞∑
j=0

d j < ∞ and where 0 < t0 < t1 < · · · < 1 and

0 < t̃0 < t̃1 < · · · < 1.
Thus, when compared with our general situation in (2.1) we have here (E, ∥ · ∥E) = (R, | · |), and

f (t, y(t)) =
e−t
|y(t)|

(9 + et)(1 + |y(t)|)
, t ∈ J = [0, 1],∫ 1

0
1(s, y(s))ds =

∞∑
i=0

ci · y(ti),∫ 1

0
h(s, y(s))ds =

∞∑
j=0

d j · y(̃ti).

Therefore, it is clear that (3.5)-(3.7) hold with

L1 =
∞∑

i=0

ci, Lh =

∞∑
j=0

d j and L f =
1

10

just because

| f (t, y1(t)) − f (t, y2(t))| ≤
e−t

9 + et |y1(t) − y2(t)|

≤
1

10
|y1(t) − y2(t)|, t ∈ J = [0, 1].
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Moreover, having in mind the definition of G in (3.3) and C in (3.8), we have in this case

C =
2
3

 ∞∑
i=0

ci +

∞∑
j=0

d j

 + 1
10

sup
t∈[0,1]

∫ 1

0
|G(t, s)| ds

≤
2
3

 ∞∑
i=0

ci +

∞∑
j=0

d j

 + 5 + 2(α − 1)
30(α − 1)Γ(α − 1)

. (5.2)

Therefore, for α ∈ (1, 2) and ci, d j ∈ R+ such that

∞∑
i=0

ci +

∞∑
j=0

d j ≤
15(α − 1)Γ(α − 1) − (α − 1) − 5/2

10(α − 1)Γ(α − 1)
(5.3)

we have from (5.2) that C < 1 and so (for those α, ci, d j) the class of fractional boundary value problem (5.1)
is Ulam-Hyers-Rassias stable and Ulam-Hyers stable (cf. Theorem 4.2 and Theorem 4.1).

5.2. Second Example

Let us now consider a second example of a fractional boundary value problem of the type (2.1), given
by



CDαy(t) = 1
27+3et y(t), t ∈ J = [0, 1], 1 < α < 2,

y(0) − y′(0) =
∫ 1

0

1
6 + 4e6s y(s)ds,

y(1) + y′(1) =
∫ 1

0

1
9 + es y(s)ds.

(5.4)

In the notation of the previous sections, we have in here

f (t, y(t)) :=
1

27 + 3et y(t),

1(s, y(s)) :=
1

6 + 4e6s y(s),

h(s, y(s)) :=
1

9 + es y(s),

b := 1.

Therefore, it is clear that (3.5)-(3.7) are satisfied in this case with

L1 =
1
10
, Lh =

1
10

and L f =
1
30
.
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Additionally, from (3.3) and (3.4), we have in this case

G̃ = sup
t∈[0,1]

∫ 1

0
|G(t, s)| ds

= sup
t∈[0,1]

{∫ t

0

∣∣∣∣∣∣ (t − s)α−1

Γ(α)
−

(1 + t)(1 − s)α−1

3Γ(α)
−

(1 + t)(1 − s)α−2

3Γ(α − 1)

∣∣∣∣∣∣ ds

+

∫ 1

t

∣∣∣∣∣∣ (1 + t)(1 − s)α−1

3Γ(α)
+

(1 + t)(1 − s)α−2

3Γ(α − 1)

∣∣∣∣∣∣ ds
}

≤ sup
t∈[0,1]

{
tα

Γ(α + 1)
+

(1 + t)(1 − t)α

3Γ(α + 1)
+

1 + t
3Γ(α + 1)

+
(1 + t)(1 − t)α−1

3Γ(α)
+

1 + t
3Γ(α)

+
(1 + t)(1 − t)α

3Γ(α + 1)
+

(1 + t)(1 − t)α−1

3Γ(α)

}
<

7
3Γ(α + 1)

+
4

3Γ(α)
.

Moreover, in this case, we have

C =
b(b + 1)

b + 2

(
L1 + Lh

)
+ G̃L f

<
2
3

( 1
10
+

1
10

)
+

(
7

3Γ(α + 1)
+

4
3Γ(α)

)
1

30

=
2

15
+

7
90Γ(α + 1)

+
4

90Γ(α)
.

And so, C < 1 for all orders α ∈ (1, 2). Thus, all conditions of Theorem 4.1 and Theorem 4.2 hold true and
so the fractional boundary value problem (5.4) is Ulam-Hyers-Rassias stable, as well as Ulam-Hyers stable.

6. Conclusions

Guaranteeing the existence of solutions in the most appropriate solution spaces is an important area of
research, especially in classes of boundary value problems where derivatives of various kinds occur and
it is necessary to ensure that they are well defined. The consideration of inappropriate spaces leads to the
existence of ill-posed frameworks – which is obviously undesirable, especially with regard to the existence
of solutions and the possible types of stability associated with them.

In this article we present new conditions for the existence of C1 solutions to the FBVP (2.1) and, in the
same framework of function spaces, we determine conditions that guarantee its stability in the sense of
Ulam-Hyers and Ulam-Hyers-Rassias.

An important question that requires further research is the determination of the most optimal constants
that guarantee the existence of the inequalities that are at the heart of the definitions of the stabilities
considered here. Finally, we emphasise that the stability conditions derived here can help in the search for
approximate solutions to the problems in question.
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