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Abstract. Given a connected and bridgeless graph G, let D(G) be the set of all strong orientations of G,
and define the oriented diameter of G to be

f (G) = min{diam(D) | D ∈ D(G)}.

Rajasekaran and Sampathkumar (Filomat, 2015) conjectured

f (K(2, p, q)) = 3 when p ⩾ 5 and q >
( p
⌊

p
2 ⌋

)
.

In this paper, we confirm this conjecture. Combining with the results of Koh and Tan (Graphs and
Combinatorics, 1996), the oriented diameter of complete tripartite graph K(2, p, q) is completely determined.

1. Introduction

Let G be a finite undirected connected graph with vertex set V(G) and edge set E(G). Take u, v ∈ V(G).
The distance dG(u, v) is the number of edges in a shortest path connecting u and v in G. The diameter of G
is defined to be diam(G) = max{dG(u, v) | u, v ∈ V(G)}. An edge e ∈ E(G) is called a bridge if the resulting
graph obtained from G by deleting e is disconnected. A graph is called bridgeless if it has no bridge. An
orientation D of G is a digraph obtained from G by assigning a direction to each edge. A digraph is strong
(or strongly connected) if for any two vertices u, v, there is a directed path from u to v in this digraph.
An orientation D of G is called a strong orientation if the digraph D is strong. Robbins’ one-way street
theorem [9] states that

a connected graph has a strong orientation if and only if it is bridgeless.

Given a connected graph G which is bridgeless, letD(G) be the set of all strong orientations of G. Define
the oriented diameter of G to be

f (G) = min{diam(D) | D ∈ D(G)},
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where diam(D) denote the diameter of D. The problem of evaluating oriented diameter f (G) of an arbitrary
connected graph G is very difficult. Chvátal and Thomassen [2] showed that the problem of deciding
whether a graph admits an orientation of diameter two is NP-hard.

Given positive integers n, p1, p2, . . . , pn, let Kn denote the complete graph of order n, and let K(p1, p2, . . . , pn)
denote the complete n-partite graph having pi vertices in the i-th partite set Vi for each i ∈ {1, 2, . . . ,n}. Thus
Kn is also a complete n-partite graph K(p1, p2, . . . , pn) where p1 = p2 = · · · = pn = 1. The oriented diameter of
complete graph Kn was obtained by Boesch and Tindell [1]:

f (Kn) =


2, if n ⩾ 3 and n , 4;

3, if n = 4.

The oriented diameter of complete bipartite graph K(p, q) for 2 ⩽ p ⩽ q was obtained by Šoltés [10]:

f (K(p, q)) =


3, if q ⩽

( p
⌊

p
2 ⌋

)
;

4, if q >
( p
⌊

p
2 ⌋

)
;

where ⌊x⌋ denotes the greatest integer not exceeding x. For n ⩾ 3, Plesnı́k [7], Gutin [3], and Koh and Tan [4]
obtained independently the following result for oriented diameter of complete n-partite graph:

2 ⩽ f (K(p1, p2, . . . , pn)) ⩽ 3.

They also got some other results on complete multipartite graphs. In a survey by Koh and Tay [6], earlier
results were collected in it, for example: lower and upper bounds for some graphs with special parameters,
oriented diameters for Cartesian product and extensions of graphs, etc.

Koh and Tay [6] proposed a problem.

Problem 1.1. Given the graph G = K(p1, p2, . . . , pn), classify it according to whether f (G) = 2 or f (G) = 3.

We focus on complete tripartite graphs. Koh and Tan [5] proved

f (K(2, p, q)) = 2 for 2 ⩽ p ⩽ q ⩽
( p
⌊

p
2 ⌋

)
.

Rajasekaran and Sampathkumar [8] proved f (K(2, 2, q)) = 3 for q ⩾ 3, and f (K(2, 3, q)) = 3 for q ⩾ 4, and
they also got in an unpublished manuscript that f (K(2, 4, q)) = 3 for q ⩾ 7. Hence they [8] conjectured that

f (K(2, p, q)) = 3 when p ⩾ 5 and q >
( p
⌊

p
2 ⌋

)
.

In this paper, we confirm this conjecture. Combining with the results of Koh and Tan [5], the oriented
diameter of complete tripartite graph K(2, p, q) is completely determined: for 2 ⩽ p ⩽ q,

f (K(2, p, q)) =


2, if q ⩽

( p
⌊

p
2 ⌋

)
;

3, if q >
( p
⌊

p
2 ⌋

)
.

More generally, we prove the following result.

Theorem 1.2. Suppose 2 ⩽ p ⩽ q and q >
( p
⌊

p
2 ⌋

)
, then f (K(2, p, q)) = 3.
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2. Preliminaries

Let D be a digraph with vertex set V(D). If u, v ∈ V(D), the distance ∂D(u, v) is the number of directed
edges in a shortest directed path from u to v in D. If D is strongly connected, the diameter of D is defined
as diam(D) = max{∂D(u, v) | u, v ∈ V(D)}. Let u, v ∈ V(D), and U,V ⊆ V(D) such that U ∩ V = ∅, we write
‘u→ v’ if the direction is from u to v in D, we write ‘U → V’ if x→ y for each x ∈ U and for each y ∈ V, if
U = {u} we write ‘u → V’ for U → V, if V = {v} we write ‘U → v’ for U → V. All the out-neighbors of u
form a set N+D(u) = {w ∈ V(D) | u→ w}, and all the in-neighbors of v form a set N−D(v) = {w ∈ V(D) | w→ v}.
For S ⊆ V(D), we use D[S] to denote the subgraph induced by S in D.

Lemma 2.1. Suppose X is a strongly connected digraph. Let u, v ∈ V(X) be two vertices of X. If N+X(u)∩N−X(v) = ∅,
then ∂X(u, v) , 2.

Proof. We assume ∂X(u, v) = 2, then there exists w ∈ V(X) such that u→ w→ v. So w ∈ N+X(u) ∩N−X(v) , ∅,
a contradiction.

3. Proof of Theorem 1.2

The oriented diameter of complete bipartite graph K(p, q) is crucial in some cases of this proof. The rest
of this section is the proof of Theorem 1.2, and we prove it by contradiction. Assuming

f (K(2, p, q)) = 2 when 2 ⩽ p ⩽ q and q >
( p
⌊

p
2 ⌋

)
.

Then K(2, p, q) has a strong orientation D with diameter diam(D) = 2. Let

V1 = {x1, x2},
V2 = {y1, y2, . . . , yp},
V3 = {z1, z2, . . . , zq}

be the three partite sets of the vertex set of K(2, p, q). We consider sets

N++D = N+D(x1) ∩N+D(x2),
N+−D = N+D(x1) ∩N−D(x2),
N−+D = N−D(x1) ∩N+D(x2),
N−−D = N−D(x1) ∩N−D(x2).

For i ∈ {2, 3}, the following four sets

V++i = Vi ∩N++D ,
V+−i = Vi ∩N+−D ,
V−+i = Vi ∩N−+D ,
V−−i = Vi ∩N−−D

form a partition of Vi. By this partition, we have the following properties.

Lemma 3.1. We use notations as above. Suppose {i, j} = {2, 3}.
1. If V++i , ∅, then V++i → V j and |V++i | = 1;

if V−−i , ∅, then V j → V−−i and |V−−i | = 1.
2. If V++i , ∅, then V++j = ∅; if V−−i , ∅, then V−−j = ∅.

Proof. Suppose V++i , ∅. Take any y ∈ V++i and any z ∈ V j, we have ∂D(y, z) ⩽ 2. If z → y, then
N+D(y) ⊆ V j \ {z}. We know ∂D(z′, z) ⩾ 2 for any z′ ∈ V j \ {z}, so ∂D(y, z) ⩾ 3, a contradiction. Hence y → z.
This means V++i → V j.

For distinct vertices yh, yk ∈ V++i , we have N+D(yh) ⊆ V j and N−D(yk) ⊆ V1. V1 ∩ V j = ∅ implies
N+D(yh) ∩ N−D(yk) = ∅, so by Lemma 2.1 we get ∂D(yh, yk) ⩾ 3, a contradiction. Thus |V++i | = 1. The
proof for the case V−−i , ∅ is analogous.

Suppose V++i , ∅ and V++j , ∅, then V++i → V j and V++j → Vi, i.e., for y ∈ V++i and z ∈ V++j , we have
y→ z and z→ y, a contradiction. The proof for the case V−−i , ∅ is analogous.
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Let

H = {V++2 ,V
+−
2 ,V

−+
2 ,V

−−

2 }.

We will divide it into cases according to the number of nonempty sets inH.

3.1. There is exactly one nonempty set inH
Suppose there is exactly one of the four sets in H that is nonempty. Since V2 is a partition of the four

sets inH, it is exactly the nonempty set, i.e., V2 ∈H.

3.1.1. V2 = V++2
Suppose V2 = V++2 .
By Lemma 3.1, we have 1 = |V++2 | = |V2| = p ⩾ 2, which is a contradiction.

3.1.2. V2 = V−−2
This subcase is the same as in Subsubsection 3.1.1 by reversing directions of all the arcs in D, meanwhile

the diameter is preserved.

3.1.3. V2 = V+−2
Suppose V2 = V+−2 .
We know x1 → V2 → x2. Take any z ∈ V3. If x1 → z, then N+D(z) ⊆ {x2} ∪ V2. We have ∂D(x2, x1) ⩾ 2 and

∂D(y, x1) ⩾ 2 for any y ∈ V2. So ∂D(z, x1) ⩾ 3, a contradiction. Hence we get z → x1. This means V3 → x1.
Similarly, we can prove x2 → V3.

Take any two vertices yh, yk ∈ V2. We know ∂D(yh, yk) ⩽ 2. Since N+D(yh) ⊆ {x2}∪V3 and N−D(yk) ⊆ {x1}∪V3,
and by Lemma 2.1, then we have ∅ , N+D(yh)∩N−D(yk) ⊆ V3, i.e., there exists an integer δ(h, k) and zδ(h,k) ∈ V3
such that yh → zδ(h,k) → yk. Similarly, we can prove that for any zi, z j ∈ V3, there exists an integer η(i, j) and
yη(i, j) ∈ V2 such that zi → yη(i, j) → z j.

Let F = D[V2 ∪ V3]. Then F is an orientation of K(p, q) where 2 ⩽ p ⩽ q and q >
( p
⌊

p
2 ⌋

)
. Take any distinct

vertices yh, yk ∈ V2 and distinct vertices zi, z j ∈ V3. By the above discussion, we get ∂F(yh, yk) = 2 = ∂F(zi, z j).
If yh → zi, then ∂F(yh, zi) = 1 and N+F (zi) ∩ N−F (yh) ⊆ V2 ∩ V3 = ∅. By Lemma 2.1, we have ∂F(zi, yh) ⩾ 3.
There is a directed path zi → yη(i, j) → zδ(η(i, j),h) → yh of length three, so we have ∂F(zi, yh) = 3. By the same
argument, if zi → yh, then ∂F(zi, yh) = 1 and ∂F(yh, zi) = 3. Thus diam(F) = 3 < 4 = f (K(p, q)), a contradiction.

3.1.4. V2 = V−+2
This subcase is the same as in Subsubsection 3.1.3 by interchanging vertices x1 and x2 (the diameter of

the orientation is also preserved).

3.2. There are exactly two nonempty sets inH
Suppose there are exactly two nonempty sets in H. Since V2 is a partition of the four sets in H, any

possible two sets inH form a partition of V2.

3.2.1. V2 = V++2 ∪ V+−2
Suppose V++2 , ∅, V+−2 , ∅, V−+2 = ∅ and V−−2 = ∅.
By Lemma 3.1, we may assume V++2 = {y}. So x1 → y→ V3, x1 → V+−2 → x2 → y, |V+−2 | = p − 1.
We show that V3 → x1. Take any zi ∈ V3, we have N+D(zi) ⊆ V+−2 ∪V1, N−D(x1) ⊆ V3. So N+D(zi)∩N−D(x1) = ∅.

If x1 → zi, by Lemma 2.1 we have ∂D(zi, x1) ⩾ 3, a contradiction. Hence zi → x1.
Since N+D(y) ⊆ V3, N−D(x2) ⊆ V+−2 ∪V3 and ∂D(y, x2) ⩽ 2, we have ∅ , N+D(y)∩N−D(x2) ⊆ V3, i.e., there exists

z ∈ V3 such that y→ z→ x2. Take any yk ∈ V+−2 , then N+D(yk) ⊆ {x2} ∪V3, N−D(z) ⊆ V2, so N+D(yk)∩N−D(z) = ∅.
If z→ yk, by Lemma 2.1 we get ∂D(yk, z) ⩾ 3, a contradiction. Hence yk → z. This means V+−2 → z.

Take z j ∈ V3 \ {z}. We have N+D(z) ⊆ V1, N−D(z j) ⊆ {x2} ∪V2, and so N+D(z)∩N−D(z j) ⊆ {x2}, i.e., z→ x2 → z j.
This means x2 → V3 \ {z}.
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Since q >
( p
⌊

p
2 ⌋

)
⩾ 2, we have q ⩾ 3 and |V3 \ {z}| = q − 1 ⩾ 2. Take distinct vertices zi, z j ∈ V3 \ {z}.

We have N+D(zi) ⊆ {x1} ∪ V+−2 , N−D(z j) ⊆ {x2} ∪ V2, and so N+D(zi) ∩ N−D(z j) ⊆ V+−2 . Since ∂D(zi, z j) ⩽ 2,
there exists an integer η(i, j) and yη(i, j) ∈ V+−2 such that zi → yη(i, j) → z j. We know yη(i, j) , yη( j,i), hence
p − 1 = |V+−2 | ⩾ 2. Take distinct vertices yh, yk ∈ V+−2 . We have N+D(yh) ⊆ {x2} ∪ V3, N−D(yk) ⊆ {x1} ∪ V3 \ {z},
and so N+D(yh)∩N−D(yk) ⊆ V3 \ {z}. Since ∂D(yh, yk) ⩽ 2, there exists an integer δ(h, k) and yδ(h,k) ∈ V3 \ {z} such
that yh → zδ(h,k) → yk.

Let F = D[V+−2 ∪ V3 \ {z}]. Then F is an orientation of K(p − 1, q − 1) where 2 ⩽ p − 1 ⩽ q − 1 and

q − 1 >
( p−1

⌊
p−1

2 ⌋

)
. Take any distinct vertices yh, yk ∈ V+−2 and distinct vertices zi, z j ∈ V3 \ {z}. By the above

discussion, we get ∂F(yh, yk) = 2 = ∂F(zi, z j). If yh → zi, then ∂F(yh, zi) = 1 and N+F (zi)∩N−F (yh) ⊆ V2 ∩V3 = ∅.
By Lemma 2.1, we have ∂F(zi, yh) ⩾ 3. There is a directed path zi → yη(i, j) → zδ(η(i, j),h) → yh of length three,
so we have ∂F(zi, yh) = 3. By the same argument, if zi → yh, then ∂F(zi, yh) = 1 and ∂F(yh, zi) = 3. Thus
diam(F) = 3 < 4 = f (K(p − 1, q − 1)), a contradiction.

3.2.2. V2 = V++2 ∪ V−+2
Suppose V++2 , ∅, V−+2 , ∅, V+−2 = ∅ and V−−2 = ∅.
This subcase is the same as in Subsubsection 3.2.1 by interchanging vertices x1 and x2 (the diameter of

the orientation is also preserved).

3.2.3. V2 = V+−2 ∪ V−−2
Suppose V+−2 , ∅, V−−2 , ∅, V++2 = ∅ and V−+2 = ∅.
This subcase is the same as in Subsubsection 3.2.2 by reversing directions of all the arcs in D, meanwhile

the diemater is preserved.

3.2.4. V2 = V−+2 ∪ V−−2
Suppose V−+2 , ∅, V−−2 , ∅, V++2 = ∅ and V+−2 = ∅.
This subcase is the same as in Subsubsection 3.2.3 by interchanging vertices x1 and x2 (the diameter of

the orientation is also preserved).

3.2.5. V2 = V++2 ∪ V−−2
Suppose V++2 , ∅, V−−2 , ∅, V+−2 = ∅ and V−+2 = ∅.
By Lemma 3.1, we have V++3 = ∅ = V−−3 , V3 = V+−3 ∪V−+3 , and we may assume V++2 = {y+} and V−−2 = {y−}.

So p = 2, q ⩾ 3, x1 → y+ → V3 → y− → x1, y− → x2 → y+, x1 → V+−3 → x2 → V−+3 → x1. By the pigeonhole
principle, we have |V+−3 | ⩾ 2 or |V−+3 | ⩾ 2. The argument for these two cases are similar, so we may assume
|V+−3 | ⩾ 2. Take distinct vertices zi, z j ∈ V+−3 . We have N+D(zi) ⊆ {x2, y−} and N−D(z j) ⊆ {x1, y+}, and so
N+D(zi) ∩N−D(z j) = ∅. By Lemma 2.1, we have ∂D(zi, z j) ⩾ 3. A contradiction.

3.2.6. V2 = V+−2 ∪ V−+2
Suppose V+−2 , ∅, V−+2 , ∅, V++2 = ∅ and V−−2 = ∅.
We have x1 → V+−2 → x2 → V−+2 → x1, and V3 = V++3 ∪ V+−3 ∪ V−+3 ∪ V−−3 . Since |V3| = q ⩾ 3 and

|V++3 ∪ V−−3 | ⩽ 2, we have V+−3 , ∅ or V−+3 , ∅. The argument for these two cases are similar, so we may
assume V+−3 , ∅. Take zi ∈ V+−3 and yh ∈ V+−2 .

If yh → zi, then N+D(zi) ⊆ {x2} ∪V2, N−D(yh) ⊆ {x1} ∪V3, and so N+D(zi)∩N−D(yh) = ∅. By Lemma 2.1, we get
∂D(zi, yh) ⩾ 3. A contradiction.

If zi → yh, then N+D(yh) ⊆ {x2} ∪V3, N−D(zi) ⊆ {x1} ∪V2, and so N+D(yh)∩N−D(zi) = ∅. By Lemma 2.1, we get
∂D(yh, zi) ⩾ 3. A contradiction.

3.3. There are exactly three nonempty sets inH

Suppose there are exactly three nonempty sets in H. Since V2 is a partition of the four sets in H, any
possible three sets inH form a partition of V2.
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3.3.1. V2 = V++2 ∪ V+−2 ∪ V−+2
Suppose V++2 , ∅, V+−2 , ∅, V−+2 , ∅ and V−−2 = ∅.
By Lemma 3.1, we have V++3 = ∅, V3 = V+−3 ∪V−+3 ∪V−−3 where |V−−3 | ⩽ 1, and we may assume V++2 = {y}.

So V1 → y→ V3, x1 → V+−2 → x2 → V−+2 → x1. We know |V+−3 ∪V−+3 | ⩾ q−1 ⩾ 2, and so V+−3 , ∅ or V−+3 , ∅.
The proof for the two cases V+−3 , ∅ and V−+3 , ∅ are similar, so we only give the proof of the case V+−3 , ∅.

Suppose V+−3 , ∅, then x1 → V+−3 → x2. Take yh ∈ V+−2 and zi ∈ V+−3 . If yh → zi, then N+D(zi) ⊆ {x2}∪V2\{y}
and N−D(yh) ⊆ {x1} ∪ V3. So N+D(zi) ∩ N−D(yh) = ∅, by Lemma 2.1, we have ∂D(zi, yh) ⩾ 3. A contradiction. If
zi → yh, then N+D(yh) ⊆ {x2} ∪ V3 and N−D(zi) ⊆ {x1} ∪ V2. So N+D(yh) ∩ N−D(zi) = ∅, by Lemma 2.1, we have
∂D(yh, zi) ⩾ 3. A contradiction.

3.3.2. V2 = V+−2 ∪ V−+2 ∪ V−−2
Suppose V+−2 , ∅, V−+2 , ∅, V−−2 , ∅ and V++2 = ∅.
This subcase is the same as in Subsubsection 3.3.1 by reversing directions of all the arcs in D, meanwhile

the diemater is preserved.

3.3.3. V2 = V++2 ∪ V+−2 ∪ V−−2
Suppose V++2 , ∅, V+−2 , ∅, V−−2 , ∅ and V−+2 = ∅.
By Lemma 3.1, we have V++3 = ∅ = V−−3 , V3 = V+−3 ∪V−+3 , and we may assume V++2 = {y+} and V−−2 = {y−}.

So V1 → y+ → V3 → y− → V1, x1 → V+−2 → x2, x1 → V+−3 → x2 → V−+3 → x1.
If V+−3 = ∅, then N+D(y+) ⊆ V−+3 and N−D(x2) ⊆ {y−} ∪V+−2 . So N+D(y+)∩N−D(x2) = ∅, by Lemma 2.1, we have

∂D(y+, x2) ⩾ 3. A contradiction.
Now suppose V+−3 , ∅. Take zi ∈ V+−3 and yh ∈ V+−2 . If yh → zi, then N+D(zi) ⊆ {x2} ∪ V2 \ {y+} and

N−D(yh) ⊆ {x1} ∪ V3. So N+D(zi) ∩ N−D(yh) = ∅, by Lemma 2.1, we have ∂D(zi, yh) ⩾ 3. A contradiction. If
zi → yh, then N+D(yh) ⊆ {x2} ∪ V3 and N−D(zi) ⊆ {x1} ∪ V2 \ {y−}. So N+D(yh) ∩ N−D(zi) = ∅, by Lemma 2.1, we
have ∂D(yh, zi) ⩾ 3. A contradiction.

3.3.4. V2 = V++2 ∪ V−+2 ∪ V−−2
Suppose V++2 , ∅, V−+2 , ∅, V−−2 , ∅ and V+−2 = ∅.
This subcase is the same as in Subsubsection 3.3.3 by interchanging vertices x1 and x2 (the diameter of

the orientation is also preserved).

3.4. There are exactly four nonempty sets inH

Suppose there are exactly four nonempty sets inH, i.e., V++2 , ∅, V+−2 , ∅, V−+2 , ∅ and V−−2 , ∅.
By Lemma 3.1, we have V++3 = ∅ = V−−3 , V3 = V+−3 ∪V−+3 , and we may assume V++2 = {y+} and V−−2 = {y−}.

So V1 → y+ → V3 → y− → V1, x1 → V+−2 → x2 → V−+2 → x1, x1 → V+−3 → x2 → V−+3 → x1. We know
V+−3 , ∅ or V−+3 , ∅. The proof for the two cases V+−3 , ∅ and V−+3 , ∅ are similar, so we only give the proof
of the case V+−3 , ∅.

Suppose V+−3 , ∅. Take yh ∈ V+−2 and zi ∈ V+−3 . If yh → zi, then N+D(zi) ⊆ {x2} ∪ V2 \ {y+} and
N−D(yh) ⊆ {x1} ∪ V3. So N+D(zi) ∩ N−D(yh) = ∅, by Lemma 2.1, we have ∂D(zi, yh) ⩾ 3. A contradiction. If
zi → yh, then N+D(yh) ⊆ {x2} ∪ V3 and N−D(zi) ⊆ {x1} ∪ V2 \ {y−}. So N+D(yh) ∩ N−D(zi) = ∅, by Lemma 2.1, we
have ∂D(yh, zi) ⩾ 3. A contradiction.

Combining all the proofs in all the subsections in Section 3, the proof of Theorem 1.2 is completed. ■
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