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Existence uniqueness and stability of solutions for ψ-Caputo fractional
differential iterative equation with boundary value conditions
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Abstract. The subject of this paper revolves around fractional differential equations incorporating a
ψ-Caputo fractional derivative, focusing on the Ulam–Hyers stability , the existence and uniqueness of
solutions for nonlinear fractional quadratic iterative differential equation by utilizing Schauder’s fixed point
theorem, reinforced by the Ascoli-Arzelá theorem. Additionally, we present two illustrative examples to
buttress our analytical findings.

1. Introduction

The concept of fractional calculus originated in the 17th century during discussions involving Leibniz
and L’Hôpital. However, it remained a mathematical curiosity until the 20th and 21st centuries, it is a field
that extends classical calculus by introducing non-integer orders of integration and differentiation. This
concept has become highly significant in various scientific and engineering fields due to its broad range of
applications, such as viscoelastic materials, anomalous diffusion processes, and control systems.
Fractional differential equations provide a powerful and flexible framework for modeling dynamic systems.
They allow for the description of complex phenomena that exhibit long-range interactions and memory
retention. In recent years, fractional differential equations have gained significant traction in various
fields, including physics, engineering, biology, finance, and control theory, see [9, 12, 14, 15, 18]. This
ability to describe systems has led to the development of specialized fractional operators, such as the
Riemann-Liouville, Caputo, and Hilfer. Recently, Almeida [2] has extended the work of several scientists
and proposed a new fractional derivation for the kernel function called ψ-Caputo fractional derivative,
for more details for ψ−Caputo fractional derivative and their application, we direct readers to the papers
[1, 3, 4, 6, 7, 20, 22, 25]. On the other hand, Petuhov[23] introduced the iterative differential equation in 1965
while investigating the existence and uniqueness of solutions to the following equation:

z′′ = λz(z(t)),∀t ∈ [−b, b]
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After that, the existence of a solution for the first order and second order iterative differential equation
studied by many scholars we mention here some works [10, 13, 26]. Moreover, much of study has been
achieved on fractional iterative terative differential equations, out of which [8, 11, 19], It is worth mentioning
that Rui [16] studied the existence and uniqueness of solutions for nonlinear quadratic iterative equations
in the sense of the Caputo fractional derivative by using the Leray-Schauder fixed point theorem and
topological degree theory. Therefore, it is valuable to contribute to bridging this gap by further exploring
in this direction, aiming to enhance and complement the existing literature.
Motivated by the aforesaid work. In this paper, our article centers on investigating the existence and
uniqueness, along with the Ulam stability[5], of solutions for a fractional differential equations we consider
the following problem:{

CDα,ψy(t) = ϕ
(
t, y(t), y[2](t)

)
, t ∈ [a, b]

y(a) = a, y(b) = b.
(1)

where y[2](t) = y(y(t)), CDα,ψy(.) denotes the ψ−Caputo derivative for y with order 1 < α < 2 (see definition
2.4), and ϕ : [a, b] × R × R → R is a continuouns function. We explore the existence and uniqueness of
solutions, as well as determine the Ulam–Hyers stability and generalized Ulam–Hyers stability aspect.
In the next sections of this article, we structure the remaining content as follows: We introduce fundamental
definitions of fractional calculus, essential lemmas in section 2. In section 3, the addressation of the
Leray-Schauder fixed point theorem and Ascoli-Arzelá theorem is employed to investigate the existence
and uniqueness of solutions for nonlinear ψ-Caputo fractional quadratic iterative differential equation.
Additionally, an illustrative example is provided in Section 4.

2. Preliminaries

In this section, we recall some definition and lemmas results of ψ-fractional derivative and ψ-fractional
integral, which will be later employed.see the articles [2, 17] for more details.

Notation 2.1.

• We denote by E = C([a, b],R) the Banach space of all continuous functions from [a, b] into R equipped with
the following norm

∥x∥ = sup{|x(t)|; t ∈ [a, b]}.

Definition 2.2. Let α > 0 , h an integral function defined on [a, b] and ψ ∈ Cn[a, b] and increassing function such
that ψ′(s) , 0 for all s ∈ [a, b]. The ψ−Riemann–Liouville fractional integral of h of order α is defined by

Iα,ψa+ h(t) :=
1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1h(τ)dτ, (2)

where Γ is the gamma function. Note that Eq. (2) is reduced to the Riemann-Liouville and Hadamard fractional
integrals when ψ(t) = t and ψ(t) = ln t, respectively.

Definition 2.3. Let n − 1 < α < n, h : [a, b] → R be an integrable function and ψ ∈ Cn[a, b] and increassing
function such that ψ′(s) , 0 for all s ∈ [a, b]. The ψ-Riemann-Liouville fractional derivative of h of order α is defined
by

Dα,ψ
a+ h(t) =

[
1

ψ′(t)
d
dt

]n
In−α,ψ
a+ h(t),

where n = [α] + 1 and [α] denotes the integer part of the real number α.
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Definition 2.4. Let n − 1 < α < n, h ∈ Cn−1[a, b] and ψ ∈ Cn[a, b] and increassing function such that ψ′(s) , 0 for
all s ∈ [a, b]. The ψ-Caputo fractional derivative of function h of order α is determined as

CDα,ψ
a+ h(t) = Dα,ψ

a+

h(t) −
n−1∑
k=0

h[k]
ψ (a)

k!
(ψ(t) − ψ(a))k

 ,
where h[k]

ψ (t) =
[

1
ψ′(t)

d
dt

]k
h(t) and n = [α] + 1 for α <N,n = α for α ∈N. Further, if h ∈ Cn[a, b] and α <N, then

CDα,ψ
a+ h(t) = In−α,ψ

a+

[
1

ψ′(t)
d
dt

]n
h(t)

=
1

Γ(n − α)

∫ t

a
ψ′(s)(ψ(t) − ψ(s))n−α−1h[n]

ψ (s)ds,

(3)

Thus, if α = n ∈N, one has
CDα,ψ

a+ h(t) = h[n]
ψ (t).

Clearly,
CDα,ψ

a+ c = 0

where c is a constant number.

Remark 2.5. In particular, theψ-Caputo fractional derivative is reduced to the the Caputo fractional derivative when
ψ(t) = t. Moreover, for ψ(t) = log(t), it gives the Caputo–Hadamard fractional derivative.

Lemma 2.6. ([2, 17]) Let β, α > 0 and h : [a, b]→ R. The following holds:
(1) If h ∈ C[a, b], then CDα,ψ

a+ Iα,ψa+ h(t) = h(t).

(2) If h ∈ Cn−1[a, b], then Iα,ψa+
CDα,ψ

a+ h(t) = h(t) −
∑n−1

k=0 ck[ψ(t) − ψ(a)]k, where ck =
h[k]
ψ (a)

k! .
In particular,
if 0 < α < 1, we have Iα,ψa+

CDα,ψ
a+ h(t) = h(t) − h(a).

(3) CDα,ψ
a+ [ψ(t) − ψ(a)]k = 0,∀k ∈ {0, 1, . . . ,n − 1},n ∈N.

Theorem 2.7 (Schauder fixed point theorem). Let B be a compact convex subset of a Banach space E. Assume
that χ : B 7→ B is a continuous operator. Then χ has at least one fixed point in M.

3. Existence, uniqueness and stability

3.1. Existence and uniqueness of solution
In this section, Before presenting the existence result for the fractional quadratic iterative problem, it is

necessary to establish the following fundamental lemma.

Lemma 3.1. y ∈ E is a solution of the fractional quadratic iterative differential equation (1) if only and if y satisfies
the inetgral solution

y(t) = a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) +
∫ b

a
G(t, τ)ϕ

(
τ, y(τ), y[2](τ)

)
dτ, (4)

where G(t, τ) is the Green’s function defined by

G(t, τ) =

 −
(ψ(t)−ψ(a))ψ′(τ)
(ψ(b)−ψ(a))Γ(α) (ψ(b) − ψ(τ))α−1 + 1

Γ(α) (ψ(t) − ψ(τ))α−1, a ⩽ τ ⩽ t ⩽ b.

−
(ψ(t)−ψ(a))ψ′(τ)
(ψ(b)−ψ(a))Γ(α) (ψ(b) − ψ(τ))α−1, a ⩽ t ⩽ τ ⩽ b.

(5)
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Proof. Let y ∈ E be the solution for the fractional quadratic iterative differential equation(1). then we
operate the ψ-fractional integral Iα,ψa+ on the both sides of the equation (1), we obtain

Iα,ψa+
CDα,ψy(t) = Iα,ψa+ ϕ

(
t, y(t), y[2](t)

)
Following Lemma (2.6), we get

y(t) − y(a) − y[1]
ψ (a)(ψ(t) − ψ(a)) =

1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ,

Then

y(t) = y(a) +
y′(a)
ψ′(a)

(ψ(t) − ψ(a)) +
1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ. (6)

Due to y(a) = a, y(b) = b , it follows from (6) that

y(b) = b = a +
y′(a)
ψ′(a)

(ψ(b) − ψ(a)) +
1
Γ(α)

∫ b

a
ψ′(τ)(ψ(b) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ,

which implies that

y′(a) =
ψ′(a)

ψ(b) − ψ(a)

[
(b − a) −

1
Γ(α)

∫ b

a
ψ′(τ)(ψ(b) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ
]
.

Now, substitute y′(a) into (6), and use Green’s function to turn problem (6) into the following integral
equation:

y(t) =a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) −
ψ(t) − ψ(a)

(ψ(b) − ψ(a))Γ(α)

∫ b

a
ψ′(τ)(ψ(b) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ

+
1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ

=a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) +
∫ b

a
G(t, τ)ϕ

(
τ, y(τ), y[2](τ)

)
dτ.

The converse follows by direct computation which completes the proof.
Reciprocally, let y ∈ E satisfying (6), then

y(t) = a+
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a)

+

∫ t

a

[
−

(ψ(t) − ψ(a))ψ′(τ)
(ψ(b) − ψ(a))Γ(α)

(ψ(b) − ψ(τ))α−1 +
1
Γ(α)

(ψ(t) − ψ(τ))α−1

]
ϕ
(
τ, y(τ), y[2](τ)

)
dτ

+

∫ b

t

[
−

(ψ(t) − ψ(a))ψ′(τ)
(ψ(b) − ψ(a))Γ(α)

(ψ(b) − ψ(τ))α−1

]
ϕ
(
τ, y(τ), y[2](τ)

)
dτ

= a+
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) −
ψ(t) − ψ(a)

(ψ(b) − ψ(a))Γ(α)

∫ b

a
ψ′(τ)(ψ(b) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ

+
1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ.

It’s clear that y(a) = a and y(b) = b. by applying the ψ−Caputo fractional derivative CDα,ψ to both sides of
equation (4), we use Lemma (2.6), so we obtain

CDα,ψy(t) =CDα,ψ

[
1
Γ(α)

∫ t

a
ψ′(s)(ψ(t) − ψ(s))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ
]

=ϕ
(
t, y(t), y[2](t)

)
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This completes the proof.

Remark 3.2. The function t ∈ [a, b] 7→
∫ b

a |G(t, τ)| dτ is continuous on [a, b], and hence is bounded. Let

G⋆ = sup
{∫ b

a
|G(t, τ)| dτ, t ∈ [a, b]

}
Theorem 3.3. Let ϕ : [a, b] ×R ×R→ R is a continuous function that meets the following conditions:
(H1) ∃L1 > 0 such that :∣∣∣ϕ(t,w1, v1) − ϕ(t,w2, v2)

∣∣∣ ≤ L1 (|w1 − w2| + |v1 − v2|) (7)

for any (t,w1, v1), (t,w2, v2) ∈ [a, b] ×R ×R.
(H2) ∃K > 0 such that :

|ϕ(t,w, v)| ≤ K, for each (t,w, v) ∈ [a, b] ×R ×R. (8)

(H3) ∃r > 0 such that :

KG⋆
≤ r. (9)

Then the fractional boundary value problem (1) has at least one solution defined on [a, b].

Proof. Let
Xr = {y ∈ E, ∥y∥ ≤ r}.

The set Xr is a closed, convex and bounded subset of the Banach space E. Now we define the operator ϑ in
Xr as follow

(ϑy)(t) = a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) +
∫ b

a
G(t, τ)ϕ

(
τ, y(τ), y[2](τ)

)
dτ,

where G(t, τ) is the Green’s function given by (5). Then, we can transform problem (1) into a fixed point
problem, i.e., y = ϑ(y).
To prove our results, let’s achieve these steps :
Step 1: ϑ : E→ E is continuous
Let yn be a sequence in E such that yn → y in E, we can conclude that y[2]

n → y[2].
Then for each t ∈ [a, b],

∣∣∣(ϑyn)(t) − (ϑy)(t)
∣∣∣ ≤∫ b

a
|G(t, τ)|

∣∣∣∣(ϕ(τ, yn(τ), y[2]
n (τ)) − ϕ(τ, y(τ), y[2](τ))

)∣∣∣∣ dτ
≤

∫ b

a
|G(t, τ)|L1

(
|yn(τ) − y(τ)| + |y[2]

n (τ) − y[2](τ)|
)

dτ.

The Lebesgue dominated convergence theorem implies that

∥ϑyn − ϑy∥ → 0 as n→∞.

Step 2: ϑ(Xr) is uniformly bounded.
Let y ∈ Xr, then we have

|(ϑy)(t)| ≤
∣∣∣∣∣a + ψ(t) − ψ(a)

ψ(b) − ψ(a)
(b − a)

∣∣∣∣∣ + ∫ b

a
|G(t, τ)|

∣∣∣ϕ(τ, y(τ), y[2](τ))
∣∣∣ dτ

≤

∣∣∣∣∣a + ψ(b) − ψ(a)
ψ(b) − ψ(a)

(b − a)
∣∣∣∣∣ + K

∫ b

a
|G(t, τ)| dτ.
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Thus
∥ϑy∥ ≤ KG⋆.

Step 3: ϑ(Xr) is equicontinuous.
Let s1, s2 ∈ [a, b], s1 ≤ s2 and y ∈ Xr. Then

∣∣∣(ϑy)(s1) − (ϑy)(s2)
∣∣∣ ≤∫ b

a
|G(s1, τ) − G(s2, τ)|

∣∣∣ϕ(τ, y(τ), y[2](τ))
∣∣∣ dτ

≤K
∫ b

a
|G(s1, τ) − G(s2, τ)| dτ.

Let s1 → s2, and then
∣∣∣(ϑy)(s1) − (ϑy)(s2)

∣∣∣→ 0.
From the step 1-3 and by applying the Ascoli-Arzelá theorem. we conclude that ϑ is completely continuous.
Step 4: ϑ(Xr) ⊂ Xr.
Let y ∈ Xr, and we prove that ϑ(y) ∈ Xr. For each t ∈ [a, b] we have

|(ϑy)(t)| ≤
∣∣∣∣∣a + ψ(t) − ψ(a)

ψ(b) − ψ(a)
(b − a)

∣∣∣∣∣ + ∫ b

a
|G(t, τ)|

∣∣∣ϕ(τ, y(τ), y[2](τ))
∣∣∣ dτ

≤K
∫ b

a
|G(t, τ)| dτ.

Thus
∥ϑy∥ ≤ KG⋆.

by (9), we have
∥ϑy∥ ≤ r.

In summary, all of the requirements of the Schauder fixed point theorem are achieved, which means that ϑ
has a fixed point in Xr, which is solution of the iterative boundary value problem (1).

Now, we need to prove the monotonic increase of ϑ. This result will contribute to establish the uniqueness
of the solution in the next theorem.
We consider t ∈ [a, b], we have

(ϑ(y))′(t) =
ψ′(t)(b − a)
ψ(b) − ψ(a)

−
ψ′(t)

(ψ(b) − ψ(a))Γ(α)

∫ b

a
ψ′(τ)(ψ(b) − ψ(τ))α−1ϕ

(
τ, y(τ), y[2](τ)

)
dτ

+
ψ′(t)
Γ(α)

∫ t

a
(α − 1)ψ′(τ)(ψ(t) − ψ(τ))α−2ϕ

(
τ, y(τ), y[2](τ)

)
dτ.

(ϑ(y))′(t) ≥
ψ′(t)(b − a)
ψ(b) − ψ(a)

+
Kψ′(t)

(ψ(b) − ψ(a))Γ(α)
[
−(ψ(b) − ψ(τ))α

]b
a

−
Kψ′(t)
Γ(α)

[
−(ψ(t) − ψ(τ))α−1

]t
a

≥
ψ′(t)(b − a)
ψ(b) − ψ(a)

+
Kψ′(t)
Γ(α)

(ψ(b) − ψ(a))α−1
−

Kψ′(t)
Γ(α)

(ψ(t) − ψ(a))α−1

≥
ψ′(t)(b − a)
ψ(b) − ψ(a)

≥ 0, (ϕ is increasing function ).

Thus, ϑ is increasing on [a, b], which implies that a ≤ (ϑ(y))(t) ≤ b, for all t ∈ [a, b]. We can now demonstrate
the uniqueness and stability of the solution of the preblem (1) in the following theorem.
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Theorem 3.4. Suppose that (H1)-(H3) are satisfied. Then the iterative value problem (1) has a unique solution on
[a, b]. Provided that

L1G⋆ < 1

Proof. It should be noted that : a ≤ (ϑy)(t) ≤ b, ∀t ∈ [a, b].
Let y1, y2 ∈ E, we show that ϑ is a contraction.

∣∣∣(ϑy1)(t) − (ϑy2)(t)
∣∣∣ ≤∫ b

a
|G(t, τ)|

∣∣∣∣(ϕ(τ, y1(τ), y[2]
1 (τ)) − ϕ(τ, y2(τ), y[2]

2 (τ))
)∣∣∣∣ dτ

≤G⋆L1∥y1 − y2∥.

This yields the inequality
∥y1 − y2∥ ≤ G⋆L1∥y1 − y2∥.

Since G⋆L1 < 1, the operator ϑ is a contraction.
Then, ϑ has a fixed point in Xr. Terefore, the problem (1) has a unique solution in S.

3.2. Ulam–Hyers stability
In this subsection we investigate the Ulam–Hyers and generalized Ulam–Hyer in E of problem (1).

Let ε > 0 and Φ : [a, b]→ R+be a continuous function. We consider the following inequality∣∣∣∣CDα,ψz(t) − ϕ
(
t, z(t), z[2](t)

)∣∣∣∣ ≤ ε, t ∈ [a, b], (10)

Definition 3.5. The problem (1) is Ulam-Hyers stable if there exists a real number Cϕ such that for each ε > 0 and
for each solution z ∈ E of the inequality (10), there exists a solution x ∈ E of the problem (1) such that

|z(t) − x(t)| ≤ Cϕε t ∈ [a, b].

Definition 3.6. The problem (1) is generalized Ulam-Hyers stable if there exists Φϕ ∈ C (R+,R+) with Φϕ(0) = 0
such that, for each ε > 0 and for each solution z ∈ E of the inequality (10), there exists a solution x ∈ E of the problem
(1) such that

|z(t) − x(t)| ≤ Φϕ(ε) t ∈ [a, b].

Remark 3.7. It is clear that Definition (3.5)⇒ Definition (3.6)

Remark 3.8. A function v ∈ E is a solution of inequality (10)⇐⇒ there exists a function 1 ∈ E (which depends on
solution v ), such that
(1) |1(t)| ≤ ε, t ∈ [a, b].
(2) CDα,ψz(t) = ϕ

(
t, z(t), z[2](t)

)
+ 1(t), t ∈ [a, b]

Currently, we explore the stability of the solution to problem (1) using Ulam–Hyers stability.

Theorem 3.9. Assume that all conditions of theorem (3.4) are fulfilled, then the fractional boundary value problem
(1) is Ulam–Hyers stable on [a, b] and consequently generalized Ulam-Hyers stable.

Proof. Suppose that z(t) ∈ E satisfies inequality (10), that is,

∣∣∣∣CDα,ψz(t) − ϕ
(
t, z(t), z[2](t)

)∣∣∣∣ ≤ ε, t ∈ [a, b],

and y ∈ E is a unique solution of problem (1), so that

y(t) = a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) +
∫ b

a
G(t, τ)ϕ

(
τ, y(τ), y[2](τ)

)
dτ
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∀t ∈ [a, b] . By remark (3.8) and lemma (3.1), there exist so 1 ∈ E satisfies the inequality |1(t)| ≤ ε and the
equation

z(t) = a +
ψ(t) − ψ(a)
ψ(b) − ψ(a)

(b − a) +
∫ b

a
G(t, τ)ϕ

(
τ, z(τ), z[2](τ)

)
dτ +

∫ b

a
G(t, τ)1(τ)dτ

we have, for each t ∈ [a, b]

|z(t) − y(t)| ≤
∫ b

a
|G(t, τ)|

∣∣∣∣ϕ (τ, z(τ), z[2](τ)
)
− ϕ
(
τ, y(τ), y[2](τ)

)∣∣∣∣ dτ + ∫ b

a
|G(t, τ)||1(τ)|dτ

Hence using part (i) of Remark (3.8), and (H2) we can get

|z(t) − y(t)| ≤
∫ b

a
|G(t, τ)|L1

(∣∣∣z(τ) − y(τ)
∣∣∣ + ∣∣∣z[2](τ) − y[2](τ)

∣∣∣) dτ + ε∫ b

a
|G(t, τ)|dτ

In consequence, it follows that

∥z − y∥ ≤ G⋆L1∥z − y∥ + εG⋆

∥z − y∥ ≤ ε
G⋆

1 − L1G⋆

By defining Cϕ = G⋆

1−L1G⋆ , the Ulam–Hyers stability condition is met, if we consider Φϕ(ε) = G⋆

1−L1G⋆ ε with
Φϕ(0) = 0, the generalized Ulam–Hyers stability condition is also fulfilled.

4. Illustrated examples

Here are some examples to demonstrate the theoretical outcomes. latex latex

Example 4.1. Consider the following ψ-Caputo fractional quadratic iterative differential equation given by: CD3/2,ty(t) = t + 1
3

(
sin(y(t)) + y[2](t)

y[2](t)+1

)
, t ∈ [0, 1]

y(0) = 0, y(1) = 1.
(11)

Here, we have α = 3
2 , ψ(t) = t, and the function ϕ defined by ϕ(t, y(t), y[2](t)) = t + 1

3

(
sin(y(t)) + y[2](t)

y[2](t)+1

)
.

For any t ∈ [0, 1] and w, v ∈ R, we obtain:∣∣∣ϕ(t,w, v)
∣∣∣ = ∣∣∣∣∣t + 1

3

(
sin(w) +

v
v + 1

)∣∣∣∣∣ ≤ 2,∣∣∣ϕ(t,w1, v1) − ϕ(t,w2, v2)
∣∣∣ ≤ 1

3
(|w1 − w2| + |v1 − v2|) .

Here we get L1 =
1
3 and K = 2. It is evident that the conditions (H1) and (H2) are satisfied.

Using Γ( 3
2 ) =

√
π

2 , we compute G⋆ = sup
{∫ 1

0 |G(t, τ)| dτ, t ∈ [0, 1]
}
≤

8
3
√
π

, where

G(t, τ) =

 2
√
π

[
(t − τ)

1
2 − t(1 − τ)

1
2

]
, 0 ⩽ τ ⩽ t ⩽ 1,

−
2t
√
π

(1 − τ)
1
2 , 0 ⩽ t ⩽ τ ⩽ 1.

Then by Theorem (3.3), since KG⋆
≤

16
3
√
π
= r, the problem has at least one solution defined on [0, 1].
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For uniqueness and stability of solution, we verify the fulfillment condition of Theorem (3.4). Specifically, we find
that

L1G⋆
≤

8
9
√
π
≃ 0.501 ≤ 1.

This result establishes the uniqueness of the solution for the problem (11) on the interval [0, 1]. Furthermore, we
confirm its Ulam–Hyers stability and, as a consequence, its generalized Ulam–Hyers stability.

Example 4.2. Consider the following ψ-Caputo fractional quadratic iterative differential equation given by:{
CD

5
3 ,t

2 y(t) = cos(t)
2

(
ey(t)

ey(t)+1 + sin(y[2](t))
)
, t ∈ [0, 1]

y(0) = 0, y(1) = 1.
(12)

Here, we have α = 5
3 , ψ(t) = t2, and ϕ(t,w, v) = cos(t)

2

(
ew

ew+1 + sin(v)
)
, for all (t,w, v) ∈ [0, 1] ×R ×R.

For any t ∈ [0, 1] and w, v ∈ R, we obtain: |ϕ(t,w, v)| ≤ 1, which implies K = 1.
For any (t,w1, v1), (t,w2, v2) ∈ [0, 1] ×R ×R, we have

∣∣∣ϕ(t,w1, v1) − ϕ(t,w2, v2)
∣∣∣ ≤ ∣∣∣∣∣cos(t)

2

∣∣∣∣∣ [∣∣∣∣∣ ew1

ew1 + 1
−

ew2

ew2 + 1

∣∣∣∣∣ + |sin(v1) − sin(v2)|
]

≤
1
2

(|w1 − w2| + |v1 − v2|) .

Here we get L1 =
1
2 . By careful calculation, we find G⋆

≃ 0.9636 =⇒ KG⋆
≤ 1. It is evident that the conditions

(H1), (H2), and (H3) are satisfied. Then the problem has at least one solution defined on [0, 1].
Additionally, since L1G⋆ < 1, by Theorem (3.4), we establish the existence and uniqueness of the solution for the
problem (12) on [0, 1]. Furthermore, we confirm its Ulam-Hyers stability.

5. Conclusions

In this paper, we have established the existence and uniqueness of solutions for the ψ-Caputo fractional
quadratic iterative differential equation, as well as the stability of the solution in the sense of the Ulam-
Hyers. The main results were proven through the use of the Banach contraction theorem and Schauder’s
fixed point theorem. Our findings devlop and generalize previous studies that focused on specific cases of
the ψ-Caputo fractional differential equation such as the Caputo and Caputo-Hdamard cases. In the end,
we demonstrate the practical applications of the obtained results on existence and uniqueness through two
illustrative examples.
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