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Exact controllability results of non-instantaneous impulsive stochastic
integro-differential equations driven by a fractional Brownian motion

Samiha Mouchira, Abdeldjalil Slamaa,∗

aLaboratory of Mathematics, Modeling and Applications (LaMMA), University of Adrar, Adrar, Algeria

Abstract. This paper discusses the exact controllability of a class of non-instantaneous impulsive stochastic
integro-differential equations driven by a fractional Brownian motion with nonlocal conditions in a Hilbert
space. The results are based on generalized Darbo’s fixed point theorem, utilizing Kuratowskii’s measure
of non-compactness and a resolvent operator. Examples are given to illustrate the effectiveness of the
proposed results.

1. Introduction

This paper is concerned with the existence of mild solution and the exact controllability for a class of
stochastic integro-differential equations (SIDEs) driven by a fractional Brownian motion (FBM) accompa-
nied by nonlocal conditions and non-instantaneous impulsive (NII). The system under discussion takes the
following form:

dy(t) = Ay(t)dt +
∫ t

0
h(t − s)y(t)dsdt + φ(t, y(t))dt + f (t)dBH(t), t ∈ ∪N

k=0(sk, tk+1],

y(t) = 1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

y(0) + ψ(y) = y0 ∈H.

(1)

Where A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 of bounded linear
operators on a separable Hilbert space H with domain D(A), h : D(h) → H is a closed linear operator on
H with domain D(A) ⊂ D(h), φ, ψ and f : [0,T] → L0

2(V,H) are appropriate functions, where L0
2(V,H)

denotes the space of all Hilbert-Schmidt operators from V into H. Also, BH(t) is a fractional Brownian
motion with Hurst parameter H ∈ ( 1

2 , 1) defined on a complete probability space (Ω,F , {Ft}t≥0,P) with
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values on a separable Hilbert spaceV. Let 0 = s0 = t0 < t1 ≤ s1 < t2 ≤ ... < tN ≤ sN < tN+1 = T where T > 0 is
a constant 1k : (tk, sk] ×H→H is called non-instantaneous impulsive function, for all k = 1, 2, ...,N. Where
the state y(.) takes values on a real separable Hilbert spaceHwith inner product (., .) and norm ∥.∥, y0 is an
F0-measurable random variable with E∥y0∥ < ∞.

Stochastic differential equations are a topic of great interest to many physicists, mathematicians, engi-
neers, and biologists, as evidenced by numerous studies (see [32, 44]). In this context, several researchers
have examined various qualitative aspects of these equations, particularly those driven by fractional Brow-
nian motion (fBm). This concept was introduced by the mathematician Andrey Kolmogorov [24] in 1940
and continues to be a focal point of interest within academic circles (see [5, 8, 21, 30, 37, 41]). The capacity
of stochastic differential equations to simulate complex natural phenomena makes them an effective tool
for understanding dynamic behaviors across various systems. By employing quantitative techniques and
mathematical concepts, scientists can develop models that help explain the random behaviors observed in
diverse fields, including biology and physics.

Many real-life phenomena and processes which evolve with respect to time are characterized by abrupt
changes in the form of impulses. According to the duration of the change, there are two popular types of
impulses:

• Instantaneous Impulses: When the duration of these changes is relatively short compared to the
overall duration of the whole process (see [26, 35]).

• Non-instantaneous impulses: When changes start at an arbitrary fixed point and remain active on a
finite time interval (see[19]).

Thus, the action of instantaneous impulsive phenomena seen as do not describe some certain dynamics of
evolution processes in pharmacotherapy [39]. A well-known application of non-instantaneous impulses is
the process of inducing a vaccine and absorption of the drug by the body. The resulting absorption is gradual
because it remains active for a finite time interval [28]. This process can be modelled mathematically by
non-instantaneous impulsive differential and integro-differential equations. Recently, many authors have
established results on non-instantaneous impulse differential equations (see [28, 30, 32]) and references
therein.

On the other hand, controllability plays a significant role in various fields such as engineering, physics,
robotics to economics and social sciences. The most commonly used types of controllability are exact
and approximate controllability. This concept was first proposed by Kalman [22] in 1963, and since
then, both the theory of stochastic processes and differential equations have greatly benefited from its
application (see references [14, 32, 37] and its allusions). Abid et al. in [1] discussed the approximate
controllability of fractional stochastic integro-differential equations driven by mixed fractional Brownian
motion. Recently, Jiankang Liu et al. [30] obtained the existence and approximate controllability results for
a type of non-instantaneous impulsive stochastic evolution equation (SEE) excited by fractional Brownian
motion (FBM). Additionally, Diop et al. [13] investigated the existence and controllability for a class of
impulsive stochastic integro-differential equations (ISIDEs) with state-dependent delay in a Hilbert space,
Melati et al. [32] discussed the existence and exact controllability of non-instantaneous impulsive stochastic
integro-differential equations with nonlocal conditions in a Hilbert space.

However, the study of the exact controllability of non-instantaneous stochastic integro-differential equa-
tions driven by fractional brownian has not been discussed in the standard literature. Motivated by the
above consideration, the purpose of this paper is to investigate the existence of mild solution and the
controllability of a class of non-instantaneous stochastic integro-differential equations driven by fractional
brownian motion with Hurst parameter H ∈

(
1
2 , 1

)
and nonlocal Conditions. The present paper is an exten-

sion of the work of Melati et al. [32] to the non-instantaneous stochastic integro-differential equations driven
by fractional brownian with Hurst parameter H ∈

(
1
2 , 1

)
. Using certain assumptions, sufficient conditions

are derived using an extended version of Darbo’s fixed point theorem, resolvent operator theory and the
measure of non-compactness technique to analyze the controllability result.

We offer the following summary of the main contributions of our paper:
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• The paper proposes a new class of stochastic integro-differential equations driven by fractional Brow-
nian motion with non-instantaneous impulsive and nonlocal conditions.

• We investigate the existence of mild solutions and the exact controllability for system (1) using
measures of non-compactness and applying the generalized Darbo’s fixed point theorem.

• We establish a sufficient condition for the existence of mild solutions and the exact controllability of
the system (1).

• We reinforce the theoretical results with illustrative examples.

The remainder of this paper is structured as follows: in section 2, we we introduce some necessary
preliminary from the fields of fractional stochastic calculus, measure of noncompactness and the fixed
point theory. In section 3, we use a generalized Darbo’s fixed point theorem to demonstrate the existence of
mild solutions to (1). In section 4, the exact controllability of the system (32) is proved. Finally, a conclusion
is given in Section 5.

2. Preliminaries

Let (V, (., .)V , ∥.∥V), and (H, (., .)H , ∥.∥H), be real separable Hilbert spaces. We denote by Lb(V,H) the
space of all bounded linear operators fromV toH and Lb(H) wheneverV =H, C (R+,V) indicate the space
of all continuous functions from [0,+∞) into V. Let (Ω,F , {Ft}t≥0,P) be a complete probability space with
natural filtration {Ft}t≥0 . {BH(t)}t≥0 are the fractional Brownian motion with Hurst parameter H ∈ (0, 1).

Let L2
(
Ω,H

)
be the space of all H-valued random variable y such that E∥y∥2 =

∫
Ω
∥y∥2dP < ∞. For

y ∈ L2
(
Ω,H

)
,

∥y∥
L2

(
Ω,H

) = ( ∫
Ω

∥y∥2dP
) 1

2

:=
(
E∥y∥2

) 1
2 .

It is clear that L2
(
Ω,H

)
is a Hilbert space with the norm ∥.∥

L2

(
Ω,H

). In the sequel, L2
0

(
Ω,H

)
denotes the space

of F0-measurable,H-valued and square integrable stochastic process.

L2
0

(
Ω,H

)
=

{
f ∈ L2

(
Ω,H

)
| f isF0-measurable

}
.

Consider the Banach space

PC([0,T] ,H) =
{
Ft -adaptedH-valued process y(t) is continuous every where except

for some t , tk at which y(t−k ) and y(t+k ) exist

and y(t−k ) = y(tk), k = 1, 2, · · · ,N and sup
0≤t≤T

E∥y(t)∥2 < ∞
}
,

with the norm

∥y∥PC =
(

sup
0≤t≤T

E∥y(t)∥2
) 1

2

.

Definition 2.1. [37][1] A fractional Brownian motion (FBM) {BH(t)}t≥0 of Hurst parameter H ∈ (0, 1), is a contin-
uous and centered Gaussian process with covariance function

RH(t, s) = E(BH(t)BH(s)) :=
1
2

(
t2H + s2H

− |t − s|2H
)
, for t, s ≥ 0.
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Now, we introduce the Wiener integral with respect to the one-dimensional FBM. Let T > 0 and denote by
Λ the linear space of R- valued step functions on [0,T], that is ϕ ∈ Λ if

ϕ(t) =
m−1∑
i=1

yiX[ti,ti+1)(t), for all t ∈ [0,T] ,

where X[ti,ti+1) is the indicator function, yi ∈ R and 0 = t1 < t2 < · · · tm = T.
For ϕ ∈ Λ we define its Wiener integral with respect to βH by∫ T

0
ϕ(s)dβH(s) :=

m−1∑
i=1

yi

(
βH(ti+1) − βH(ti)

)
.

LetH be the Hilbert space defined as the closure of Λ with respect to the scalar product(
X[0,t],X[0,s]

)
H
= RH(t, s).

Then the mapping

ϕ =
m−1∑
i=1

yiX[ti,ti+1) →

∫ T

0
ϕ(s)dβH(s),

is an isometry between Λ and the linear space span {βH(t)}t∈[0,T], which can be extended to an isometry
betweenH and the first Wiener chaos of the fractional Brownian motion spanL2(Ω)

{βH(t)}t∈[0,T](see [43]). The
image of an element ϕ ∈ H by this isometry is called the Wiener integral of ϕ with respect to βH. Our next
goal is to give an explicit expression for this integral. To this end, we consider the square integrable kernel
with H ∈

(
1
2 , 1

)
.

KH(t, s) = CHs
1
2−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du,

where CH =
√

H(2H−1)
β(2−2H,H− 1

2 )
, t > s and β(., .) signifies the Beta function.

Observe that by representation for the square integrable kernel KH(t, s), we obtain

∂KH

∂t
(t, s) = CH

( t
s

) 1
2−H

(u − s)H− 3
2 .

Now, we present the linear operator K∗H : Λ→ L2([0,T]), which is defined as follows:

(
K∗HΥ

)
(s) =

∫ T

s
Υ(t)

∂KH

∂t
(t, s)dt.

Then (
K∗HX[0,T]

)
(s) = KH(t, s)X[0,T](s),

and
(
K∗H

)
is an isometry between Λ and L2([0,T]) that may be extended to Λ (see [3]). Taking {B(t)}t∈[0,T]

defined by

B(t) = βH
(
(K∗H)−1

X[0,T]

)
,
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B is a Brownian motion, βH and has the Wiener integral form shown below

βH(t) =
∫ t

0
KH(t, s)dB(s).

Furthermore, for any ϕ ∈ Λ,∫ T

0
ϕ(s)dβH(s) =

∫ T

0
(K∗Hϕ)(t)dB(t),

if and only if K∗Hϕ ∈ L2([0,T]). Also

L2
H([0,T]) =

{
ϕ ∈ Λ, K∗Hϕ ∈ L2([0,T])

}
,

for all H > 1
2 we can observe

L1/H([0,T]) ⊂ L2
H([0,T]).

see [34]. Furthermore, the following beneficial finding holds:

Lemma 2.2. [36] For ϕ ∈ L
1
H ([0,T])

H(2H − 1)
∫ T

0

∫ T

0
|ϕ(s)||ϕ(t)||t − s|2H−2dtds ≤ cH∥ϕ∥

2

L
1
H ([0,T])

. (2)

Next we are interested in considering a fBm with values in a Hilbert space and giving the Definition of
the corresponding stochastic integral.

Let ϕ ∈ Lb(V,H) be a non-negative self-adjoint operator. Defined by L0
ϕ(V,H) the space of all ξ ∈

Lb(V,H) such that ξϕ
1
2 is a Hilbert-Schmidt operator. The norm is given by

|ξ|2L0
ϕ(V,H) = tr(ξϕξ∗).

Let {βH
n (t)}n∈N be a sequence of two-sided one-dimensional standard fractional Brownian motions mu-

tually independent on (Ω,F ,P) . When one considers the following series

∞∑
i=1

βH
i (t)ei, t ≥ 0,

where {ei}i∈N is a complete orthonormal basis in K does not necessarily converge in the space K Thus, we
consider aH-valued stochastic process BH(t) given formally by the following series:

BH(t) =
∞∑

i=1

βH
i (t)ϕ

1
2 ei, t ≥ 0,

which is well-defined as a V-valued ϕ-cylindrical fractional Brownian motion. Let ϕ : [0,T] 7→ L0
ϕ(V,H)

such that

∞∑
i=1

∥K∗H
(
υϕ

1
2 ei

)
∥

L
1
H ([0,T],H)

< ∞. (3)
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Definition 2.3. [8] Let υ : [0,T] → L0
ϕ(V,H) be a given function, satisfy (3). The stochastic integral of υ with

respect to BH is defined by∫ t

0
υ(s)dBH(s) :=

∞∑
i=1

∫ t

0
υ(s)ϕ

1
2 eidβH

i (s) =
∞∑

i=1

∫ t

0

(
K∗H(υϕ

1
2 ei)

)
(s)dB(s).

Notice that if

∞∑
i=1

∥υ(s)ϕ
1
2 ei∥L

1
H (([0,T]),H)

< ∞, (4)

then in particular (3) holds, which follows immediately from (2).

Lemma 2.4. [5] If H ∈ ( 1
2 , 1), then for any ϕ : [0,T]→ L0

2(V,H) satisfies∫ t

0
∥ϕ(s)∥2

L
0
2(V,H)ds < ∞,

then the series in (4) is well defined as aH−valued random variable and we have

E

∥∥∥∥∥∫ t

0
ϕ(s)dBH(s)

∥∥∥∥∥2

≤ 2Ht2H−1
∫ t

0
∥ϕ(s)∥2

L
0
2(V,H)ds.

Now let us recall some fundamental facts of the notion of Kuratowski measure of non-compactness.

Definition 2.5. [4] Let H be a Banach space and ΩH the bounded subsets of H. The Kuratowski measure of
non-compactness is the map α : ΩH → [0,+∞] defined by

α(D) = inf
{
ε > 0 : D ⊆

n⋃
i=1

Di and diam(Di) ≤ ε
}
.

This measure of non-compactness satisfies some important properties .

Lemma 2.6. [4] LetH be a Hilbert space, B,D ⊂H be bounded, then the following properties are satisfied:

(1) Regular, if the condition α(D) = 0 ⇐⇒ D is compact,

(2) α(D) = α(D) = α(co(D)), where co(D) means the convex hull of D,

(3) α(βD) = |β|α(D), for any β ∈ R,

(4) monotone, if B ⊂ D =⇒ α(B) ≤ α(D),

(5) algebraically semiadditive, if α(B +D) ≤ α(B) + α(D),

(6) nonsingular, if α(D + x) = α(D), for all x ∈H,

(7) α(B ∪D) ≤ max
{
α(B), α(D)

}
,

(8) if the map Θ : D(Θ) ⊂ H −→ H is lipschitz continuous with constant K, then α(Θ(D)) ≤ Kα(D) for any
bounded subset D ⊂ D(Θ), andK is another Hilbert space,

(9) if D ⊂ PC([0,T] ,H) is bounded, then α(D(t)) ≤ αPC(D) for all t ∈ [0,T] where D(t) = {x(t) : x ∈ D} ⊆
H Furthermore, if D is equicontinuous on [0,T], then D(t) is continuous for t ∈ [0,T], and αPC(D) =
supt∈[0,T] α(D(t)).
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The notation α(.), αC(.), αPC(.) are the Kuratowskii measure of non-compactness on the bounded set of
H, C([0,T] ,H) and PC([0,T] ,H), respectively. For more details see [4].

Lemma 2.7. [27] LetH be a Banach space, be bounded D ⊂H. Then there exist a countable set D0 ⊂ D, such that

α(D) ≤ 2α(D0). (5)

Definition 2.8. [9] A continuous mapΘ : D ⊂H→H is said to be α-contraction if there exists a positive constant
K ∈ [0, 1) such that for any bounded set Ω ⊂ D

α(Θ(Ω)) ≤ Kα(Ω).

We also need the followinga generalization of the Darbo fixed point theorem to prove our theorem. The
proof is refined from the proof of the Darbo fixed point theorem . So we don’t claim complete originality
but include it here for completeness. For more details see [29], [32].

Lemma 2.9. [29, 42] (Generalized Darbo’s fixed point principle) Let I be a closed and convex subset of a real Banach
spaceH. Suppose that Q : I→ I is a continuous operator and Q(I) is bounded, for any bounded subset C ⊂ I

Q1(C) = Q(C), Qn(C) = Q
(
co(Qn−1(C))

)
, n = 2, 3 · · ·N.

If there exists a constant 0 ≤ λ < 1, and a positive integer n0 such that for any bounded subset C ⊂ I.

α
(
Qn0 (C)

)
≤ λα

(
Q(C)

)
. (6)

Then Q has at least one fixed point in C.

In this part, we introduce some basic notions about resolvent operators for integro-differential equations,
we seek from the reader to go to [16]. Let A and h(t) are closed linear operators onH andV represents the
Banach spaceD(A) equipped with the graph norm defined by

∥y∥V = ∥Ay∥H + ∥y∥H, y ∈ V.

Let us consider the following Cauchy problemy′(t) = Ay(t) +
∫ t

0 h(t − s)y(s)ds t ≥ 0,
y(0) = y0 ∈H.

(7)

Definition 2.10. [16] A resolvent operator for (7) is a bounded linear operator valued function R(t) ∈ Lb(H) for
t ≥ 0, which satisfies the following properties

(i). R(0) = X (The Identity operator ofH) and ∥R(t)∥ ≤Meαt for some constants k > 0 and α ∈ R.

(ii). For each y ∈H, R(t)y is strongly continuous for t ≥ 0.

(iii). For y ∈ V, R(.)y ∈ C1(R+,H) ∩ C(R+,V) and

R
′(t)y =AR(t)y +

∫ t

0
h(t − s)R(s)y ds

=R(t)Ay +
∫ t

0
R(t − s)h(s)y ds, for t ≥ 0.

(8)

The resolvent operators have a great importance in obtaining variation of constants formula for nonlinear
systems and in studying the existence of solutions, see [11, 16].

Now, we make the following assumptions:
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(H1) The operator A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 onH.

(H2) For all t ≥ 0, h(t) is a closed linear operator from D(h) to H and h(t) ∈ Lb(V,H). For any y ∈ V the
map t → h(t)y is bounded, differentiable and the derivative t → h′(t)y is bounded and uniformly
continuous on R+.

Lemma 2.11. [16] Assume that (H1) and (H2) hold. Then there exists a unique resolvent operator to the Cauchy
problem(7).

As stated below, we establish certain results for the existence of solutions to the following integro-
differential equation.y′(t) = Ay(t) +

∫ t

0 h(t − s)y(s)ds + σ(t) t ≥ 0,
y(0) = y0 ∈H.

(9)

where σ : [0,+∞[→H is a continuous function.

Definition 2.12. [16] A continuous function y : R+ →H is said to be a strict solution of (9) if

(i) y ∈ C1(R+,H) ∩ C(R+,V),

(ii) y satisfies (9) for t ≥ 0.

Lemma 2.13. [16] Assume that (H1)-(H2) hold . If x is a strict solution of (9), then

y(t) = R(t)y0 +

∫ t

0
R(t − s)σ(s)ds for t ≥ 0. (10)

Definition 2.14. A continuous function y : R+ →H is said to be a strict solution of (9) if y ∈ C1(R+,H)∩C(R+,H)
and satisfies (10) for t ≥ 0.

From Definition 2.14 , we deduce that the function h(t − s)y(s) is integrable for all t ≥ 0 and s ∈ R+.

Definition 2.15. [44] A semigroup {T (t)}t≥0 in H is said to be equicontinuous if the operator T (t) is uniformly
continuous by operator norm for every t > 0.

Lemma 2.16. [14] Let A be the infinitesimal generator of a C0−semigroup {T (t)}t≥0 and let {h(t)}t≥0 satisfy (H2).
Then the resolvent operator {R(t)}t>0 is operator norm continuous (or continuous in the uniform operator topology)
for t > 0 if and only if {T (t)}t≥0 is operator norm continuous for t ≥ 0.

3. Existence of mild solution

In this section, we prove the existence of mild solutions for the system (1). We now introduce the concept
of mild solution of (1), we present the following definitions

Definition 3.1. AFt-adapted stochastic process y(t) : [0,T]→H is called a mild solution of(1) if y ∈ PC([0,T] ,H), y(0)+
ψ(y) = y0 and

y(t) =



R(t)
(
y0 − ψ(y)

)
+

∫ t

0
R(t − s)φ

(
s, y(s)

)
ds

+

∫ t

0
R(t − s) f

(
s
)
dBH(s), t ∈ [0, t1] ,

1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

R(t − sk)1k(sk, y(t−k )) +
∫ t

sk

R(t − s)φ
(
s, y(s)

)
ds

+

∫ t

sk

R(t − s) f
(
s
)
dBH(s), t ∈ ∪N

k=1(sk, tk+1].

(11)
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The following assumptions will be needed throughout the paper:

(H3) The resolvent operator R(t), t ≥ 0 is continuous in operator norm topology, and there exists a constant
M > 0 such that

∥R(t)∥ ≤M.

(H4) The nonlinear function φ : I × PC([0,T] ,H)→H satisfies

(1) For each y ∈ PC([0,T] ,H), φ(., y) is measurable and for any t ∈ I, φ(t, .) is continuous.

(2) For some positive number r > 0, there exists a constant k1 > 0, function ω ∈ L1 (I,R+) and a
continuous non-decreasing function π : R+ → R+ such that

E∥φ(t, y)∥2 ≤ ω(t)πφ
(
E∥y∥2

)
, lim inf

r→+∞

πφ(r)
r
= k1 < +∞.

(3) There exists a positive constant k2 such that for any bounded set M ⊂H

α
(
φ(t,M)

)
≤ k2α(M).

(H5) The function f : [0,T]→ L0
2(V,H), satisfying the following condition∫ t

0
∥ f (s)∥2

L
0
2
ds < ∞.

(H6) The nonlocal function ψ : PC([0,T] ,H) → H is continuous and compact, and there exists a constant
Cψ > 0, such that

E∥ψ(y)∥2 ≤ Cψ.

(H7) The impulsive function 1k : (tk, sk] ×H → H is continuous and compact, and there exist constants
C1k > 0, k = 1, 2, · · · ,N, such that

E∥1k(t, y)∥2 ≤ C1kE∥y∥
2.

where we have used the notation

C1 = max
k=1,2,··· ,N

C1k , η = max
k=1,2,··· ,N

∥ω∥L1[sk,tk+1].

Remark 3.2. The function f is independent of y(t), t ∈ [0,T] . From the functional point of view, we know that

α
( ∫ t

0
R(t − s) f

(
s
)
dBH(s)

)
= 0.

Theorem 3.3. Suppose that (H1)-(H7) are satisfied, then the problem (1) has at least one mild solution provided that

L := max
0≤k≤N

{
3M2

(
C1 + (tk+1 − sk) ηk1

)}
< 1. (12)
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Proof. Consider the operator Π : PC([0,T] ,H)→ PC([0,T] ,H) defined by

Πy(t) =



R(t)
(
y0 − ψ(y)

)
+

∫ t

0
R(t − s)φ

(
s, y(s)

)
ds

+

∫ t

0
R(t − s) f

(
s
)
dBH(s), t ∈ [0, t1] ,

1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

R(t − sk)1k(sk, y(t−k )) +
∫ t

sk

R(t − s)φ
(
s, y(s)

)
ds

+

∫ t

sk

R(t − s) f
(
s
)
dBH(s), t ∈ ∪N

k=1(sk, tk+1].

(13)

Further, finding the solution of the operator equationΠy(t) = y(t) leads us to find a solution to problem (1).
Now, we will show that by using the generalized Darbo’s fixed point theorem, the operator Π has a

fixed point. Obviously, the fixed point of Πy(t) is the solution of the problem (1). For each finite constant
r > 0, let

Ωr =
{

y ∈ PC([0,T] ,H) : ∥y∥2
PC
≤ r

}
.

It is clear that Ωr is a bounded closed and convex set in PC([0,T] ,H).
The proof falls naturally into four steps.

Step 1.We claim that there exists a positive number r such that Π(Ωr) ⊂ Ωr. If this is not true, then, for each
positive integer r, there exists yr ∈ Ωr such that for t ∈ [0,T] , t may depending upon r. However, on the
other hand, we consider three cases.
Case I. For t ∈ [0, t1] by (13) and assumptions

r <E
∥∥∥Πyr(t)

∥∥∥2

≤3E
∥∥∥R(t)

(
y0 − ψ(yr)

)∥∥∥2
+ 3E

∥∥∥∥∥∫ t

0
R(t − s)φ

(
s, yr(s)

)
ds

∥∥∥∥∥2

+ 3E
∥∥∥∥∥∫ t

0
R(t − s) f

(
s
)
dBH(s)

∥∥∥∥∥2

,

(14)

by using assumptions (H3)-(H6), Lemma 2.4 and Hölder’s inequality, we obtain

r < E∥Πyr(t)∥2 ≤3M2E
∥∥∥(y0 − ψ(yr)

)∥∥∥2
+ 3M2t1

∫ t

0
E
∥∥∥φ(

s, yr(s)
)∥∥∥2

ds

+ 6M2Ht2H−1
1

∫ t

0
∥ f (s)∥2

L
0
2
ds

≤3M2
(
E∥y0∥

2 + E∥ψ(yr)∥2
)
+ 3M2t1

∫ t

0
ω(s)πφ

(
E∥yr∥

2
)
ds

+ 6M2Ht2H−1
1

∫ t

0
∥ f (s)∥2

L
0
2
ds

≤3M2
(
E∥y0∥

2 + Cψ
)
+ 3M2t1∥ω∥L1[0,t1]πφ(r) + 6M2Ht2H−1

1

∫ t

0
∥ f (s)∥2

L
0
2
ds.

(15)
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Case II. For t ∈ (tk, sk], k = 1 · · · ,N. By assumption (H7), we get

r < E∥Πyr(t)∥2 ≤E∥1k(t, yr(t−k ))∥2

≤C1kE∥yr(t)∥2

≤C1r.

(16)

Case III. For t ∈ (sk, tk+1], k = 1 · · · ,N. By Lemma 2.4, and using assumptions (H3)-(H5), we have

r <E
∥∥∥Πyr(t)

∥∥∥2

≤3E
∥∥∥R(t − sk)1k(sk, yr(t−k ))

∥∥∥2
+ E

∥∥∥∥∥∫ t

sk

R(t − s)φ
(
s, yr(s)

)
ds

∥∥∥∥∥2

+ 3E
∥∥∥∥∥∫ t

sk

R(t − s) f
(
s
)
dBH(s)

∥∥∥∥∥2

≤3M2E
∥∥∥1k(sk, yr(t−k ))

∥∥∥2
+ 3M2 (tk+1 − sk)

∫ t

sk

E
∥∥∥φ(

s, yr(s)
)∥∥∥2

ds

+ 6M2H (tk+1 − sk)2H−1
∫ t

sk

∥ f (s)∥2
L

0
2
ds

≤3M2E
∥∥∥1k(sk, yr(t−k ))

∥∥∥2
+ 3M2 (tk+1 − sk)

∫ t

sk

ω(s)πφ
(
E∥yr∥

2
)
ds

+ 6M2H (tk+1 − sk)2H−1
∫ t

sk

∥ f (s)∥2
L

0
2
ds

≤3M2C1r + 3M2 (tk+1 − sk) ∥ω∥L1[sk ,tk+1]πφ(r) + 6M2H (tk+1 − sk)2H−1
∫ t

sk

∥ f (s)∥2
L

0
2
ds,

(17)

from (15), (16) and (17), we divide by r and take the lower bound as r→ +∞, we have

1 < E
∥∥∥Πyr(t)

∥∥∥2
≤ L,

with

1 < L := max
0≤k≤N

{
3M2

(
C1 + (tk+1 − sk) ηk1

)}
.

Which contradict with condition (12), hence Π(Ωr) ⊂ Ωr.
Step 2. We prove that the operator Π is continuous in Ωr.
Let us consider a sequence (yn)+∞n=1 ⊂ PC([0,T] ,H) such that lim

n→+∞
yn = y ∈ PC([0,T] ,H).

By Hölder’s inequality, Lemma 2.4 and using (H3)-(H7), we have

lim
n→+∞

φ(s, yn(s)) = φ(s, y(s)), (18)

lim
n→+∞

ψ(yn) = ψ(y), (19)

lim
n→+∞

1k(s, yn(t−k )) = 1k(s, y(t−k )). (20)

By assumption (H4), for a.e s ∈ [0,T] , we obtain

E
∥∥∥φ(s, yn(s)) − φ(s, y(s))

∥∥∥2
≤ 2E∥φ(s, yn(s))∥2 + 2E∥φ(s, y(s))∥2 ≤ 4ω(s)πφ

(
r
)
. (21)
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Case I. For t ∈ [0, t1], using the fact that the function s → Φ(s)π f (r) is Lebesgue integrable for s ∈ [0,T]
and t ∈ [0, t1] so by (18)-(19), 21, Lemma 2.4 and the Lebesgue dominated convergence theorem, we see that

E∥Πyn(t) −Πy(t)∥2 ≤2M2E∥ψ(yn) − ψ(y)∥2 + 2M2
∫ t

0
E
∥∥∥∥φ(s, yn(s)) − φ(s, y(s))

∥∥∥∥2
ds

−→ 0 as n→ +∞.

Case II. For t ∈ (tk, sk], k = 1, 2, · · · ,N, by (20), we get

E∥Πyn(t) −Πy(t)∥2 ≤E∥1k(s, yn(t−k )) − 1k(s, y(t−k ))∥2 −→ 0 as n→ +∞.

Case III. For t ∈ (sk, tk+1], k = 1, 2, · · · ,N, by Lemma 2.4,(18), (20), 21 and the Lebesgue dominated
convergence theorem, we can deduce that

E∥Πyn(t) −Πy(t)∥2 ≤ 2M2E∥1k(s, yn(t−k )) − 1k(s, y(t−k ))∥2 + 2M2
∫ t

sk

E
∥∥∥∥φ(s, yn(s)) − φ(s, y(s))

∥∥∥∥2
ds

−→ 0 as n→ +∞.

Thus

E∥Πyn(t) −Πy(t)∥2 −→ 0 as n→ +∞.

Therefore Π is continuous in Ωr.
Step 3. We now establish the equicontinuous of the operatorΠ : Ωr −→ Ωr. Since the impulsive function

1k is compact, then Π(Ωr) is equicontinuous on (tk, sk], k = 1, 2, · · · ,N.
Case I. Let r1, r2 ∈ [0, t1] , r1 < r2 and x ∈ Ωr, using Lemma 2.4, hypotheses (H3)-(H6) and by Hölder’s

inequality, we got

E
∥∥∥Πy(r2) −Πy(r1)

∥∥∥2
≤5E

∥∥∥(R(r2) − R(r1)
)(

y0 − ψ(y)
)∥∥∥2

+ 5E
∥∥∥∥∥∫ r2

r1

R(r2 − s)φ(s, y(s))ds
∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r1

0

(
R(r2 − s) − R(r1 − s)

)
φ(s, y(s))ds

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r2

r1

R(r2 − s) f
(
s
)
dBH(s)

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r1

0

(
R(r2 − s) − R(r1 − s)

)
f
(
s
)
dBH(s)

∥∥∥∥∥2

≤5
∥∥∥R(r2) − R(r2)

∥∥∥2(
E∥y0∥

2 + E∥ψ(y)∥2
)

+ 5M2 (r2 − r1)
∫ r2

r1

E∥φ(s, y(s))∥2ds

+ 5M2
∫ r1

0

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

0
E∥φ(s, y(s))∥2ds

+ 10M2Ht2H−1
1 (r2 − r1)

∫ r2

r1

∥ f (s)∥2
L

0
2
ds

+ 10Ht2H−1
1

∫ r1

0

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

0
∥ f (s)∥2

L
0
2
ds

≤

5∑
i=1

pi.
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For the purpose of proving that E
∥∥∥Πy(r2) − Πy(r1)

∥∥∥2
−→ 0 as r2 − r1 → 0 we only need to check

independently of y ∈ Ωr when r2 − r1 → 0.
For p1, · · · p5, since the resolvent operator is continuous in operator norm topology for t ≥ 0, the nonlocal

function ψ is compact and taking use of the function s → Φ(s)π f (r) is Lebesgue integrable, we can easily
see that

p1 :=
∥∥∥R(r2) − R(r1)

∥∥∥2(
E∥y0∥

2 + Cψ
)
−→ 0 as r2 − r1 → 0,

p2 :=5M2 (r2 − r1)πφ (r)
∫ r2

r1

ω(s)ds −→ 0 as r2 − r1 → 0,

p3 :=5M2πφ (r)
∫ r1

0

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

0
ω(s)ds −→ 0 as r2 − r1 → 0,

p4 :=10M2Ht2H−1
1 (r2 − r1)

∫ r2

r1

∥ f (s)∥2
L

0
2
ds as r2 − r1 → 0,

and

p5 :=10Ht2H−1
1

∫ r1

0

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

0
∥ f (s)∥2

L
0
2
ds as r2 − r1 → 0.

Consequently, E
∥∥∥Πy(r2) − Πy(r1)

∥∥∥2
−→ 0 as r2 − r1 → 0 independently of y ∈ Ωr when r2 − r1 → 0, it

follows that Π(Ωr) is equicontinuous on [0, t1] .
Case II. For any x ∈ Ωr and r1, r2 ∈ (sk, tk+1], k = 1, 2, · · · ,N, r1 < r2 by Lemma 2.4, and hypotheses

(H3)-(H6) , we have

E
∥∥∥Πy(r2) −Πy(r1)

∥∥∥2
≤5E

∥∥∥∥∥(R(r2 − s) − R(r1 − s)
)
1k(sk, y(t−k ))

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r2

r1

R(r2 − s)φ(s, y(s))ds
∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r1

sk

(
R(r2 − s) − R(r1 − s)

)
φ(s, y(s))ds

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r2

r1

R(r2 − s) f
(
s
)
dBH(s)

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ r1

sk

(
R(r2 − s) − R(r1 − s)

)
f
(
s
)
dBH(s)

∥∥∥∥∥2

≤5E
∥∥∥(R(r2 − s) − R(r1 − s)

)
C1r

∥∥∥2

+ 5M2 (r2 − r1)
∫ r2

r1

E∥φ(s, y(s))∥2ds

+ 5M2
∫ r1

sk

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

sk

E∥φ(s, y(s))∥2ds

+ 10M2H (tk+1 − sk)2H−1 (r2 − r1)
∫ r2

r1

∥ f (s)∥2
L

0
2
ds

+ 10H (tk+1 − sk)2H−1
∫ r1

sk

∥∥∥R(r2 − s) − R(r1 − s)
∥∥∥2

ds
∫ r1

sk

∥ f (s)∥2
L

0
2
ds.

We observe that E
∥∥∥Πy(r2) − Πy(r1)

∥∥∥2
−→ 0 independently of y ∈ Ωr when r2 − r1 → 0, under the same
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reasoning as in Case I and the fact that 1k is compact. Which implies that Π(Ωr) is equicontinuous on
(sk, tk+1] for k = 1, 2, · · · ,N.

Thus, E
∥∥∥Πy(r2)−Πy(r1)

∥∥∥2
−→ 0 at every interval on [0,T]. Thus, we determineΠ(Ωr) is equicontinuous

on each [0,T].
Step 4. Denote I = coΠ(Ωr). Where co is the closure of convex hull, it can be shown that the map

Π : I→ I is equicontinuous on each interval, and I ⊂ Ωr is also equicontinuous.
In what follows we will prove that there exists a constant 0 ≤ λ < 1 and a positive integer n0 such that

for any bounded and nonprecompact subset C ⊂ I

αPC(Πn0
(
C)

)
≤ λαPC(C). (22)

For any C ⊂ I by the definition of operator Πn and the equicontinuity of I, we get that Πn
⊂ Ωr is also

equicontinuous. It follows by Lemma 2.6, that

αPC
(
Πn(C)

)
= max

t∈[0,T]
α(Πn

(
C) (t)

)
, n = 1, 2, · · · ,N. (23)

And there exists a countable sequence C1 = {x1
N} ⊂ C such that

α(Π
(
C) (t)

)
≤ 2α(Π

(
C1) (t)

)
. (24)

Furthermore, for any bounded set C1,C2 ⊂ C by Lemma 2.4 and (H4) we can deduce that∥∥∥∥∥∫ t

sk

R(t − s)φ
(
s,C1(s)

)
ds −

∫ t

sk

R(t − s)φ
(
s,C2(s)

)
ds

∥∥∥∥∥
=

( ∫ t

sk

∥∥∥∥∥(R(t − s)
[
φ
(
s,C1(s)

)
− φ

(
s,C2(s)

)]
ds

)∥∥∥∥∥2) 1
2

≤M
( ∫ t

sk

∥φ
(
s,C1(s)

)
− φ

(
s,C2(s)

)
∥

2ds
) 1

2

.

Then, by Theorem 2.6 - 8., we get

α
( ∫ t

sk

R(t − s)φ
(
s,C(s)

)
ds

)
≤M

( ∫ t

sk

α
(
φ
(
s,C(s)

))2
ds

) 1
2

. (25)

Therefore, by Lemma 2.4, Theorem 2.6, (23), (24), (25), condition (H3)-(H7), we get for t ∈ [0, t1] that

α
(
Π1 (C) (t)

)
=α

(
Π (C) (t)

)
≤ 2α

(
Π (C1) (t)

)
≤2α

(
R(t)

(
y0 − ψ(y1

N)
))
+ 2α

( ∫ t

0
R(t − s)φ

(
s, y1

N(s)
)
ds

)
+ 2α

( ∫ t

0
R(t − s) f

(
s
)
dBH(s)

)
≤2α

( ∫ t

0
R(t − s)φ

(
s, y1

N(s)
)
ds

)
≤2M

( ∫ t

0

[
k2α

(
C1(s)

)]2

ds
) 1

2

≤2Mk2
√

t1αPC
(
C
)
.
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For every t ∈ (tk, sk], k = 1, 2, · · ·N, and since 1k

(
sk, x(t−k )

)
is compact according to assumption (H7), we have

α
(
Π1C(t)

)
=α

(
ΠC(t)

)
≤ 2α

(
ΠC1(t)

)
≤2α

(
1k

(
sk, y1

N(t−k )
))
,

at the moment, we obtain

α
(
Π1C(t)

)
= 0.

And similarly, for t ∈ (sk, tk+1], k = 1, 2, · · · ,N, we have

α
(
Π1C(t)

)
=α

(
ΠC(t)

)
≤ 2α

(
ΠC1(t)

)
≤2α

(
R(t − s)1k

(
sk, y1

N(t−k )
))
+ 2α

( ∫ t

sk

R(t − s)φ
(
s, y1

N(s)
)
ds

)
+ 2α

( ∫ t

sk

R(t − s) f
(
s
)
dBH(s)

)
≤2α

( ∫ t

sk

R(t − s)φ
(
s, y1

N(s)
)
ds

)
≤2M

( ∫ t

sk

[
k2α

(
C1(s)

)]2

ds
) 1

2

≤2Mk2

√
(tk+1 − sk)αPC

(
C
)
.

Moreover, there exists a countable set C2 = {x2
N} ⊂ coΠ1(C) such that

α
(
Π
(
coΠ1(C)

)
(t)

)
≤ 2α

(
ΠC2(t)

)
. (26)

Hence, by Lemma 2.4, (26) and (H4), (H5), (H7), for t ∈ (sk, tk+1], k = 1, 2, · · · ,N, we obtain

α
(
Π2(C)(t)

)
=α

(
Π
(
coΠ1(C)

)
(t)

)
≤ 2α

(
ΠC2(t)

)
≤2α

(
R(t − s)1k

(
sk, y2

N(t−k )
))
+ 2α

( ∫ t

sk

R(t − s)φ
(
s, y2

N(s)
)
ds

)
+ 2α

( ∫ t

sk

R(t − s) f
(
s
)
dBH(s)

)
≤2M

( ∫ t

sk

α
(
φ
(
s,C2

N(s)
))2

ds
) 1

2

≤2M
( ∫ t

sk

[
α
(
C2(s)

)]2

ds
) 1

2

≤2M
( ∫ t

sk

[
α
(
coΠ1(C)

)]2

ds
) 1

2

≤2M
( ∫ t

sk

(
2Mk2(tk+1 − sk)

1
2αPC

(
C
))2

ds
) 1

2

αPC
(
C
)

≤

(
2Mk2

)2
√

(tk+1 − sk)2

2
αPC

(
C
)
.
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By using an iterative process for all t ∈ [0,T], we obtain

α
(
Πn(C)(t)

)
≤

(
2Mk2

)n
√

(tk+1 − sk)n

n!
αPC

(
C
)
.

Therefore

α
(
Πn(C)

)
≤

(
2Mk2

)n
√

Tn

n!
αPC

(
C
)
.

It has been found that(
2Mk2

)n
√

Tn

n!
−→ 0 as n −→ +∞.

Then, there exists a large enough positive integer n0 such that(
2Mk2

)n0

√
Tn0

n0!
= λ < 1.

As a result, we demonstrated that (22) is met when 0 ≤ λ < 1 and a positive integer n0 exist. The
operator has at least one fixed point, which is a mild solution of (1), according to Theorem 3.3.

3.1. Example
The following example is given to illustrate the the proposed theory. Let us consider the non-

instantaneous impulsive stochastic integro-differential equation driven by a fractional Brownian motion as
follows

∂
∂t

z(t, x) =
∂2

∂x2 z(t, x) +
∫ t

0
K(t − s)

∂2

∂x2 z(t, x)ds

+φ
(
t, z(t, x)

)
+ F(t)dBH(t), t ∈ [0, 1] ∪ (2, 3], x ∈ [0, π] ,

z(t, x) = 11

(
t, z(1−, x)

)
t ∈ (1, 2], x ∈ [0, π] ,

z(t, 0) = z(t, π) = 0, t ∈ [0, 1] ∪ (2, 3],

z(0, x) + ψ(z) = 0 x ∈ [0, π] .

(27)

where BH denotes a fractional Brownian motion with Hurst parameter H ∈ ( 1
2 , 1).

LetV =H := L2
(

[0, π] ,R
)
. be the Hilbert space with the scalar product (u, v) =

∫ π
0 u(x)v(x)dx.We define

the operator A : D(A) ⊂H→H by Au = ∂z2

∂x2 . with domain

D(A) =
{
z ∈H,

∂z
∂x
,
∂z2

∂x2 ∈H and z(0) = z(π) = 0
}
.

Then, it is well known that Au =
∑
∞

n=1 n2(u, en)en,u ∈ H, where en(u) =
(

2
π

)1/2
sin(nu), n = 1, 2, · · · and A is

the infinitesimal generator of a strongly continuous semigroup of bounded linear operators {T(t)}t≥0 onH,

which is given by T(t)u =
∑
∞

n=1 e−n2t(u, en)en,u ∈H and en(u) =
(

2
π

)1/2
sin(nu), n = 1, 2, · · · , is the orthogonal

set of eigenvectors of A. It is well known that {T(t)}t≥0 is compact, such that ∥T(t)∥2 ≤ 1 In order to define
the operator Q :H→H, we choose a sequence {σn}n≥1 , set Qen = σnen , and assume that

tr(Q) =
∞∑

n=1

√
σn < ∞.
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Define the process BH
Q(s) by

BH
Q(s) =

∞∑
n=1

√
σnβ

H
n en,

where H ∈
(

1
2 , 1

)
, and {βH

n (t)}n∈N is a sequence of two-sided one-dimensional fractional Brownian motions
mutually independent.

Assume that K is a bounded function in C1(R+,H), and that K′ is both bounded and uniformly contin-
uous. As a result, assumptions (H1) and (H2) hold. Consequently, we can conclude that Equation 27, has a
resolvent operator h(t) for t ≥ 0, which is norm continuous for t > 0, as established by Theorems 2.13 and
2.16.

Let t ∈ [0, 3] and PC := PC
(

[0, 3] ,H
)
. For z, we refer to the segment solution defined in the standard

manner z(., .) : [0, 3] × [0, π] −→H, with

y(t)(z) = z(t, x), t ∈ [0,T] x ∈ [0, π] .

By the definition of f , 1, φ, ψ one easily verify that assumptions (H3)-(H7) hold with the following
functions φ : ([0, 1] ∪ (2, 3]) × PC

(
[0, 3] ,H

)
→ H, 11 : (1, 2] × H → H and the nonlocal function ψ :

PC

(
[0, 3] ,H

)
→H and f : [0, 3]→ L0

2(V,H), defined by

φ
(
t, z(t, x)

)
=

t
1
2 sin(z(t, x))
e7 (1 + ∥z∥2)

(
z(t, x)

)
t ∈ [0, 1] ∪ (2, 3], x ∈ [0, π] , (28)

11

(
t, z(1−, x)

)
=

∫ π

0

∫ t

1
ζ(s, x)

z(1−,w)

3e4
(
1 + ∥z(1−,w)∥2

)ds dw t ∈ (1, 2], x ∈ [0, π] , (29)

ψ(z) =
∫ π

0

∫ 3

0
b(s, x) cos(z(s,w)ds dw, (30)

f (t) =F(t) t ∈ [0, 1] ∪ (2, 3], (31)

where ζ, b : [0,T] × [0, π]→ R+ are continuous functions such that ζ(t, π) = b(t, π) = 0.
We now present Lemma 3.4 to prove the compactness of a class of functions.

Lemma 3.4. [32] Let 1 : PC
(

[0,T] ,H
)
→H be a operator defined by

1(z)(x) =
∫ π

0

∫ T

0
ϖ(s, x)ϑ(z(s,w))ds dw,

where ϖ : [0,T] × [0, π]→ R and ϑ :H→H are continuous functions where ϑ satisfies

∥ϑ(z)∥2 ≤ C
(
∥z∥2 + 1

)
, for all z ∈ PC

(
[0,T] ,H

)
, for C > 0.

Then, g is a compact.

Proof. Let B ⊂ C
(

[0,T] ,H
)

a bounded set, then there exists L > 0 such that

∥z∥∞ sup
t∈[0,T]

∥z (t, .)∥L2(Ω,H) ≤ l.
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Let z ∈ B, applying Hölder inequality and Fubini’s theoerem, we have

∣∣∣1(z)(x)
∣∣∣2 =∣∣∣∣∣ ∫ π

0

∫ T

0
ϖ(s, x)ϑ(z(s,w))ds dw

∣∣∣∣∣2
≤

∥∥∥ϖ∥∥∥2

∞

∣∣∣∣∣ ∫ π

0

∫ T

0
ϑ(z(s,w))ds dw

∣∣∣∣∣2
≤πT

∥∥∥ϖ∥∥∥2

∞

∫ T

0

∥∥∥ϑ(z(s, .))
∥∥∥2

H
ds

≤πT2
∥∥∥ϖ∥∥∥2

∞
C
(
l2 + 1

)
.

We conclude∥∥∥1(z)
∥∥∥2

H
≤ πT2

∥∥∥ϖ∥∥∥∥2

∞

C
(
l2 + 1

)
.

Consequently, 1 is bounded on B.
Next, we will show that the operator 1(B) satisfied the “integral” equicontinuity condition. Let x, ξ ∈

[0, π], we have∫ π

0

∣∣∣∣1(z)(x + ξ) − 1(z)(x)
∣∣∣∣2dx =

∫ π

0

∣∣∣∣∣ ∫ π

0

∫ T

0

(
ϖ(s, x + ξ) − ϖ(s, x)

)
ϑ(z(s,w))ds dw

∣∣∣∣∣2dx

≤πCT2
(
l2 + 1

) ∫ π

0

∫ T

0

∣∣∣∣ϖ(s, x + ξ) − ϖ(s, x)
∣∣∣∣2ds dx.

Thus,

∥τξψ (z) − ψ (z)∥2H → 0 as ξ→ 0,

where, τξψ (z) = 1(z) (x + ξ). We deduce, from Kolmogorov-Riesz-Fréchet theorem [[6], Theorem 4.26], that
φ (B) is relatively compact inH.

Corollary 3.5. [32] Let Υ : [0,T] ×H→H be a operator defined by

Υ(z)(t, x) =
∫ π

0

∫ t

0
ϖ(s, x)ϑ(z(s,w))ds dw,

where ϖ : [0,T] × [0, π]→ R and ϑ :H→H are continuous functions where ϑ satisfies

∥ϑ(z)∥2 ≤ C
(
∥z∥2 + 1

)
, for all z ∈ PC

(
[0,T] ,H

)
, for C > 0.

Then, for all bounded B ⊂H, Υ : [0,T] × B→H is a relatively compact.

Proof. In the same way as the proof of Lemma 3.4, We prove this.

Assumptions (H3)-(H7) are readily verified by using the definitions of f , 11, φ, and ψ, hold with

ω(t) = t, η = 1, πφ
(∥∥∥z

∥∥∥2

2

)
=
∥z∥22
e14 , k1 =

1
e14 .

Corollary 3.5 and Lemma 3.4 hold that ψ and 11 are compact. As a result, (H6) and (H7) are satisfied. Thus,
the totality of assumptions in Theorem 3.3 is satisfied. This implies that, the system (27) on [0,T] has a mild
solution.
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4. Controllability Result

In this section, we formulate sufficient conditions for the exact controllability of the non-instantaneous
impulsive stochastic integro-differential equations with noncompact semigroups driven by a fractional
Brownian motion of the form:

dy(t) =
[
Ay(t) +

∫ t

0
h(t − s)y(t)ds

]
dt

+φ(t, y(t))dt + Bu(t)dt + f (t)dBH(t), t ∈ ∪N
k=0(sk, tk+1],

y(t) = 1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

y(0) + ψ(y) = y0 ∈H.

(32)

The functions φ, ψ, f , and 1k are functions previously defined. The control function u(.) takes values in
L2 ([0,T] ,U) of admissible control functions for a separable Hilbert spaceU, B is a linear bounded operator
fromU toH.

Definition 4.1. A F -adapted stochastic process y(t) : [0,T] → H is called a mild solution of (32) if y(0) + ψ(y) =
y0 ∈H and for each t ∈ [0,T]

y(t) =



R(t)
(
y0 − ψ(y)

)
+

∫ t

0
R(t − s)φ

(
s, y(s)

)
ds

+

∫ t

0
R(t − s)Bu

(
s
)
ds +

∫ t

0
R(t − s) f

(
s
)
dBH(s), t ∈ [0, t1] ,

1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

R(t − sk)1k(sk, y(t−k )) +
∫ t

sk

R(t − s)φ
(
s, y(s)

)
ds

+

∫ t

sk

R(t − s)Bu
(
s
)
ds +

∫ t

sk

R(t − s) f
(
s
)
dBH(s), t ∈ ∪N

k=1(sk, tk+1].

(33)

Definition 4.2. The stochastic control system (32) is said to be exact controllable on [0,T] if for every initial state
y0, y1 ∈H if the reachable setR(T) is dense in the space u ∈ L2

(
[0,T] ,U

)
such that the mild solution of (32) satisfies

y(T) + ψ(y) = y1, where y1 is a preassigned terminal state.

To prove the controllability result, the following hypotheses are necessary:
(H8) The linear operator G from L2 ([0,T] ,U) into L2([0,T] ,H) defined by

Gu =

∫ T

sk

R(T − s)Bu
(
s
)
ds,

has an inverse operator G−1 that takes values in L2 ([0,T] ,U) /kerG, where

kerG =
{
y ∈ L2 ([0,T] ,U) , Gy = 0

}
.

(1) There exists two positive constants CB, CG such that

∥B∥2 ≤ CB, ∥G
−1
∥

2
≤ CG.
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(2) There exists KB ∈ R+, KG ∈ L1 ([0,T] ,R+) such that for any bounded set D1 ⊂ U, D2 ⊂H

α
(
B(D1)

)
≤ KBα (D1) , α

(
G
−1(D2(t))

)
≤ KG(t)α (D2(t)) .

The main result of this paper is given in the next theorem

Theorem 4.3. Suppose that (H1)-(H8) hold. Then, the stochastic integro-differential system (32) is controllable on
[0.T] . provided that

4M2
(
C1 + Tηk1

)(
1 + 5CGCBT2

)
< 1. (34)

Proof. To prove our result, we transform (32) into a fixed point problem. Consider the operator Π ∈
PC

(
[0,T] ,H

)
defined by

Πy(t) =



R(t)
(
y0 − ψ(y)

)
+

∫ t

0
R(t − s)φ

(
s, y(s)

)
ds

+

∫ t

0
R(t − s)Bu

(
s
)
ds +

∫ t

0
R(t − s) f

(
s
)
dBH(s), t ∈ [0, t1] ,

1k(t, y(t−k )), t ∈ ∪N
k=1(tk, sk],

R(t − sk)1k(sk, y(t−k )) +
∫ t

sk

R(t − s)φ
(
s, y(s)

)
ds

+

∫ t

sk

R(t − s)Bu
(
s
)
ds +

∫ t

sk

R(t − s) f
(
s
)
dBH(s), t ∈ ∪N

k=1(sk, tk+1].

(35)

Using the hypothesis (H8) for an arbitrary function y(.), define the stochastic control

uy (t) = G−1
(
y1−R(T)

(
y0 − ψ(y)

)
− R(T − sk)1k(sk, y(t−k ))

−

∫ T

sk

R(T − s)φ
(
s, y(s)

)
ds −

∫ T

sk

R(T − s) f
(
s
)
dBH(s)

)
(t) ,

(36)

for uy ∈ Ωr, using Lemma 2.4, (H3)-(H7) and (H8), we obtain the following result

E
∥∥∥uy

∥∥∥2
≤5CG

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + E∥ψ(y)∥2
)
+M2E

∥∥∥1k(sk, y(t−k ))
∥∥∥2

+M2 (T − sk)
∫ T

sk

E
∥∥∥φ(

s, y(s)
)∥∥∥2

ds + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
≤5CG

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1kE∥(sk, y(t−k ))∥2

+M2 (T − sk)
∫ T

sk

ω(s)πφ
(
E∥y∥2

)
ds + 2M2H (T − sk)2H−1

∫ T

sk

∥ f (s)∥2
L

0
2
ds

)

≤5CG
(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
.
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Hence

E
∥∥∥uy

∥∥∥2
≤5CG

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
.

(37)

step 1 The proof is similar as in problem (1). Here, we merely demonstrate the existence of a constant r > 0
such that Π(Ωr) ⊂ Ωr. Let’s assume that this is untrue. Then for each r > 0, there would exist yr ∈ Ωr and
tr ∈ [0,T] such that E

∥∥∥Π(
yr

)
(tr)

∥∥∥2
> r.

Case I. For t ∈ [0, t1] , using Lemma2.4, (37), and hypotheses (H3)- (H6) and (H8), we have

E
∥∥∥Π(

yr

)
(t)

∥∥∥2
≤4M2

(
E∥y0 + ψ(y)∥2 + t1

∫ tr

0
E
∥∥∥φ(

s, yr(s)
)∥∥∥2

ds

+ CBt1

∫ tr

0
E
∥∥∥uy (s)

∥∥∥2
ds + 2Ht2H−1

1

∫ tr

0
∥ f (s)∥2

L
0
2
ds

)
≤4M2

(
E∥y0∥

2 + Cψ
)
+ 4M2t1

∫ tr

0
ω(s)πφ

(
E∥yr∥

2
)

ds

+ 20M2CGCBt1

∫ tr

0

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
ds

+ 8M2Ht2H−1
1

∫ tr

0
∥ f (s)∥2

L
0
2
ds

≤4M2
(
E∥y0∥

2 + Cψ
)
+ 4M2t1∥ω∥L1[0,t1]π f (r)

+ 20M2CGCBt2
1

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
+ 8M2Ht2H−1

1

∫ tr

0
∥ f (s)∥2

L
0
2
ds,

consequently, we have

E
∥∥∥Π(

yr

)
(t)

∥∥∥2
≤4M2

(
E∥y0∥

2 + Cψ + t1∥ω∥L1[0,t1]π f (r)
)

+ 20M2CGCBt2
1

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
+ 8M2Ht2H−1

1

∫ tr

0
∥ f (s)∥2

L
0
2
ds.

(38)

Case II. For tr ∈ (tk, sk], k = 1, 2, · · · ,N, using assumption (H7), we obtain

E∥Πyr(t)∥2 ≤E∥1k(t, yr(t−k ))∥2

≤C1kE∥yr∥
2

≤C1r.

(39)
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Case III. For tr ∈ (sk, tk+1], k = 1, 2, · · · ,N,by Lemma2.4, (37), and assumptions (H3)- (H5), (H7) and (H8), we
get the following results

E∥Πyr(t)∥2 ≤4M2
(
E∥1k(sk, yr(t−k ))∥2 + (tk+1 − sk)

∫ tr

sk

E
∥∥∥φ(

s, yr(s)
)∥∥∥2

ds

+ CB (tk+1 − sk)
∫ tr

sk

E
∥∥∥uy (s)

∥∥∥2
ds + 2H (tk+1 − sk)2H−1

∫ tr

sk

∥ f (s)∥2
L

0
2
ds

)

≤4M2
(
E∥1k(sk, yr(t−k ))∥2 + (tk+1 − sk)

∫ t

sk

E
∥∥∥φ(

s, yr(s)
)∥∥∥2

ds

+ 5CGCB (tk+1 − sk)
∫ tr

sk

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
ds

+ 2H (tk+1 − sk)2H−1
∫ tr

sk

∥ f (s)∥2
L

0
2
ds

)
≤4M2C1r + 4M2 (tk+1 − sk)

∫ tr

sk

ω(s)πφ
(
E∥yr∥

2
)

ds

+ 20M2CGCB (tk+1 − sk)2
(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
+ 8M2H (tk+1 − sk)2H−1

∫ tr

sk

∥ f (s)∥2
L

0
2
ds,

we obtain

E∥Πyr(t)∥2 ≤4M2
(
C1r + (tk+1 − sk) ∥ω∥L1[sk ,T]πφ (r)

)
+ 20M2CGCB (tk+1 − sk)2

(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)
+M2C1r

+M2 (T − sk) ∥ω∥L1[sk ,T]πφ(r) + 2M2H (T − sk)2H−1
∫ T

sk

∥ f (s)∥2
L

0
2
ds

)
+ 8M2H (tk+1 − sk)2H−1

∫ tr

sk

∥ f (s)∥2
L

0
2
ds.

(40)

Combining the three cases (38), (39), (40), we obtain

r < E∥Πxr(t)∥2 ≤4M2
(
E∥y0∥

2 + Cψ + C1r + Tηπφ (r)
)

+ 20M2CGCBT2
(
E∥y1∥

2 + 2M2
(
E∥y0∥

2 + Cψ
)

+M2C1r +M2Tηπφ(r) + 2M2HT2H−1
∫ T

sk

∥ f (s)∥2L0
2
ds

)
+ 8M2H (tk+1 − sk)2H−1

∫ tr

sk

∥ f (s)∥2
L

0
2
ds.
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Dividing both sides by r and taking the lower limit as r→ +∞, we have

1 < E∥Πxr(t)∥2 ≤4M2
(
C1 + Tηk1

)
+ 20M4CGCBT2

(
C1 + Tηk1

)
1 ≤4M2

(
C1 + Tηk1

)(
1 + 5M2CGCBT2

)
,

which is contradicted with (34), hence, there exists a constant r > 0 such that Π(Ωr) ⊂ Ωr.
Using the same method as in problem 13, we show that the operator Π is continuous in Ωr and

equicontinuous for each t ∈ [0,T].

α (uC(t)) ≤α
(
G
−1

(
y1 − R(T)

(
y0 − ψ(C)

)
− R(T − sk)1k(sk,C(t−k ))

−

∫ T

sk

R(T − s)φ
(
s,C(s)

)
ds −

∫ T

sk

R(T − s) f
(
s
)
dBH(s)

)
(t)

)
≤KG(t)α

(
y1 − R(T)

(
y0 − ψ(C)

)
− R(T − sk)1k(sk,C(t−k ))

−

∫ T

sk

R(T − s)φ
(
s,C(s)

)
ds −

∫ T

sk

R(T − s) f
(
s
)
dBH(s)

)

≤∥KG∥L1[0,T]

(
2α

(
y1 − R(T)

(
y0 − ψ(C)

))
+ 2α

(
R(T − sk)1k(sk,C(t−k ))

)
+ 2α

(∫ T

sk

R(T − s)φ
(
s,C(s)

)
ds

)
+ 2α

(∫ T

sk

R(T − s) f
(
s
)
dBH(s)

) )
≤2∥KG∥L1[0,T]α

(∫ T

sk

R(T − s)φ
(
s,C(s)

)
ds

)
.

Also that, there exists a large enough positive integer n0 such that(
2Mk2

)n0
.
(
1 +MKB∥KG∥L1[0,T]

)n0
√

Tn0

n0!
= λ < 1,

where 0 ≤ λ < 1. Thus, condition (6) is satisfied. According to Theorem 4.3, the operator 4.3 has at least one
fixed point. Hence, the system is exactly controllable on the interval [0,T] .

4.1. Example
In this part, we present an example to illustrate our analytical result concerning the controllability of

the system. Let us consider the following the non-instantaneous impulsive stochastic integro-differential
equation driven by a fractional Brownian motion:



∂
∂t

z(t, x) =
∂2

∂x2 z(t, x) +
∫ t

0
K(t − s)

∂2

∂x2 z(t, x)ds

+φ
(
t, z(t, x)

)
+ v(t, x) + F(t)dBH(t), t ∈ [0, 1] ∪ (2, 3], x ∈ [0, π] ,

z(t, x) = 11

(
t, z(1−, x)

)
t ∈ (1, 2], x ∈ [0, π] ,

z(t, 0) = z(t, π) = 0, t ∈ [0, 1] ∪ (2, 3],

z(0, x) + ψ(z) = 0 x ∈ [0, π] .

(41)



S. Mouchir, A. Slama / Filomat 39:2 (2025), 381–406 404

LetU = V =H := L2
(

[0, π] ,R
)
. Our presumptions are as follows:

We define φ : ([0, 1] ∪ (2, 3]) × PC
(

[0, 3] ,H
)
→ H, 11 : (1, 2] ×H → H, ψ : PC

(
[0, 3] ,H

)
→ H and

f : [0, 3]→ L0
2(V,H), defined by

φ
(
t, z(t, x)

)
=

t
1
2 sin

(
z(t, x)

)
e7
(
1 + ∥z∥2

) (
z(t, x)

)
t ∈ [0, 1] ∪ (2, 3], x ∈ [0, π] ,

11

(
t, z(1−, x)

)
=

∫ π

0

∫ t

1
ζ(s, x)

z(1−, x)

3e4
(
1 + ∥z(1−, x)∥2

)ds dx t ∈ (1, 2], x ∈ [0, π] ,

ψ(z) =
∫ π

0

∫ 3

0
b(t, x) cos(z(s, x)ds dx,

f (t) =F(t) t ∈ [0, 1] ∪ (2, 3],

where ζ, b : [0,T] × [0, π]→ R+ are continuous functions such that ζ(t, π) = b(t, π) = 0.
Define the bounded linear operator B : U→H by

Bu(t)(x) = v(t, x), x ∈ [0, π] , u ∈ L2 ([0,T] ,U) .

The operator : L2 ([0,T] ,U)→ L2 ([0,T] ,H) defined by

Gu(x) =
∫ T

sk

R(T − s)v(s, x)ds,

has an inverse G−1
u and satisfies condition (H8). Lemma 3.4 and Corollary 3.5 establish that ψ and 11 are

compact.
Next, it shows us that all requirements of Theorem 4.3 are satisfied in the above example. Therefore, the

system corresponding to (41) is exact controllable.

5. Conclusions

In this work, we investigated a class of non-instantaneous impulsive stochastic integrate-differential
equations driven by a fractional Brownian motion with nonlocal conditions in a Hilbert space. The exis-
tence of mild solutions and the exact controllability of the system are studied using a generalized Darbo’s
fixed point theorem, Kuratowskii measure of non-compactness and the resolvent operator. In the future,
we will study the existence of solutions and the stability of the fractional stochastic integro-differential
equation driven by fractional brownian motion with non-instantaneous impulsive.
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